metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[di­aqua­iron(II)]-μ-pyridine-2,5-di­carboxyl­ato-[tetra­aqua­iron(II)]-μ-pyridine-2,5-di­carboxyl­ato] tetra­hydrate]

aDepartment of Chemistry, Shangqiu Normal College, 476000 Shangqiu, Henan, People's Republic of China
*Correspondence e-mail: xuhyun@yahoo.cn

(Received 22 December 2007; accepted 20 January 2008; online 25 January 2008)

In the crystal structure of the title compound, {[Fe2(C7H3NO4)2(H2O)6]·4H2O}n, there are two types of coordination for the FeII atoms. One FeII atom is in a distorted octa­hedral N2O4 environment, with two chelating rings from the pyridine­dicarboxyl­ate ligands and two O atoms from the water mol­ecules, while the other is in a distorted octa­hedral O6 environment with two O atoms from the pyridine­dicarboxyl­ate ligands and four O atoms from the water mol­ecules. Both FeII atoms lie on crystallographic centers of symmetry. The complex possesses an infinite chain structure running along the [101] direction. These chains are inter­connected by the uncoordinated water mol­ecules through O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Hill (1998[Hill, C. L. (1998). Chem. Rev. 98, 1-390.]); Liang et al. (2001[Liang, Y.-C., Hong, M.-C., Su, W.-P., Cao, R. & Zhang, W.-J. (2001). Inorg. Chem. 40, 4574-4582.]); Mitzi et al. (1995[Mitzi, D. B., Wang, S., Field, C. A., Chess, C. A. & Guloy, A. M. (1995). Science, 267, 1473-1476.]); Moler et al. (2001[Moler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319-330.]); Zeng et al. (2003[Zeng, M.-H., Gao, S., Yu, X.-L. & Chen, X.-M. (2003). New J. Chem. 27, 1599-1602.]); Xu et al. (2004[Xu, Y., Han, L., Lin, Z.-Z., Liu, C.-P., Yuan, D.-Q., Zhou, Y.-F. & Hong, M.-C. (2004). Eur. J. Inorg. Chem. pp. 4457-4462.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C7H3NO4)2(H2O)6]·4H2O

  • Mr = 622.06

  • Triclinic, [P \overline 1]

  • a = 7.098 (3) Å

  • b = 8.922 (3) Å

  • c = 9.720 (2) Å

  • α = 90.942 (6)°

  • β = 101.375 (6)°

  • γ = 108.112 (5)°

  • V = 571.6 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 298 (2) K

  • 0.21 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.763, Tmax = 0.792

  • 2866 measured reflections

  • 1989 independent reflections

  • 1757 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.06

  • 1989 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9B⋯O8 0.85 2.32 3.159 (6) 171
O9—H9A⋯O6i 0.85 2.06 2.849 (5) 154
O8—H8B⋯O5ii 0.85 2.55 3.204 (4) 134
O8—H8B⋯O4ii 0.85 2.51 3.171 (4) 136
O8—H8A⋯O3 0.85 2.55 3.177 (4) 132
O8—H8A⋯O2 0.85 2.44 3.201 (4) 149
O5—H5B⋯O7i 0.85 2.22 2.706 (3) 116
O2—H2B⋯O9iii 0.85 1.94 2.657 (5) 141
O2—H2A⋯O4iv 0.85 1.99 2.758 (3) 150
O1—H1B⋯O6v 0.85 1.92 2.715 (3) 156
O1—H1A⋯O8ii 0.85 2.06 2.822 (4) 148
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) -x+2, -y+1, -z+1; (v) x+1, y+1, z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Extended frameworks of coordination polymers based on transition metal ions and multifunctional bridging ligands are currently of great interest because of their intriguing topologies and their potential applications (Hill, 1998; Moler et al., 2001; Mitzi et al., 1995). Multi-carboxylate ligands may exhibit various coordination modes to furnish various structures. Recently, many transition metal-organic polymers constructed with multi-carboxylate ligands show varies of novel topology and potential applications in catalysis, materials chemistry and biochemistry (Zeng et al., 2003; Xu et al., 2004; Liang et al., 2001). Pyridine-2,5-dicarboxylic acid (H2pydc) has unique features because of the presence of two carboxylate groups (O donor atoms) and the pyridine ring (N donor atom), which aids to increase the dimensionality of the assembled covalent network. Therefore, it is most likely that pydc will form low symmetric structures with metals. In this paper, we report the preparation and crystal structure of a new three-dimensional supramolecular complex [Fe2(pydc)2(H2O)2].4H2O, (I).

In the complex, (I), there exist two types of coordination geometries around the Fe(II) ions. The Fe1 ions are hexacoordinated in a N2O4 environment with two chelating rings from the pydc ligands and two oxygen atoms from the water molecules. The Fe2 ions are also hexacoordinated in an O6 environment with two oxygen atoms from the pydc ligands and four oxygen atoms from the water molecules. All Fe atoms lie on a crystallographic center of symmetry and the ligand lies on a crystallographic twofold axis. A perspective view of the local coordination environments around the Fe(II) atoms of (I) is shown in Fig. 1. For Fe1 and Fe2, the bond distances of Fe—O (water oxygen), 2.071–2.100 Å, are similar with those of Fe—O (carboxylate oxygen), 2.058–2.080 Å. As presented in Fig. 2, the two kinds of geometries around Fe(II) ions are arranged alternatively to give the one-dimensional polymeric chain. Interestingly, all Fe atoms of one polymeric chain are situated on one line and the neighboring Fe(II) atoms are syn-anti carboxylato bridged with the distance of 5.423 Å. These chains are interconnected by the uncoordinated water molecules through O—H···O hydrogen-bonding interactions and form a two-dimensional layer structure. A three-dimensional supramolecular network is obtained through O—H···O hydrogen-bonding interactions in the layers.

Related literature top

For related literature, see: Hill (1998); Liang et al. (2001); Mitzi et al. (1995); Moler et al. (2001); Zeng et al. (2003); Xu et al. (2004).

Experimental top

A mixture of H2pydc (0.34 g, 2 mmol), KOH (0.23 g, 4 mmol) and FeSO4.7H2O (0.55 g, 2 mmol) in 15 ml of MeOH/H2O (v/v, 1:1) was sealed in a 25-ml stainless-steel reactor with a teflon liner and was heated at 453 K for 72 h under autogenous pressure. Slow cooling to room temperature yielded 0.36 g (yield 40%) of block red crystals. Anal. Calc. for C7H13NO9Fe (%): C 27.03, H 4.21, N 4.50. Found (%): C 27.14, H 4.46, N 4.36.

Refinement top

The H atoms were included in the riding-model approximation with C—H = 0.93 Å and O—H = 0.85 Å, and with Uiso(H) = 1.2Ueq(C, O). Hydroxyl H atoms were allowed to rotate to best fit the experimental electron density.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity. The suffix A corresponds to symmetry code (2 - x, 1 - y, 1 - z).
[Figure 2] Fig. 2. The three-dimensional supramolecular structure of the title compound. Hydrogen bonds are shown by dashed lines.
catena-Poly[[[diaquairon(II)]-µ-pyridine-2,5-dicarboxylato- [tetraaquairon(II)]-µ-pyridine-2,5-dicarboxylato] tetrahydrate] top
Crystal data top
[Fe2(C7H3NO4)2(H2O)6]·4H2OZ = 1
Mr = 622.06F(000) = 320
Triclinic, P1Dx = 1.807 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.098 (3) ÅCell parameters from 714 reflections
b = 8.922 (3) Åθ = 2.4–28.2°
c = 9.720 (2) ŵ = 1.36 mm1
α = 90.942 (6)°T = 298 K
β = 101.375 (6)°Block, red
γ = 108.112 (5)°0.21 × 0.20 × 0.18 mm
V = 571.6 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
1989 independent reflections
Radiation source: fine-focus sealed tube1757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 86
Tmin = 0.763, Tmax = 0.792k = 1010
2866 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.081P)2 + 0.2244P]
where P = (Fo2 + 2Fc2)/3
1989 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Fe2(C7H3NO4)2(H2O)6]·4H2Oγ = 108.112 (5)°
Mr = 622.06V = 571.6 (3) Å3
Triclinic, P1Z = 1
a = 7.098 (3) ÅMo Kα radiation
b = 8.922 (3) ŵ = 1.36 mm1
c = 9.720 (2) ÅT = 298 K
α = 90.942 (6)°0.21 × 0.20 × 0.18 mm
β = 101.375 (6)°
Data collection top
Bruker SMART APEX CCD
diffractometer
1989 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1757 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.792Rint = 0.062
2866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.06Δρmax = 0.65 e Å3
1989 reflectionsΔρmin = 0.60 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50000.00000.0222 (2)
Fe21.00000.50000.50000.0258 (2)
C10.6446 (4)0.3738 (3)0.2523 (3)0.0270 (6)
C20.4924 (4)0.2309 (3)0.1667 (3)0.0275 (6)
C30.4514 (5)0.0824 (3)0.2147 (3)0.0330 (7)
H30.51260.06790.30500.040*
C40.3189 (5)0.0438 (3)0.1270 (3)0.0331 (7)
H40.28890.14490.15790.040*
C50.2302 (4)0.0216 (3)0.0065 (3)0.0278 (6)
C60.2767 (4)0.1328 (3)0.0474 (3)0.0279 (6)
H60.21610.14960.13720.033*
C70.0905 (4)0.1587 (4)0.1093 (3)0.0318 (7)
N10.4039 (3)0.2565 (3)0.0369 (3)0.0261 (5)
O10.8315 (4)0.6187 (3)0.5803 (3)0.0448 (6)
H1A0.71320.61450.53730.054*
H1B0.91500.70170.62790.054*
O20.9411 (3)0.3350 (3)0.6494 (2)0.0425 (6)
H2B0.85760.24190.62860.051*
H2A1.04600.35700.71560.051*
O30.7348 (3)0.3533 (2)0.3701 (2)0.0352 (5)
O40.6748 (3)0.5047 (2)0.1970 (2)0.0334 (5)
O50.2787 (3)0.5429 (3)0.0954 (2)0.0361 (5)
H5A0.17920.53540.02760.043*
H5B0.22880.48060.15370.043*
O60.0097 (4)0.1287 (3)0.2262 (3)0.0473 (6)
O70.0653 (4)0.2939 (3)0.0688 (3)0.0430 (6)
O80.4663 (4)0.2880 (4)0.6019 (3)0.0640 (8)
H8B0.46010.31050.68590.077*
H8A0.58710.32700.59040.077*
O90.1591 (7)0.0327 (5)0.4428 (6)0.1112 (15)
H9B0.24890.04710.49120.133*
H9A0.14630.02050.37180.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0226 (3)0.0153 (3)0.0243 (3)0.0050 (2)0.0034 (2)0.0004 (2)
Fe20.0269 (4)0.0200 (3)0.0247 (3)0.0056 (2)0.0043 (2)0.0003 (2)
C10.0253 (14)0.0248 (14)0.0301 (15)0.0088 (12)0.0027 (11)0.0011 (11)
C20.0261 (14)0.0260 (14)0.0284 (15)0.0082 (12)0.0021 (11)0.0013 (11)
C30.0369 (17)0.0282 (15)0.0302 (16)0.0083 (13)0.0019 (13)0.0059 (12)
C40.0357 (16)0.0215 (14)0.0403 (17)0.0090 (13)0.0041 (13)0.0059 (12)
C50.0251 (14)0.0225 (14)0.0355 (16)0.0079 (12)0.0054 (12)0.0003 (12)
C60.0277 (15)0.0226 (13)0.0314 (15)0.0088 (12)0.0006 (12)0.0004 (11)
C70.0242 (14)0.0258 (15)0.0432 (18)0.0083 (12)0.0023 (13)0.0049 (13)
N10.0259 (12)0.0187 (11)0.0308 (13)0.0071 (10)0.0003 (10)0.0014 (9)
O10.0403 (13)0.0383 (13)0.0492 (14)0.0153 (11)0.0089 (11)0.0151 (11)
O20.0407 (13)0.0349 (12)0.0411 (13)0.0033 (10)0.0026 (10)0.0113 (10)
O30.0366 (12)0.0278 (11)0.0308 (11)0.0047 (9)0.0072 (9)0.0010 (8)
O40.0367 (12)0.0228 (10)0.0314 (11)0.0071 (9)0.0096 (9)0.0011 (8)
O50.0320 (11)0.0320 (12)0.0439 (13)0.0104 (10)0.0072 (10)0.0046 (10)
O60.0572 (15)0.0302 (12)0.0434 (14)0.0136 (11)0.0134 (11)0.0088 (10)
O70.0367 (13)0.0198 (11)0.0632 (16)0.0040 (10)0.0020 (11)0.0008 (10)
O80.0469 (16)0.075 (2)0.066 (2)0.0196 (16)0.0038 (14)0.0019 (16)
O90.116 (3)0.054 (2)0.163 (5)0.019 (2)0.041 (3)0.000 (2)
Geometric parameters (Å, º) top
Fe1—O42.058 (2)C4—C51.372 (4)
Fe1—O4i2.058 (2)C4—H40.9300
Fe1—O5i2.100 (2)C5—C61.397 (4)
Fe1—O52.100 (2)C5—C71.515 (4)
Fe1—N12.125 (2)C6—N11.328 (4)
Fe1—N1i2.125 (2)C6—H60.9300
Fe2—O12.071 (2)C7—O61.241 (4)
Fe2—O1ii2.071 (2)C7—O71.245 (4)
Fe2—O3ii2.080 (2)O1—H1A0.8499
Fe2—O32.080 (2)O1—H1B0.8499
Fe2—O22.092 (2)O2—H2B0.8500
Fe2—O2ii2.092 (2)O2—H2A0.8501
C1—O31.242 (3)O5—H5A0.8499
C1—O41.268 (4)O5—H5B0.8500
C1—C21.496 (4)O8—H8B0.8500
C2—N11.351 (4)O8—H8A0.8499
C2—C31.376 (4)O9—H9B0.8499
C3—C41.368 (4)O9—H9A0.8500
C3—H30.9300
O4—Fe1—O4i180.00 (11)N1—C2—C1115.5 (2)
O4—Fe1—O5i90.89 (9)C3—C2—C1122.3 (3)
O4i—Fe1—O5i89.11 (9)C4—C3—C2118.8 (3)
O4—Fe1—O589.11 (9)C4—C3—H3120.6
O4i—Fe1—O590.89 (9)C2—C3—H3120.6
O5i—Fe1—O5180.00 (6)C3—C4—C5120.2 (3)
O4—Fe1—N179.00 (8)C3—C4—H4119.9
O4i—Fe1—N1101.00 (8)C5—C4—H4119.9
O5i—Fe1—N188.20 (9)C4—C5—C6117.9 (3)
O5—Fe1—N191.80 (9)C4—C5—C7121.9 (3)
O4—Fe1—N1i101.00 (8)C6—C5—C7120.2 (3)
O4i—Fe1—N1i79.00 (8)N1—C6—C5122.5 (3)
O5i—Fe1—N1i91.80 (9)N1—C6—H6118.7
O5—Fe1—N1i88.20 (9)C5—C6—H6118.7
N1—Fe1—N1i180.0O6—C7—O7125.1 (3)
O1—Fe2—O1ii180.00 (12)O6—C7—C5118.1 (3)
O1—Fe2—O3ii90.59 (9)O7—C7—C5116.8 (3)
O1ii—Fe2—O3ii89.41 (9)C6—N1—C2118.4 (2)
O1—Fe2—O389.41 (9)C6—N1—Fe1129.8 (2)
O1ii—Fe2—O390.59 (9)C2—N1—Fe1111.81 (18)
O3ii—Fe2—O3180.0Fe2—O1—H1A122.3
O1—Fe2—O289.15 (10)Fe2—O1—H1B107.1
O1ii—Fe2—O290.85 (10)H1A—O1—H1B122.4
O3ii—Fe2—O293.74 (9)Fe2—O2—H2B122.9
O3—Fe2—O286.26 (9)Fe2—O2—H2A108.0
O1—Fe2—O2ii90.85 (10)H2B—O2—H2A122.9
O1ii—Fe2—O2ii89.15 (10)C1—O3—Fe2129.74 (18)
O3ii—Fe2—O2ii86.26 (9)C1—O4—Fe1116.24 (18)
O3—Fe2—O2ii93.74 (9)Fe1—O5—H5A104.8
O2—Fe2—O2ii180.0Fe1—O5—H5B119.7
O3—C1—O4125.5 (3)H5A—O5—H5B105.0
O3—C1—C2117.1 (2)H8B—O8—H8A110.3
O4—C1—C2117.3 (2)H9B—O9—H9A91.5
N1—C2—C3122.2 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···O80.852.323.159 (6)171
O9—H9A···O6iii0.852.062.849 (5)154
O8—H8B···O5iv0.852.553.204 (4)134
O8—H8B···O4iv0.852.513.171 (4)136
O8—H8A···O30.852.553.177 (4)132
O8—H8A···O20.852.443.201 (4)149
O5—H5B···O7iii0.852.222.706 (3)116
O2—H2B···O9v0.851.942.657 (5)141
O2—H2A···O4ii0.851.992.758 (3)150
O1—H1B···O6vi0.851.922.715 (3)156
O1—H1A···O8iv0.852.062.822 (4)148
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Fe2(C7H3NO4)2(H2O)6]·4H2O
Mr622.06
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.098 (3), 8.922 (3), 9.720 (2)
α, β, γ (°)90.942 (6), 101.375 (6), 108.112 (5)
V3)571.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.21 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.763, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
2866, 1989, 1757
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.124, 1.06
No. of reflections1989
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.60

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9B···O80.852.323.159 (6)171
O9—H9A···O6i0.852.062.849 (5)154
O8—H8B···O5ii0.852.553.204 (4)134
O8—H8B···O4ii0.852.513.171 (4)136
O8—H8A···O30.852.553.177 (4)132
O8—H8A···O20.852.443.201 (4)149
O5—H5B···O7i0.852.222.706 (3)116
O2—H2B···O9iii0.851.942.657 (5)141
O2—H2A···O4iv0.851.992.758 (3)150
O1—H1B···O6v0.851.922.715 (3)156
O1—H1A···O8ii0.852.062.822 (4)148
Symmetry codes: (i) x, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+2, y+1, z+1; (v) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Henan Province (No. 0511020300) for financial support.

References

First citationHill, C. L. (1998). Chem. Rev. 98, 1–390.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiang, Y.-C., Hong, M.-C., Su, W.-P., Cao, R. & Zhang, W.-J. (2001). Inorg. Chem. 40, 4574–4582.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMitzi, D. B., Wang, S., Field, C. A., Chess, C. A. & Guloy, A. M. (1995). Science, 267, 1473–1476.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationMoler, D. B., Li, H., Chen, B., Reineke, T. M., O'Keeffe, M. & Yaghi, O. M. (2001). Acc. Chem. Res. 34, 319–330.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXu, Y., Han, L., Lin, Z.-Z., Liu, C.-P., Yuan, D.-Q., Zhou, Y.-F. & Hong, M.-C. (2004). Eur. J. Inorg. Chem. pp. 4457–4462.  Web of Science CSD CrossRef Google Scholar
First citationZeng, M.-H., Gao, S., Yu, X.-L. & Chen, X.-M. (2003). New J. Chem. 27, 1599–1602.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds