organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-nitro­phenyl­acetate

aCollege of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, Hubei, People's Republic of China
*Correspondence e-mail: lj80829@yahoo.com.cn

(Received 19 November 2007; accepted 8 December 2007; online 16 January 2008)

In the asymmetric unit of the title compound, C10H11NO4, there are two crystallographically independent mol­ecules, which are connected via a C—H⋯O hydrogen bond. The crystal structure is stabilized by this hydrogen bond together with an N—O⋯π contact [O⋯Cg 3.297 (5) Å; Cg is the centroid of one of the benzene rings].

Related literature

For related literature, see: Brown et al. (2006[Brown, J., Pawar, D. M., Fronczek, F. R. & Noe, E. A. (2006). Acta Cryst. C62, o628-o630.]); Shokat et al. (1991[Shokat, K. M., Ko, M. K., Scanlan, T. S., Kochersperger, L., Yonkovich, S., Thaisrivongs, S. & Schultz, P. G. (1991). Angew. Chem. Int. Ed. Engl. 29, 1296-1303.]); Sagamihara (1988[Sagamihara, H. M. (1988). US Patent 4 720 506.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO4

  • Mr = 209.20

  • Orthorhombic, P c a 21

  • a = 15.9132 (13) Å

  • b = 5.2298 (4) Å

  • c = 24.878 (2) Å

  • V = 2070.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 292 (2) K

  • 0.40 × 0.04 × 0.02 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.998

  • 13522 measured reflections

  • 2318 independent reflections

  • 1422 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.122

  • S = 1.01

  • 2318 reflections

  • 273 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O5 0.93 2.47 3.186 (6) 134

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ethyl 4-nitrophenylacetate, (I), has been widely used as an intermediator of the anti-rheumatoid drugs (Kevan et al., 1991; Sagamihara, 1988). The similar compound, cyclodecyl 4-nitrophenylacetate, has been reported by Brown et al. (2006). Here we present the molecular structure of (I), as shown in Fig. 1. In the asymmetric unit of (I), there is a dimer via a C—H···O interaction (Table 1). The angles involving the acetate groups in the dimer are 126.7 (4), 124.0 (4), 126.1 (4) and 123.1 (4)°, and the average distances of C=O and C—O are 1.202 (5) and 2.792 (5) Å, respectively. The C—N bond lengths on the benzene ring range from 1.202 (5) to 1.219 (4) Å. The benzene ring planes of the two independent molecules are nearly directional parallel with the dihedral angle of 19.2 (2)°, but no significant π-π interaction. The molecular packing diagram of (I) is stabilized by N1—O2···π contact [O2···Cgi 3.297 (5) Å, N1—O2···Cgi 156.3 (3)°; Cg is the centroid of the benzene C11—C16 ring; symmetry code: (i) 1/2 + x, 1 - y, z] together with hydrogen bond, as shown in Fig. 2.

Related literature top

For related literature, see: Brown et al. (2006); Kevan et al. (1991); Sagamihara (1988).

Experimental top

Ethyl 4-nitrophenylacetate was obtained from the Jiachen Chemical Company Inc, ShangHai. The crystals were grown by vapour diffusion of 95% ethanol.

Refinement top

After their location in a difference map, all H atoms were fixed geometrically at ideal positions (C–H = 0.93–0.96 Å) and allowed to ride on the parent C atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atom numbering, showing displacement ellipsoids at the 50% probability level. The hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The molecular packing diagram of the title compound, with hydrogen bonds shown as dashed lines.
Ethyl 4-nitrophenylacetate top
Crystal data top
C10H11NO4F(000) = 880
Mr = 209.20Dx = 1.342 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1377 reflections
a = 15.9132 (13) Åθ = 2.7–20.9°
b = 5.2298 (4) ŵ = 0.11 mm1
c = 24.878 (2) ÅT = 292 K
V = 2070.4 (3) Å3Plate, colorless
Z = 80.40 × 0.04 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2318 independent reflections
Radiation source: fine-focus sealed tube1422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ϕ and ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1520
Tmin = 0.959, Tmax = 0.998k = 66
13522 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0579P)2]
where P = (Fo2 + 2Fc2)/3
2318 reflections(Δ/σ)max = 0.004
273 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C10H11NO4V = 2070.4 (3) Å3
Mr = 209.20Z = 8
Orthorhombic, Pca21Mo Kα radiation
a = 15.9132 (13) ŵ = 0.11 mm1
b = 5.2298 (4) ÅT = 292 K
c = 24.878 (2) Å0.40 × 0.04 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2318 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
1422 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.998Rint = 0.065
13522 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0501 restraint
wR(F2) = 0.122H-atom parameters constrained
S = 1.01Δρmax = 0.13 e Å3
2318 reflectionsΔρmin = 0.15 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1982 (2)1.1755 (8)0.18201 (15)0.0473 (10)
C21.1806 (3)1.3761 (8)0.14828 (17)0.0556 (11)
H21.22301.48560.13680.067*
C31.0991 (3)1.4122 (8)0.13180 (17)0.0559 (11)
H31.08641.54790.10910.067*
C41.0354 (3)1.2492 (8)0.14854 (17)0.0521 (10)
C51.0559 (3)1.0479 (8)0.1821 (2)0.0578 (12)
H51.01390.93590.19300.069*
C61.1363 (3)1.0091 (8)0.1995 (2)0.0579 (13)
H61.14920.87440.22250.069*
C70.9459 (3)1.2913 (9)0.13058 (18)0.0629 (13)
H7A0.90961.28820.16190.076*
H7B0.94151.45980.11450.076*
C80.9148 (3)1.0963 (9)0.09078 (17)0.0527 (11)
C90.7949 (3)0.9750 (9)0.0399 (2)0.0682 (15)
H9A0.79390.80040.05310.082*
H9B0.82610.97900.00640.082*
C100.7077 (3)1.0715 (12)0.0316 (2)0.0842 (17)
H10A0.67681.05820.06460.126*
H10B0.68050.97130.00430.126*
H10C0.70971.24710.02040.126*
C110.9635 (2)0.3428 (7)0.32274 (15)0.0467 (10)
C120.9473 (3)0.1331 (8)0.35509 (17)0.0541 (11)
H120.99030.02200.36490.065*
C130.8662 (3)0.0924 (8)0.37249 (18)0.0556 (11)
H130.85470.04560.39490.067*
C140.8017 (2)0.2530 (8)0.35717 (15)0.0469 (10)
C150.8203 (3)0.4571 (9)0.3234 (2)0.0570 (12)
H150.77720.56450.31220.068*
C160.9012 (2)0.5043 (8)0.30617 (19)0.0501 (12)
H160.91310.64240.28390.060*
C170.7135 (2)0.2026 (8)0.37470 (17)0.0561 (11)
H17A0.71080.03370.39080.067*
H17B0.67740.20200.34330.067*
C180.6801 (3)0.3948 (8)0.41442 (17)0.0494 (10)
C190.5597 (3)0.5179 (9)0.4642 (2)0.0631 (14)
H19A0.55810.69100.45030.076*
H19B0.59090.51860.49770.076*
C200.4726 (3)0.4214 (11)0.4734 (2)0.0776 (15)
H20A0.44140.43000.44040.116*
H20B0.44550.52490.50020.116*
H20C0.47490.24740.48560.116*
N11.2850 (2)1.1303 (8)0.19950 (16)0.0625 (10)
N21.0504 (2)0.3938 (8)0.30557 (16)0.0594 (10)
O11.3401 (2)1.2661 (7)0.18162 (16)0.0868 (11)
O21.2991 (2)0.9635 (9)0.23154 (18)0.1051 (16)
O30.95456 (18)0.9271 (7)0.07121 (13)0.0671 (10)
O40.83388 (17)1.1435 (6)0.07940 (12)0.0630 (8)
O51.0631 (2)0.5766 (7)0.27657 (17)0.0878 (12)
O61.1065 (2)0.2546 (7)0.32154 (15)0.0766 (10)
O70.71909 (18)0.5709 (6)0.43392 (14)0.0685 (9)
O80.59970 (17)0.3485 (6)0.42567 (12)0.0607 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (2)0.048 (2)0.045 (2)0.0003 (19)0.0007 (19)0.0029 (18)
C20.064 (3)0.048 (3)0.055 (2)0.012 (2)0.006 (2)0.002 (2)
C30.069 (3)0.043 (2)0.055 (3)0.001 (2)0.006 (2)0.003 (2)
C40.061 (3)0.041 (2)0.054 (2)0.003 (2)0.003 (2)0.008 (2)
C50.054 (3)0.049 (3)0.070 (3)0.004 (2)0.004 (2)0.004 (2)
C60.055 (3)0.051 (3)0.068 (4)0.003 (2)0.008 (2)0.005 (2)
C70.053 (3)0.054 (3)0.082 (4)0.008 (2)0.004 (2)0.011 (2)
C80.053 (3)0.055 (3)0.050 (2)0.008 (2)0.003 (2)0.001 (2)
C90.069 (3)0.072 (4)0.064 (4)0.007 (3)0.014 (3)0.010 (2)
C100.065 (4)0.104 (4)0.083 (4)0.001 (3)0.020 (3)0.006 (3)
C110.046 (2)0.047 (2)0.047 (2)0.0012 (19)0.0004 (18)0.0049 (18)
C120.055 (3)0.049 (3)0.058 (2)0.002 (2)0.002 (2)0.005 (2)
C130.064 (3)0.046 (3)0.057 (3)0.001 (2)0.010 (2)0.007 (2)
C140.050 (3)0.040 (2)0.050 (2)0.004 (2)0.0009 (19)0.0081 (19)
C150.047 (3)0.058 (3)0.066 (3)0.004 (2)0.002 (2)0.002 (2)
C160.066 (3)0.047 (3)0.037 (2)0.002 (2)0.003 (2)0.0023 (17)
C170.057 (3)0.048 (3)0.063 (3)0.007 (2)0.006 (2)0.007 (2)
C180.048 (3)0.044 (3)0.056 (3)0.003 (2)0.004 (2)0.001 (2)
C190.057 (3)0.077 (4)0.056 (3)0.002 (2)0.007 (2)0.004 (2)
C200.066 (3)0.096 (4)0.071 (3)0.001 (3)0.013 (3)0.001 (3)
N10.061 (3)0.069 (3)0.058 (2)0.008 (2)0.002 (2)0.003 (2)
N20.052 (2)0.065 (3)0.061 (2)0.001 (2)0.0045 (19)0.001 (2)
O10.059 (2)0.094 (3)0.107 (3)0.0180 (19)0.0037 (19)0.018 (2)
O20.077 (3)0.126 (3)0.112 (4)0.001 (2)0.013 (2)0.061 (3)
O30.059 (2)0.067 (2)0.076 (3)0.0100 (17)0.0050 (16)0.023 (2)
O40.0493 (18)0.066 (2)0.074 (2)0.0083 (15)0.0097 (15)0.0110 (16)
O50.072 (2)0.087 (3)0.104 (3)0.0159 (19)0.015 (2)0.041 (2)
O60.055 (2)0.081 (3)0.094 (2)0.0124 (17)0.0080 (18)0.007 (2)
O70.066 (2)0.062 (2)0.078 (2)0.0127 (15)0.0025 (16)0.0180 (19)
O80.0560 (18)0.065 (2)0.0611 (17)0.0103 (15)0.0146 (15)0.0113 (16)
Geometric parameters (Å, º) top
C1—C21.372 (6)C11—N21.471 (5)
C1—C61.385 (5)C12—C131.378 (5)
C1—N11.468 (5)C12—H120.9300
C2—C31.373 (5)C13—C141.380 (5)
C2—H20.9300C13—H130.9300
C3—C41.388 (6)C14—C151.390 (6)
C3—H30.9300C14—C171.494 (5)
C4—C51.382 (6)C15—C161.380 (6)
C4—C71.510 (5)C15—H150.9300
C5—C61.366 (6)C16—H160.9300
C5—H50.9300C17—C181.506 (6)
C6—H60.9300C17—H17A0.9700
C7—C81.505 (6)C17—H17B0.9700
C7—H7A0.9700C18—O71.212 (5)
C7—H7B0.9700C18—O81.332 (5)
C8—O31.192 (5)C19—O81.452 (6)
C8—O41.341 (5)C19—C201.493 (6)
C9—O41.458 (5)C19—H19A0.9700
C9—C101.491 (5)C19—H19B0.9700
C9—H9A0.9700C20—H20A0.9600
C9—H9B0.9700C20—H20B0.9600
C10—H10A0.9600C20—H20C0.9600
C10—H10B0.9600N1—O21.202 (5)
C10—H10C0.9600N1—O11.212 (4)
C11—C161.365 (5)N2—O51.215 (5)
C11—C121.385 (6)N2—O61.219 (4)
C2—C1—C6121.8 (4)C11—C12—H12120.7
C2—C1—N1119.8 (4)C12—C13—C14121.0 (4)
C6—C1—N1118.4 (4)C12—C13—H13119.5
C3—C2—C1118.7 (4)C14—C13—H13119.5
C3—C2—H2120.6C13—C14—C15118.4 (4)
C1—C2—H2120.6C13—C14—C17120.7 (4)
C2—C3—C4121.0 (4)C15—C14—C17120.8 (4)
C2—C3—H3119.5C16—C15—C14121.6 (4)
C4—C3—H3119.5C16—C15—H15119.2
C5—C4—C3118.4 (4)C14—C15—H15119.2
C5—C4—C7120.8 (4)C11—C16—C15118.2 (4)
C3—C4—C7120.7 (4)C11—C16—H16120.9
C6—C5—C4121.7 (4)C15—C16—H16120.9
C6—C5—H5119.1C14—C17—C18113.9 (3)
C4—C5—H5119.1C14—C17—H17A108.8
C5—C6—C1118.2 (4)C18—C17—H17A108.8
C5—C6—H6120.9C14—C17—H17B108.8
C1—C6—H6120.9C18—C17—H17B108.8
C8—C7—C4114.0 (3)H17A—C17—H17B107.7
C8—C7—H7A108.8O7—C18—O8123.1 (4)
C4—C7—H7A108.8O7—C18—C17126.1 (4)
C8—C7—H7B108.8O8—C18—C17110.8 (4)
C4—C7—H7B108.8O8—C19—C20107.6 (4)
H7A—C7—H7B107.7O8—C19—H19A110.2
O3—C8—O4124.0 (4)C20—C19—H19A110.2
O3—C8—C7126.7 (4)O8—C19—H19B110.2
O4—C8—C7109.3 (4)C20—C19—H19B110.2
O4—C9—C10106.5 (4)H19A—C19—H19B108.5
O4—C9—H9A110.4C19—C20—H20A109.5
C10—C9—H9A110.4C19—C20—H20B109.5
O4—C9—H9B110.4H20A—C20—H20B109.5
C10—C9—H9B110.4C19—C20—H20C109.5
H9A—C9—H9B108.6H20A—C20—H20C109.5
C9—C10—H10A109.5H20B—C20—H20C109.5
C9—C10—H10B109.5O2—N1—O1122.3 (4)
H10A—C10—H10B109.5O2—N1—C1119.2 (4)
C9—C10—H10C109.5O1—N1—C1118.5 (4)
H10A—C10—H10C109.5O5—N2—O6122.8 (4)
H10B—C10—H10C109.5O5—N2—C11118.1 (4)
C16—C11—C12122.0 (4)O6—N2—C11119.1 (4)
C16—C11—N2118.8 (4)C8—O4—C9116.1 (3)
C12—C11—N2119.1 (4)N2—O5—H6155.7
C13—C12—C11118.6 (4)C18—O8—C19116.7 (3)
C13—C12—H12120.7
C6—C1—C2—C30.3 (6)N2—C11—C16—C15178.7 (4)
N1—C1—C2—C3179.0 (3)C14—C15—C16—C110.6 (6)
C1—C2—C3—C40.3 (6)C13—C14—C17—C18110.9 (4)
C2—C3—C4—C50.4 (6)C15—C14—C17—C1871.5 (5)
C2—C3—C4—C7179.5 (4)C14—C17—C18—O73.5 (6)
C3—C4—C5—C61.1 (7)C14—C17—C18—O8176.0 (3)
C7—C4—C5—C6178.9 (4)C2—C1—N1—O2175.6 (5)
C4—C5—C6—C11.0 (7)C6—C1—N1—O25.7 (6)
C2—C1—C6—C50.3 (7)C2—C1—N1—O13.2 (6)
N1—C1—C6—C5178.4 (4)C6—C1—N1—O1175.5 (4)
C5—C4—C7—C871.4 (5)C16—C11—N2—O51.0 (6)
C3—C4—C7—C8108.6 (4)C12—C11—N2—O5179.0 (4)
C4—C7—C8—O33.9 (7)C16—C11—N2—O6177.9 (4)
C4—C7—C8—O4177.1 (4)C12—C11—N2—O62.2 (6)
C16—C11—C12—C132.3 (6)O3—C8—O4—C90.9 (6)
N2—C11—C12—C13177.7 (4)C7—C8—O4—C9178.2 (4)
C11—C12—C13—C141.5 (6)C10—C9—O4—C8176.9 (4)
C12—C13—C14—C150.3 (6)O6—N2—O5—H60.9
C12—C13—C14—C17177.9 (4)C11—N2—O5—H6179.7
C13—C14—C15—C161.4 (6)O7—C18—O8—C191.4 (6)
C17—C14—C15—C16179.0 (4)C17—C18—O8—C19179.1 (4)
C12—C11—C16—C151.3 (6)C20—C19—O8—C18176.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O50.932.473.186 (6)134

Experimental details

Crystal data
Chemical formulaC10H11NO4
Mr209.20
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)292
a, b, c (Å)15.9132 (13), 5.2298 (4), 24.878 (2)
V3)2070.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.04 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.959, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
13522, 2318, 1422
Rint0.065
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.122, 1.01
No. of reflections2318
No. of parameters273
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O50.932.473.186 (6)134
 

Acknowledgements

The authors acknowledge the teachers of the College of Chemistry of Central China Normal University.

References

First citationBrown, J., Pawar, D. M., Fronczek, F. R. & Noe, E. A. (2006). Acta Cryst. C62, o628–o630.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSagamihara, H. M. (1988). US Patent 4 720 506.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationShokat, K. M., Ko, M. K., Scanlan, T. S., Kochersperger, L., Yonkovich, S., Thaisrivongs, S. & Schultz, P. G. (1991). Angew. Chem. Int. Ed. Engl. 29, 1296–1303.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds