organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,7-Di-2-pyridyl-2,3-di­hydro­thieno[3,4-b][1,4]dioxine

aDepartment of Chemistry, Brock University, 500 Glenridge Avenue, St Catharines, ON, Canada L2S 3A1, and bMcMaster University, Department of Chemistry, 1280 Main Street W., Hamilton, Ontario, Canada L8S 4M1
*Correspondence e-mail: mlemaire@brocku.ca

(Received 7 January 2008; accepted 11 January 2008; online 16 January 2008)

The title compound, C16H12N2O2S, was prepared by a Neigishi cross-coupling reaction to investigate the coordination chemistry of thio­phene-containing ligands. In the mol­ecule, the pyridine rings are twisted from the thio­phene ring by 20.6 (1) and 4.1 (2)°. The six-membered dihydro­dioxine ring is in a half-chair conformation.

Related literature

For the structures of other 2,5-disubsituted 3,4-ethyl­ene­dioxy­thio­phene (EDOT) derivatives, see: Lomas et al. (2007[Lomas, J. S., Cordier, C., Adenier, A., Maurel, F. & Vaissermann, J. (2007). J. Phys. Org. Chem. 20, 410-421.]); and Sato et al. (2006[Sato, M., Kubota, Y., Tanemura, A., Maruyama, G., Fujihara, T., Nakayama, J., Takayanagi, T., Takahashi, K. & Unoura, K. (2006). Eur. J. Inorg. Chem. pp. 4577-4588.]). For related literature, see: Ghosh & Simonsen (1993[Ghosh, R. & Simonsen, S. H. (1993). Acta Cryst. C49, 1031-1032.]); Han & Choi (2000[Han, B.-H. & Choi, M.-G. (2000). Acta Cryst. C56, 1001-1003.]); Roncali et al. (2005[Roncali, J., Blanchard, P. & Frère, P. (2005). J. Mater. Chem. 15, 1589-1610.]); Sotzing et al. (1996[Sotzing, G. A., Reynolds, J. R. & Steel, P. J. (1996). Chem. Mater. 8, 882-889.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12N2O2S

  • Mr = 296.34

  • Monoclinic, P 21 /n

  • a = 10.5189 (12) Å

  • b = 9.8752 (12) Å

  • c = 13.1961 (18) Å

  • β = 97.752 (3)°

  • V = 1358.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 (2) K

  • 0.38 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.864, Tmax = 1.000 (expected range = 0.823–0.952)

  • 22945 measured reflections

  • 5134 independent reflections

  • 4316 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.108

  • S = 1.04

  • 5134 reflections

  • 238 parameters

  • All H-atom parameters refined

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of 3,4-ethylenedioxythiophene (EDOT) have been actively pursued primarily as precursors to polymers with interesting electronic and optical properties (Roncali et al., 2005). The presence of the ethylenedioxy substituent greatly enhances the stability of these materials relative to unsubstituted polythiophenes. As part of our efforts toward new molecule-based materials, we are investigating the propensity for 3,4-ethylenedioxythiophene derivatives to function as ligands for transition metal ions. We have prepared the title compound (I) featuring 2-pyridyl substituents appended to the 2,5-positions of the 3,4-ethylenedioxythiophene ring and are investigating the coordination chemistry of this potentially chelating ligand. We report herein the crystal structure of (I).

In the molecular structure of (I) bond lengths and angles within the EDOT moiety are within normal ranges (Han & Choi, 2000; Sotzing et al., 1996). As is typical in the structures of other EDOT derivatives, the six-membered dioxane-type ring in (I) is in a half-chair conformation, with the H atoms on the ethylene C atoms in a nearly gauche configuration. Each pyridine ring is tilted out of the plane of the EDOT moiety, with torsion angles of 19.39 (12) and -0.78 (12)° for S1—C11—C12—N2 and N1—C5—C6—S1, respectively and is likely the result of short intramolecular contacts between N and S atoms (2.923 (1) and 2.965 (1)Å for S1···N1 and S1···N2, respectively). Bond lengths between the EDOT group and the pyridine rings are 1.4626 (13) and 1.4609 (13) Å for C5—C6 and C11—C12, respectively. These lengths are the same (within experimental error) as those observed for the related bonds in the structure of 2-pyridylthiophene [1.469 (3) Å] (Ghosh & Simonsen, 1993).

Related literature top

For the structures of other 2,5-disubsituted 3,4-ethylenedioxythiophene (EDOT) derivatives, see: Lomas et al. (2007); and Sato et al. (2006).

For related literature, see: Ghosh & Simonsen (1993); Han & Choi (2000); Roncali et al. (2005); Sotzing et al. (1996).

Experimental top

2-pyridylzinc bromide solution (20.0 ml of a 0.5 M THF solution, 10.0 mmol) was added via syringe to a dry, nitrogen-purged Schlenk flask protected from light containing 2,5-dibromo-3,4-ethylenedioxythiophene (1.0 g, 3.3 mmol) and Pd(PPh3)4 (0.35 g, 0.3 mmol). The mixture was refluxed for 24 h, cooled to room temperature and stirred in basic edta solution (~0.2 M) for approximately 24 h. The edta solution was extracted with chloroform, concentrated to a small volume and poured into pentane to precipitate out the product as a pale yellow solid. Yield 0.48 g (49%). Crystals were grown by slow evaporation of an acetone solution of the product at 278 K. Anal.calcd (%) for C16H12N2O2S: C 64.85, H 4.09, N 9.46.Found: C 64.23, H 3.82, N 9.25. MS(EI+), m/z (%): 296 (100).

Refinement top

H atoms were found using the difference map and all H parameters were refined.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: APEX2 (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.
5,7-Di-2-pyridyl-2,3-dihydrothieno[3,4-b][1,4]dioxine top
Crystal data top
C16H12N2O2SF(000) = 616
Mr = 296.34Dx = 1.449 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8327 reflections
a = 10.5189 (12) Åθ = 2.6–32.3°
b = 9.8752 (12) ŵ = 0.24 mm1
c = 13.1961 (18) ÅT = 173 K
β = 97.752 (3)°Block, colourless
V = 1358.2 (3) Å30.38 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
5134 independent reflections
Radiation source: fine-focus sealed tube4316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 33.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.864, Tmax = 1.000k = 815
22945 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.109All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0623P)2 + 0.2445P]
where P = (Fo2 + 2Fc2)/3
5134 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H12N2O2SV = 1358.2 (3) Å3
Mr = 296.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5189 (12) ŵ = 0.24 mm1
b = 9.8752 (12) ÅT = 173 K
c = 13.1961 (18) Å0.38 × 0.30 × 0.20 mm
β = 97.752 (3)°
Data collection top
Bruker APEXII
diffractometer
5134 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4316 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 1.000Rint = 0.026
22945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.109All H-atom parameters refined
S = 1.05Δρmax = 0.47 e Å3
5134 reflectionsΔρmin = 0.21 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.52108 (2)0.40887 (2)0.128549 (18)0.02244 (7)
O10.21374 (7)0.28139 (9)0.04158 (6)0.03008 (17)
N10.32131 (9)0.54483 (9)0.22458 (7)0.02895 (18)
C10.24126 (12)0.61030 (12)0.27867 (9)0.0343 (2)
H10.2820 (16)0.6590 (17)0.3407 (13)0.046 (4)*
O20.44345 (8)0.16437 (8)0.10327 (6)0.02944 (16)
N20.76947 (9)0.27018 (10)0.12037 (8)0.03112 (19)
C20.10899 (12)0.60791 (12)0.25650 (10)0.0343 (2)
H20.0574 (15)0.6560 (17)0.2998 (12)0.043 (4)*
C30.05533 (11)0.53586 (12)0.17120 (10)0.0338 (2)
H30.0338 (17)0.5319 (17)0.1520 (13)0.044 (4)*
C40.13538 (11)0.46837 (11)0.11278 (9)0.0294 (2)
H40.0956 (16)0.4152 (16)0.0528 (13)0.043 (4)*
C50.26776 (9)0.47352 (9)0.14214 (7)0.02228 (17)
C60.35800 (9)0.39961 (9)0.08746 (7)0.02107 (17)
C70.33364 (9)0.31265 (9)0.00561 (7)0.02180 (17)
C80.21613 (12)0.21560 (15)0.13906 (9)0.0373 (3)
H8B0.1311 (17)0.1762 (17)0.1607 (13)0.045 (4)*
H8A0.2400 (17)0.2820 (17)0.1874 (14)0.048 (4)*
C90.31708 (12)0.10680 (12)0.13079 (10)0.0343 (2)
H9B0.3068 (16)0.0402 (16)0.0763 (13)0.042 (4)*
H9A0.3192 (16)0.0601 (16)0.1964 (13)0.040 (4)*
C100.44657 (9)0.25377 (9)0.02383 (7)0.02233 (17)
C110.55669 (9)0.29531 (9)0.03618 (7)0.02234 (17)
C120.68890 (10)0.25174 (10)0.03345 (8)0.02406 (18)
C130.72798 (11)0.19200 (11)0.05374 (9)0.0289 (2)
H130.6694 (17)0.1792 (18)0.1144 (13)0.049 (5)*
C140.85394 (11)0.14936 (13)0.04938 (10)0.0341 (2)
H140.8846 (18)0.1135 (18)0.1082 (14)0.051 (5)*
C150.93616 (11)0.16398 (14)0.04084 (11)0.0389 (3)
H151.0276 (17)0.1367 (18)0.0466 (13)0.050 (5)*
C160.89017 (11)0.22521 (14)0.12321 (10)0.0375 (3)
H160.9492 (17)0.2418 (17)0.1890 (14)0.051 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02221 (12)0.02250 (11)0.02233 (12)0.00056 (7)0.00197 (8)0.00032 (7)
O10.0229 (3)0.0409 (4)0.0257 (3)0.0009 (3)0.0004 (3)0.0099 (3)
N10.0312 (4)0.0294 (4)0.0248 (4)0.0052 (3)0.0010 (3)0.0057 (3)
C10.0382 (6)0.0349 (5)0.0283 (5)0.0088 (4)0.0005 (4)0.0098 (4)
O20.0285 (4)0.0329 (4)0.0275 (4)0.0003 (3)0.0059 (3)0.0082 (3)
N20.0230 (4)0.0383 (5)0.0318 (5)0.0004 (3)0.0027 (3)0.0059 (4)
C20.0367 (6)0.0331 (5)0.0335 (5)0.0105 (4)0.0055 (5)0.0073 (4)
C30.0270 (5)0.0353 (5)0.0388 (6)0.0064 (4)0.0036 (4)0.0084 (4)
C40.0257 (5)0.0314 (5)0.0305 (5)0.0039 (4)0.0020 (4)0.0075 (4)
C50.0258 (4)0.0203 (4)0.0207 (4)0.0025 (3)0.0028 (3)0.0007 (3)
C60.0225 (4)0.0212 (4)0.0195 (4)0.0012 (3)0.0029 (3)0.0017 (3)
C70.0216 (4)0.0240 (4)0.0197 (4)0.0003 (3)0.0022 (3)0.0010 (3)
C80.0320 (6)0.0513 (7)0.0267 (5)0.0050 (5)0.0027 (4)0.0137 (5)
C90.0323 (5)0.0360 (5)0.0343 (6)0.0025 (4)0.0032 (4)0.0125 (4)
C100.0247 (4)0.0224 (4)0.0203 (4)0.0011 (3)0.0047 (3)0.0009 (3)
C110.0224 (4)0.0222 (4)0.0229 (4)0.0014 (3)0.0051 (3)0.0030 (3)
C120.0228 (4)0.0237 (4)0.0263 (4)0.0003 (3)0.0058 (3)0.0024 (3)
C130.0273 (5)0.0318 (5)0.0287 (5)0.0001 (4)0.0074 (4)0.0011 (4)
C140.0281 (5)0.0376 (6)0.0385 (6)0.0003 (4)0.0117 (4)0.0067 (4)
C150.0220 (5)0.0447 (6)0.0500 (7)0.0011 (4)0.0051 (5)0.0107 (5)
C160.0235 (5)0.0471 (7)0.0406 (6)0.0005 (4)0.0004 (4)0.0091 (5)
Geometric parameters (Å, º) top
S1—C61.7303 (10)C5—C61.4626 (13)
S1—C111.7340 (10)C6—C71.3767 (13)
O1—C71.3644 (12)C7—C101.4229 (13)
O1—C81.4444 (13)C8—C91.5042 (18)
N1—C11.3412 (14)C8—H8B0.982 (17)
N1—C51.3533 (13)C8—H8A0.971 (18)
C1—C21.3828 (18)C9—H9B0.991 (16)
C1—H10.996 (18)C9—H9A0.984 (16)
O2—C101.3674 (12)C10—C111.3747 (14)
O2—C91.4463 (14)C11—C121.4609 (13)
N2—C161.3408 (15)C12—C131.4029 (14)
N2—C121.3435 (14)C13—C141.3841 (16)
C2—C31.3857 (17)C13—H130.950 (18)
C2—H20.965 (16)C14—C151.3814 (19)
C3—C41.3867 (15)C14—H140.948 (18)
C3—H30.938 (17)C15—C161.3868 (18)
C4—C51.3950 (15)C15—H150.992 (18)
C4—H40.994 (17)C16—H161.010 (18)
C6—S1—C1192.56 (5)C9—C8—H8A106.7 (10)
C7—O1—C8112.47 (8)H8B—C8—H8A112.5 (15)
C1—N1—C5117.10 (10)O2—C9—C8110.69 (10)
N1—C1—C2124.42 (11)O2—C9—H9B105.4 (10)
N1—C1—H1116.0 (9)C8—C9—H9B112.5 (10)
C2—C1—H1119.5 (9)O2—C9—H9A106.0 (10)
C10—O2—C9111.87 (8)C8—C9—H9A111.7 (9)
C16—N2—C12117.70 (10)H9B—C9—H9A110.1 (13)
C1—C2—C3117.94 (10)O2—C10—C11124.44 (9)
C1—C2—H2119.8 (10)O2—C10—C7122.58 (9)
C3—C2—H2122.3 (10)C11—C10—C7112.98 (8)
C2—C3—C4119.15 (11)C10—C11—C12128.97 (9)
C2—C3—H3121.6 (10)C10—C11—S1110.66 (7)
C4—C3—H3119.3 (10)C12—C11—S1120.30 (7)
C3—C4—C5119.10 (10)N2—C12—C13122.44 (10)
C3—C4—H4118.4 (10)N2—C12—C11115.59 (9)
C5—C4—H4122.5 (10)C13—C12—C11121.96 (9)
N1—C5—C4122.27 (9)C14—C13—C12118.59 (11)
N1—C5—C6115.39 (9)C14—C13—H13120.2 (10)
C4—C5—C6122.32 (9)C12—C13—H13121.2 (10)
C7—C6—C5129.33 (9)C15—C14—C13119.24 (11)
C7—C6—S1110.53 (7)C15—C14—H14120.1 (12)
C5—C6—S1120.07 (7)C13—C14—H14120.6 (12)
O1—C7—C6124.20 (9)C14—C15—C16118.50 (11)
O1—C7—C10122.50 (8)C14—C15—H15121.7 (10)
C6—C7—C10113.28 (9)C16—C15—H15119.7 (10)
O1—C8—C9110.71 (10)N2—C16—C15123.48 (12)
O1—C8—H8B108.2 (10)N2—C16—H16116.1 (10)
C9—C8—H8B110.2 (10)C15—C16—H16120.3 (10)
O1—C8—H8A108.5 (10)
C5—N1—C1—C20.93 (18)C9—O2—C10—C717.88 (13)
N1—C1—C2—C31.7 (2)O1—C7—C10—O21.80 (14)
C1—C2—C3—C40.77 (19)C6—C7—C10—O2179.87 (8)
C2—C3—C4—C50.74 (18)O1—C7—C10—C11177.64 (9)
C1—N1—C5—C40.72 (15)C6—C7—C10—C110.44 (12)
C1—N1—C5—C6177.85 (9)O2—C10—C11—C123.24 (16)
C3—C4—C5—N11.55 (16)C7—C10—C11—C12176.18 (9)
C3—C4—C5—C6176.92 (10)O2—C10—C11—S1179.96 (7)
N1—C5—C6—C7175.73 (10)C7—C10—C11—S10.62 (10)
C4—C5—C6—C72.84 (16)C6—S1—C11—C100.51 (7)
N1—C5—C6—S10.78 (12)C6—S1—C11—C12176.61 (8)
C4—C5—C6—S1179.35 (8)C16—N2—C12—C132.13 (16)
C11—S1—C6—C70.26 (7)C16—N2—C12—C11176.57 (10)
C11—S1—C6—C5176.86 (8)C10—C11—C12—N2157.14 (10)
C8—O1—C7—C6165.76 (10)S1—C11—C12—N219.39 (12)
C8—O1—C7—C1016.38 (14)C10—C11—C12—C1321.56 (15)
C5—C6—C7—O11.22 (16)S1—C11—C12—C13161.91 (8)
S1—C6—C7—O1177.99 (8)N2—C12—C13—C140.69 (16)
C5—C6—C7—C10176.82 (9)C11—C12—C13—C14177.93 (10)
S1—C6—C7—C100.04 (10)C12—C13—C14—C151.45 (17)
C7—O1—C8—C945.42 (14)C13—C14—C15—C162.0 (2)
C10—O2—C9—C846.89 (13)C12—N2—C16—C151.51 (19)
O1—C8—C9—O262.83 (14)C14—C15—C16—N20.6 (2)
C9—O2—C10—C11161.49 (10)

Experimental details

Crystal data
Chemical formulaC16H12N2O2S
Mr296.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)10.5189 (12), 9.8752 (12), 13.1961 (18)
β (°) 97.752 (3)
V3)1358.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.38 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.864, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
22945, 5134, 4316
Rint0.026
(sin θ/λ)max1)0.772
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.05
No. of reflections5134
No. of parameters238
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.47, 0.21

Computer programs: APEX2 (Bruker, 2006), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada for financial support. Martin Lemaire thanks Brock University for providing start-up funding for this research. X-ray crystallographic analyses were performed at the McMaster Analytical X-ray (MAX) Diffraction Facility.

References

First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhosh, R. & Simonsen, S. H. (1993). Acta Cryst. C49, 1031–1032.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHan, B.-H. & Choi, M.-G. (2000). Acta Cryst. C56, 1001–1003.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLomas, J. S., Cordier, C., Adenier, A., Maurel, F. & Vaissermann, J. (2007). J. Phys. Org. Chem. 20, 410–421.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoncali, J., Blanchard, P. & Frère, P. (2005). J. Mater. Chem. 15, 1589–1610.  Web of Science CrossRef CAS Google Scholar
First citationSato, M., Kubota, Y., Tanemura, A., Maruyama, G., Fujihara, T., Nakayama, J., Takayanagi, T., Takahashi, K. & Unoura, K. (2006). Eur. J. Inorg. Chem. pp. 4577–4588.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSotzing, G. A., Reynolds, J. R. & Steel, P. J. (1996). Chem. Mater. 8, 882–889.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds