organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Norbornane-exo-cis-2,3-diyl 1′,2′-phenyl­ene orthocarbonate

aLudwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13, 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 3 October 2007; accepted 27 November 2007; online 9 January 2008)

The title compound (systematic name: 4,7-methano-2,2′-spirobi­[1,3-benzodioxole]), C14H14O4, is an asymmetric spiro ester of orthocarbonic acid and two diols, viz. the aromatic benzene-1,2-diol and the aliphatic vicinal norbornane-exo-cis-2,3-diol. The orthocarbonate mol­ecule is close to having non-crystallographic Cs symmetry. The five-membered ring stemming from the aliphatic diol has an envelope conformation. C—O bonds including the spiro-C atom span an approximately 0.07 Å range, but are within 0.02 Å of the respective distances in a density functional theory calculation, i.e. the distance difference is not caused by packing forces. Accordingly, the crystal packing is characterized by weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For the synthesis of the title compound, see: Komatsu et al. (1992[Komatsu, S., Takata, T. & Endo, T. (1992). Macromolecules, 25, 7286-7293.]). For related compounds, see: Betz & Klüfers (2007a[Betz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o3933.],b[Betz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4132.],c[Betz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o4300.]); Betz et al. (2007[Betz, R., Jahn, N. & Klüfers, P. (2007). Acta Cryst. E63, o4152.]). Density functional theory calculations were performed by Betz & Klüfers (2008[Betz, R. & Klüfers, P. (2008). Unpublished results.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14O4

  • Mr = 246.25

  • Monoclinic, P 21 /n

  • a = 7.9125 (3) Å

  • b = 9.5545 (5) Å

  • c = 15.2813 (6) Å

  • β = 101.490 (3)°

  • V = 1132.11 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 200 (2) K

  • 0.30 × 0.25 × 0.16 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 8399 measured reflections

  • 2582 independent reflections

  • 1716 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.119

  • S = 1.05

  • 2582 reflections

  • 164 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Selected bond lengths (Å)

O1—C1 1.367 (2)
O2—C1 1.370 (2)
O3—C1 1.412 (2)
O4—C1 1.435 (2)

Table 2
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C9–C14 phenylene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O4i 1.00 2.71 3.623 (2) 151
C7—H7A⋯O4i 0.99 2.76 3.663 (2) 151
C14—H14⋯O2ii 0.95 2.61 3.501 (2) 156
C14—H14⋯O4ii 0.95 2.88 3.514 (2) 125
C2—H2⋯Cgiii 1.00 2.86 3.563 (2) 128
C5—H5⋯Cgiv 1.00 2.66 3.568 (2) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x+1, y, z.

Data collection: COLLECT (Nonius, 2004[Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]; 2006 version).

Supporting information


Comment top

The title compound was prepared in order to compare its NMR-spectroscopic data with those of related silicon compounds.

In the molecule, a central carbon atom is chelated by a phenylene-1,2-dioxy and a norbornylene-exo-cis-2,3-dioxy moiety. The C—O bond lengths differ markedly (1.37 to 1.44 Å). About the same bond-length values were computed for the isolated molecule on the B3LYP/6–31+G(d,p) level of theory thus ruling out packing forces as the origin of the bond-length differences. The five-membered chelate ring stemming from the aliphatic diol adopts an envelope conformation on the spiro center C1 (puckering parameters: Q2 = 0.1274 (16) Å, ϕ2 = 42.6 (7)° for the O1—C1—O2—C4—C3 ring).

Accordingly, the crystal packing is characterized by weak C—H···X interactions whose H···X distances are close to the sum of the van-der-Waals radii (vdWr). In terms of the vdWr criterion, the shortest tabulated hydrogen-bond, the C14—H14···O2 interaction, is 0.11 \&A shorter than the radii sum. The weak interactions in (I) are thus less significant than those in the related 1-(ylomethyl)cyclopentyl 1',2'-phenylene orthocarbonate, where C—H···O bonds are observed at the radii sum minus 0.35 Å (Betz & Klüfers, 2007c). Fig. 2 shows this interaction as well as the shortest C—H···π bond which has one of the norbornane-bridgehead C—H functions as the donor. The other bridgehead methylidyne function acts as a donor in a still weaker bond. Moreover, another weak C—H···O bond may be recognized with a diol-CH function as the donor (see the hydrogen bond table).

Related literature top

For the synthesis of the title compound, see: Komatsu et al. (1992). For related compounds, see: Betz & Klüfers (2007a,b,c); Betz et al. (2007). For density functional theory calculations, see: [Please provide reference]

Experimental top

The title compound was prepared based on a published procedure (Komatsu et al., 1992) upon reaction of norbornane-exo-cis-2,3-diol with 2,2-dichlorobenzo[1.3]dioxol in dichloromethane in the presence of pyridine. Crystals suitable for X-ray analysis were obtained after recrystallization from boiling ethyl acetate.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H distances of 0.95, 0.99 and 1.00 Å, and with Uiso(H) = 1.2Ueq(C) for all H atoms.

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003; 2006 version).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing viewed along [0 1 0]. Green arrows: the strongest C—H···O interaction in terms of the H···O distance (C14—H14···O2). Green dotted lines: the strongest C—H···π interaction (C5—H5—Cg, Cg is the centroid of the phenylene residue).
4,7-methano-2,2'-spirobi[1,3-benzodioxole] top
Crystal data top
C14H14O4F(000) = 520
Mr = 246.25Dx = 1.445 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 14429 reflections
a = 7.9125 (3) Åθ = 2.7–27.5°
b = 9.5545 (5) ŵ = 0.11 mm1
c = 15.2813 (6) ÅT = 200 K
β = 101.490 (3)°Block, colourless
V = 1132.11 (9) Å30.30 × 0.25 × 0.16 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1716 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.054
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.2°
CCD; rotation images; thick slices scansh = 910
8399 measured reflectionsk = 1211
2582 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119Only H-atom displacement parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.1349P]
where P = (Fo2 + 2Fc2)/3
2582 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H14O4V = 1132.11 (9) Å3
Mr = 246.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9125 (3) ŵ = 0.11 mm1
b = 9.5545 (5) ÅT = 200 K
c = 15.2813 (6) Å0.30 × 0.25 × 0.16 mm
β = 101.490 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1716 reflections with I > 2σ(I)
8399 measured reflectionsRint = 0.054
2582 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.119Only H-atom displacement parameters refined
S = 1.05Δρmax = 0.21 e Å3
2582 reflectionsΔρmin = 0.19 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39573 (14)0.24072 (14)0.47478 (7)0.0460 (3)
O20.51722 (14)0.20489 (14)0.35623 (7)0.0463 (3)
O30.27667 (13)0.34038 (12)0.34119 (7)0.0408 (3)
O40.25466 (14)0.10405 (11)0.35921 (8)0.0441 (3)
C10.3646 (2)0.22289 (18)0.38424 (11)0.0384 (4)
C20.67414 (19)0.32183 (17)0.56079 (10)0.0333 (4)
H20.61610.37660.60220.0490 (13)*
C30.56971 (19)0.20081 (17)0.51341 (10)0.0342 (4)
H30.57420.11650.55260.0490 (13)*
C40.65286 (19)0.17354 (18)0.43193 (10)0.0368 (4)
H40.69640.07550.43050.0490 (13)*
C50.7973 (2)0.28116 (18)0.44257 (11)0.0378 (4)
H50.84070.30250.38690.0490 (13)*
C60.9350 (2)0.2320 (2)0.52188 (12)0.0458 (5)
H6A1.04330.28570.52590.0490 (13)*
H6B0.96000.13100.51710.0490 (13)*
C70.8509 (2)0.26146 (19)0.60315 (11)0.0439 (4)
H7A0.83870.17430.63640.0490 (13)*
H7B0.91960.32980.64430.0490 (13)*
C80.7165 (2)0.40464 (17)0.48246 (10)0.0384 (4)
H8A0.61230.44120.44200.0490 (13)*
H8B0.79950.48140.50180.0490 (13)*
C90.12113 (18)0.29423 (16)0.29208 (9)0.0307 (4)
C100.10837 (18)0.15188 (16)0.30274 (9)0.0307 (4)
C110.03269 (19)0.07732 (17)0.26098 (10)0.0365 (4)
H110.04060.02110.26810.0490 (13)*
C120.16353 (19)0.15365 (18)0.20764 (10)0.0367 (4)
H120.26430.10640.17780.0490 (13)*
C130.1506 (2)0.29664 (18)0.19700 (10)0.0375 (4)
H130.24260.34540.16000.0490 (13)*
C140.0054 (2)0.37112 (17)0.23937 (10)0.0350 (4)
H140.00490.46930.23200.0490 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (6)0.0743 (9)0.0367 (7)0.0025 (5)0.0027 (5)0.0082 (6)
O20.0296 (6)0.0719 (9)0.0354 (6)0.0024 (6)0.0016 (5)0.0142 (6)
O30.0331 (6)0.0367 (7)0.0486 (7)0.0050 (5)0.0018 (5)0.0036 (5)
O40.0333 (6)0.0351 (7)0.0556 (7)0.0031 (5)0.0107 (5)0.0028 (5)
C10.0293 (9)0.0449 (10)0.0388 (9)0.0000 (7)0.0014 (7)0.0057 (7)
C20.0337 (8)0.0357 (9)0.0301 (8)0.0013 (7)0.0053 (6)0.0024 (6)
C30.0283 (8)0.0362 (9)0.0369 (8)0.0013 (6)0.0034 (6)0.0023 (7)
C40.0305 (8)0.0389 (9)0.0389 (9)0.0032 (7)0.0016 (6)0.0092 (7)
C50.0297 (8)0.0489 (10)0.0358 (9)0.0022 (7)0.0089 (6)0.0042 (7)
C60.0283 (9)0.0509 (11)0.0552 (11)0.0031 (7)0.0015 (7)0.0084 (8)
C70.0365 (9)0.0506 (11)0.0401 (10)0.0041 (8)0.0031 (7)0.0004 (8)
C80.0419 (9)0.0320 (9)0.0419 (9)0.0018 (7)0.0096 (7)0.0023 (7)
C90.0267 (8)0.0362 (9)0.0293 (8)0.0017 (6)0.0059 (6)0.0036 (6)
C100.0261 (8)0.0336 (9)0.0315 (8)0.0037 (6)0.0033 (6)0.0010 (6)
C110.0320 (8)0.0335 (9)0.0432 (9)0.0027 (7)0.0057 (6)0.0007 (7)
C120.0261 (8)0.0478 (11)0.0351 (8)0.0012 (7)0.0030 (6)0.0050 (7)
C130.0318 (8)0.0468 (11)0.0326 (8)0.0083 (7)0.0035 (6)0.0031 (7)
C140.0388 (9)0.0328 (9)0.0346 (8)0.0043 (7)0.0102 (7)0.0046 (7)
Geometric parameters (Å, º) top
O1—C11.367 (2)C5—H51.0000
O1—C31.438 (2)C6—C71.547 (3)
O2—C11.370 (2)C6—H6A0.9900
O2—C41.444 (2)C6—H6B0.9900
O3—C91.380 (2)C7—H7A0.9900
O3—C11.412 (2)C7—H7B0.9900
O4—C101.377 (2)C8—H8A0.9900
O4—C11.435 (2)C8—H8B0.9900
C2—C31.518 (2)C9—C141.367 (2)
C2—C81.527 (2)C9—C101.376 (2)
C2—C71.532 (2)C10—C111.370 (2)
C2—H21.0000C11—C121.390 (2)
C3—C41.542 (2)C11—H110.9500
C3—H31.0000C12—C131.382 (2)
C4—C51.522 (2)C12—H120.9500
C4—H41.0000C13—C141.396 (2)
C5—C81.526 (2)C13—H130.9500
C5—C61.533 (2)C14—H140.9500
C1—O1—C3110.32 (12)C5—C6—H6A111.1
C1—O2—C4109.66 (12)C7—C6—H6A111.1
C9—O3—C1107.62 (12)C5—C6—H6B111.1
C10—O4—C1107.09 (12)C7—C6—H6B111.1
O1—C1—O2109.88 (12)H6A—C6—H6B109.1
O1—C1—O3110.18 (13)C2—C7—C6103.41 (13)
O2—C1—O3109.73 (14)C2—C7—H7A111.1
O1—C1—O4110.22 (14)C6—C7—H7A111.1
O2—C1—O4110.04 (13)C2—C7—H7B111.1
O3—C1—O4106.75 (11)C6—C7—H7B111.1
C3—C2—C8101.79 (12)H7A—C7—H7B109.0
C3—C2—C7106.20 (13)C5—C8—C295.02 (13)
C8—C2—C7101.65 (13)C5—C8—H8A112.7
C3—C2—H2115.2C2—C8—H8A112.7
C8—C2—H2115.2C5—C8—H8B112.7
C7—C2—H2115.2C2—C8—H8B112.7
O1—C3—C2112.31 (13)H8A—C8—H8B110.2
O1—C3—C4103.94 (12)C14—C9—C10122.58 (14)
C2—C3—C4103.56 (12)C14—C9—O3128.15 (15)
O1—C3—H3112.1C10—C9—O3109.27 (13)
C2—C3—H3112.1C11—C10—C9122.08 (14)
C4—C3—H3112.1C11—C10—O4128.66 (14)
O2—C4—C5111.59 (13)C9—C10—O4109.27 (12)
O2—C4—C3104.08 (12)C10—C11—C12116.29 (15)
C5—C4—C3103.40 (12)C10—C11—H11121.9
O2—C4—H4112.4C12—C11—H11121.9
C5—C4—H4112.4C13—C12—C11121.58 (14)
C3—C4—H4112.4C13—C12—H12119.2
C4—C5—C8101.52 (13)C11—C12—H12119.2
C4—C5—C6106.13 (14)C12—C13—C14121.51 (14)
C8—C5—C6102.10 (13)C12—C13—H13119.2
C4—C5—H5115.1C14—C13—H13119.2
C8—C5—H5115.1C9—C14—C13115.96 (15)
C6—C5—H5115.1C9—C14—H14122.0
C5—C6—C7103.11 (13)C13—C14—H14122.0
C3—O1—C1—O214.26 (19)O2—C4—C5—C6177.46 (13)
C3—O1—C1—O3135.27 (13)C3—C4—C5—C671.25 (15)
C3—O1—C1—O4107.18 (14)C4—C5—C6—C772.05 (16)
C4—O2—C1—O115.22 (19)C8—C5—C6—C733.89 (17)
C4—O2—C1—O3136.51 (13)C3—C2—C7—C670.90 (16)
C4—O2—C1—O4106.32 (14)C8—C2—C7—C635.19 (16)
C9—O3—C1—O1119.98 (13)C5—C6—C7—C20.83 (17)
C9—O3—C1—O2118.91 (13)C4—C5—C8—C254.90 (14)
C9—O3—C1—O40.31 (16)C6—C5—C8—C254.59 (14)
C10—O4—C1—O1120.17 (13)C3—C2—C8—C554.54 (14)
C10—O4—C1—O2118.49 (14)C7—C2—C8—C554.98 (14)
C10—O4—C1—O30.52 (17)C1—O3—C9—C14179.57 (15)
C1—O1—C3—C2118.72 (15)C1—O3—C9—C100.02 (16)
C1—O1—C3—C47.43 (17)C14—C9—C10—C110.0 (2)
C8—C2—C3—O177.54 (15)O3—C9—C10—C11179.53 (14)
C7—C2—C3—O1176.46 (13)C14—C9—C10—O4179.94 (14)
C8—C2—C3—C433.98 (15)O3—C9—C10—O40.36 (17)
C7—C2—C3—C472.02 (14)C1—O4—C10—C11179.34 (16)
C1—O2—C4—C5120.76 (14)C1—O4—C10—C90.54 (17)
C1—O2—C4—C39.90 (17)C9—C10—C11—C120.6 (2)
O1—C3—C4—O21.48 (16)O4—C10—C11—C12179.57 (14)
C2—C3—C4—O2116.04 (13)C10—C11—C12—C130.5 (2)
O1—C3—C4—C5118.21 (13)C11—C12—C13—C140.0 (2)
C2—C3—C4—C50.68 (15)C10—C9—C14—C130.5 (2)
O2—C4—C5—C876.19 (15)O3—C9—C14—C13179.99 (14)
C3—C4—C5—C835.11 (15)C12—C13—C14—C90.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i1.002.713.623 (2)151
C7—H7A···O4i0.992.763.663 (2)151
C14—H14···O2ii0.952.613.501 (2)156
C14—H14···O4ii0.952.883.514 (2)125
C2—H2···Cgiii1.002.863.563 (2)128
C5—H5···Cgiv1.002.663.568 (2)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y1/2, z1/2; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H14O4
Mr246.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)7.9125 (3), 9.5545 (5), 15.2813 (6)
β (°) 101.490 (3)
V3)1132.11 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.25 × 0.16
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8399, 2582, 1716
Rint0.054
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 1.05
No. of reflections2582
No. of parameters164
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: COLLECT (Nonius, 2004), SCALEPACK (Otwinowski & Minor 1997), DENZO (Otwinowski & Minor 1997) and SCALEPACK (Otwinowski & Minor 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003; 2006 version).

Selected bond lengths (Å) top
O1—C11.367 (2)O3—C11.412 (2)
O2—C11.370 (2)O4—C11.435 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O4i1.002.713.623 (2)151
C7—H7A···O4i0.992.763.663 (2)151
C14—H14···O2ii0.952.613.501 (2)156
C14—H14···O4ii0.952.883.514 (2)125
C2—H2···Cgiii1.002.863.563 (2)128
C5—H5···Cgiv1.002.663.568 (2)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y1/2, z1/2; (iv) x+1, y, z.
 

Acknowledgements

The authors thank Moritz Reichvilser for professional support.

References

First citationBetz, R., Jahn, N. & Klüfers, P. (2007). Acta Cryst. E63, o4152.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2007a). Acta Cryst. E63, o3933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2007b). Acta Cryst. E63, o4132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2007c). Acta Cryst. E63, o4300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2008). Unpublished results.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKomatsu, S., Takata, T. & Endo, T. (1992). Macromolecules, 25, 7286–7293.  CrossRef CAS Web of Science Google Scholar
First citationNonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds