organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Morpholinium perchlorate

aA. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky prospekt, 119991 Moscow, Russian Federation
*Correspondence e-mail: grigoriev@ipc.rssi.ru

(Received 11 December 2007; accepted 21 December 2007; online 9 January 2008)

In the title salt, C4H10NO+·ClO4, which has three independent formula units, the cations are linked into chains along [100] by N—H⋯O hydrogen bonds. Each cation acts both as a donor and as an acceptor, and every cation makes one N—H⋯O hydrogen bond with a ClO4 anion. The crystal studied was an inversion twin.

Related literature

See Grigoriev et al. (2007[Grigoriev, M. S., German, K. E. & Maruk, A. Y. (2007). Acta Cryst. E63, m2355.]) for the structure of morpholinium tetra­oxidorhenate(VII).

[Scheme 1]

Experimental

Crystal data
  • C4H10NO+·ClO4

  • Mr = 187.58

  • Orthorhombic, P 21 21 21

  • a = 8.1515 (3) Å

  • b = 9.5435 (4) Å

  • c = 28.9022 (12) Å

  • V = 2248.41 (16) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 100 (2) K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: none

  • 31159 measured reflections

  • 6453 independent reflections

  • 5928 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.062

  • S = 1.03

  • 6453 reflections

  • 323 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2793 Friedel pairs

  • Flack parameter: 0.42 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O2 0.877 (9) 2.051 (13) 2.7872 (16) 141.0 (15)
N1—H1D⋯O15i 0.871 (9) 2.015 (10) 2.8642 (15) 164.7 (16)
N2—H2C⋯O14ii 0.884 (9) 1.980 (10) 2.8441 (14) 165.5 (16)
N2—H2D⋯O8 0.889 (9) 2.020 (11) 2.8465 (15) 154.1 (15)
N3—H3C⋯O13i 0.878 (9) 2.004 (10) 2.8690 (15) 168.0 (17)
N3—H3D⋯O9 0.870 (9) 2.039 (13) 2.7895 (17) 143.9 (16)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I) (Fig. 1), contains slightly distorted tetrahedral ClO4- anions with Cl—O distances from 1.4353 (11) to 1.4496 (10) Å. Morpholinium cations have chair conformation.

The structure of (I) can be described as alternating cationic and anionic layers parallel to the (013) plane (Fig. 2).

Every morpholinium cation acts as proton donor in two hydrogen bonds, acceptors being O atoms of another morpholinium cation and ClO4- anion (Fig. 3, Table 1).

Morpholinium tetraoxidochlorate(VII) contains three independent formula units, which make two different types of zigzag chains in the [100] direction by N—H···O hydrogen bonds between cations (Fig. 3). The first type is formed by one formula unit and the second type is formed by two remaining formula units. As it is nseen in Fig. 3, two types of chains have different orientation of ClO4- anions.

The structure of morpholinium tetraoxidorhenate(VII) (Grigoriev et al., 2007) also contains alternating cationic and anionic layers with hydrogen bonds in perpendicular direction. But in contrast to (I), O atoms of morpholinium in (C4H10NO)[ReO4] do not participate in hydrogen-bonding.

Related literature top

See Grigoriev et al. (2007) for the structure of morpholinium perrhenatetetraoxidorhenate.

For related literature, see: Sheldrick (2004).

Experimental top

Synthesis of (I) was carried out as a neutralization reaction by dissolution of stoichiometric quantity of morpholine under intensive stirring in 0.92 M water solution of HClO4 at room temperature, followed by evaporation of the resulting solution at temperature 323 K.

Refinement top

The H atoms of CH2 groups were refined in idealized geometrical positions with displacement parameters being equal to 1.2 times Ueq of the attached C atoms. The H atoms of NH2 were located on difference Fourier map and refined with displacement parameters being equal to 1.2 times Ueq of the attached N atoms and N—H distances restrained to 0.88 (1) Å.

The Flack parameter was explicitly refined. The absolute structure was selected on the basis of the lower Flack parameter; the structure is a racemic twin.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. A view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented by circles of arbitrary size. Dashed lines indicate the hydrogen-bonding interaction.
[Figure 2] Fig. 2. The unit cell of (I).
[Figure 3] Fig. 3. The comparison of two different types of chains.
Morpholinium perchlorate top
Crystal data top
C4H10NO+·ClO4F(000) = 1176
Mr = 187.58Dx = 1.662 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7054 reflections
a = 8.1515 (3) Åθ = 2.3–30.0°
b = 9.5435 (4) ŵ = 0.49 mm1
c = 28.9022 (12) ÅT = 100 K
V = 2248.41 (16) Å3Fragment, colourless
Z = 120.24 × 0.20 × 0.16 mm
Data collection top
Bruker KappaAPEXII area-detector
diffractometer
5928 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 30.0°, θmin = 2.3°
ω and ϕ scansh = 1111
31159 measured reflectionsk = 1313
6453 independent reflectionsl = 4040
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.1234P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6453 reflectionsΔρmax = 0.30 e Å3
323 parametersΔρmin = 0.32 e Å3
6 restraintsAbsolute structure: Flack (1983), 2793 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.42 (3)
Crystal data top
C4H10NO+·ClO4V = 2248.41 (16) Å3
Mr = 187.58Z = 12
Orthorhombic, P212121Mo Kα radiation
a = 8.1515 (3) ŵ = 0.49 mm1
b = 9.5435 (4) ÅT = 100 K
c = 28.9022 (12) Å0.24 × 0.20 × 0.16 mm
Data collection top
Bruker KappaAPEXII area-detector
diffractometer
5928 reflections with I > 2σ(I)
31159 measured reflectionsRint = 0.038
6453 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062Δρmax = 0.30 e Å3
S = 1.03Δρmin = 0.32 e Å3
6453 reflectionsAbsolute structure: Flack (1983), 2793 Friedel pairs
323 parametersAbsolute structure parameter: 0.42 (3)
6 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57617 (4)0.38371 (3)0.659062 (11)0.01229 (6)
Cl20.37184 (4)0.16395 (3)0.506534 (10)0.01225 (6)
Cl30.57257 (4)0.35661 (3)0.339378 (11)0.01296 (7)
O10.68287 (14)0.37350 (14)0.69869 (4)0.0261 (3)
O20.53026 (15)0.24599 (12)0.64345 (5)0.0297 (3)
O30.43207 (14)0.46173 (11)0.67131 (4)0.0207 (2)
O40.66220 (12)0.45314 (11)0.62201 (3)0.0157 (2)
O50.34519 (14)0.23379 (12)0.46318 (4)0.0237 (2)
O60.22474 (13)0.09516 (12)0.52183 (4)0.0246 (2)
O70.50117 (12)0.06236 (11)0.50191 (4)0.0248 (2)
O80.41766 (13)0.26762 (11)0.54084 (4)0.0189 (2)
O90.53099 (16)0.22094 (13)0.35767 (5)0.0342 (3)
O100.67421 (14)0.34228 (16)0.29901 (4)0.0321 (3)
O110.42568 (14)0.43179 (12)0.32752 (4)0.0236 (2)
O120.66235 (13)0.43202 (11)0.37422 (3)0.0168 (2)
O130.69481 (11)0.24689 (11)0.67280 (4)0.0155 (2)
O140.22067 (11)0.76837 (11)0.49220 (3)0.0171 (2)
O150.69469 (12)0.27281 (11)0.32867 (4)0.0165 (2)
N10.45845 (14)0.02905 (12)0.66878 (4)0.0119 (2)
H1C0.434 (2)0.0603 (10)0.6668 (6)0.014*
H1D0.3666 (14)0.0755 (16)0.6699 (6)0.014*
N20.44656 (13)0.54724 (12)0.50755 (4)0.0135 (2)
H2C0.5419 (14)0.5912 (16)0.5086 (6)0.016*
H2D0.462 (2)0.4558 (10)0.5114 (6)0.016*
N30.45865 (14)0.05497 (12)0.33319 (4)0.0122 (2)
H3C0.3684 (15)0.1049 (17)0.3313 (6)0.015*
H3D0.440 (2)0.0347 (10)0.3344 (6)0.015*
C10.55582 (18)0.05548 (15)0.71163 (5)0.0144 (3)
H1A0.492 (2)0.0284 (19)0.7388 (6)0.017*
H1B0.646 (2)0.0006 (19)0.7113 (6)0.017*
C20.60347 (17)0.20873 (15)0.71312 (5)0.0164 (3)
H2A0.50330.26710.71510.020*
H2B0.67050.22680.74110.020*
C30.59875 (17)0.22590 (15)0.63150 (5)0.0143 (3)
H3A0.66280.25560.60410.017*
H3B0.49810.28380.63300.017*
C40.55258 (18)0.07310 (14)0.62683 (5)0.0144 (3)
H4A0.48470.05940.59880.017*
H4B0.65280.01530.62370.017*
C50.33638 (17)0.60033 (17)0.54496 (5)0.0167 (3)
H5A0.39050.58940.57540.020*
H5B0.23310.54580.54530.020*
C60.29959 (18)0.75241 (16)0.53623 (5)0.0188 (3)
H6A0.22730.78890.56100.023*
H6B0.40280.80700.53670.023*
C70.32779 (17)0.72437 (16)0.45577 (5)0.0164 (3)
H7A0.42930.78130.45640.020*
H7B0.27360.73950.42550.020*
C80.37108 (18)0.57105 (15)0.46105 (4)0.0148 (3)
H8A0.27100.51310.45780.018*
H8B0.44920.54310.43650.018*
C90.55216 (18)0.10032 (15)0.37512 (4)0.0150 (3)
H9A0.65210.04230.37860.018*
H9B0.48370.08790.40310.018*
C100.59916 (17)0.25284 (15)0.36984 (5)0.0162 (3)
H10A0.49880.31100.36820.019*
H10B0.66340.28320.39710.019*
C110.60345 (17)0.23347 (15)0.28832 (5)0.0168 (3)
H11A0.67040.25100.26030.020*
H11B0.50290.29130.28620.020*
C120.55698 (18)0.07970 (14)0.29050 (5)0.0146 (3)
H12A0.49200.05390.26290.018*
H12B0.65720.02110.29110.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01222 (14)0.01077 (13)0.01386 (13)0.00072 (11)0.00049 (11)0.00074 (11)
Cl20.01095 (11)0.01167 (13)0.01412 (13)0.00027 (10)0.00132 (11)0.00073 (11)
Cl30.01248 (14)0.01263 (14)0.01377 (13)0.00160 (11)0.00006 (11)0.00151 (11)
O10.0178 (5)0.0441 (8)0.0165 (5)0.0076 (5)0.0015 (4)0.0063 (5)
O20.0395 (7)0.0108 (5)0.0389 (7)0.0094 (5)0.0117 (5)0.0024 (5)
O30.0130 (4)0.0230 (5)0.0262 (5)0.0054 (4)0.0027 (4)0.0000 (4)
O40.0170 (5)0.0146 (5)0.0155 (4)0.0036 (4)0.0009 (4)0.0010 (4)
O50.0302 (6)0.0260 (6)0.0150 (5)0.0064 (5)0.0028 (4)0.0020 (4)
O60.0154 (5)0.0216 (6)0.0368 (6)0.0073 (4)0.0043 (4)0.0036 (5)
O70.0189 (5)0.0193 (5)0.0361 (6)0.0093 (4)0.0022 (5)0.0007 (5)
O80.0271 (5)0.0143 (5)0.0153 (5)0.0058 (4)0.0048 (4)0.0006 (4)
O90.0453 (8)0.0124 (5)0.0449 (8)0.0121 (5)0.0133 (6)0.0033 (5)
O100.0233 (6)0.0579 (9)0.0150 (5)0.0133 (6)0.0023 (4)0.0081 (6)
O110.0126 (5)0.0272 (6)0.0311 (6)0.0067 (4)0.0034 (4)0.0013 (5)
O120.0195 (5)0.0152 (5)0.0158 (4)0.0042 (4)0.0018 (4)0.0001 (4)
O130.0128 (4)0.0172 (5)0.0166 (5)0.0049 (4)0.0022 (4)0.0006 (4)
O140.0143 (4)0.0174 (5)0.0196 (5)0.0057 (4)0.0010 (4)0.0015 (4)
O150.0129 (5)0.0185 (5)0.0181 (5)0.0061 (4)0.0007 (4)0.0014 (4)
N10.0104 (5)0.0102 (5)0.0152 (5)0.0001 (4)0.0003 (4)0.0012 (4)
N20.0108 (5)0.0101 (5)0.0195 (6)0.0003 (4)0.0001 (4)0.0018 (4)
N30.0115 (6)0.0092 (5)0.0159 (5)0.0000 (4)0.0008 (4)0.0014 (4)
C10.0158 (7)0.0162 (7)0.0112 (6)0.0004 (5)0.0004 (5)0.0012 (5)
C20.0180 (7)0.0167 (7)0.0145 (6)0.0036 (5)0.0015 (5)0.0027 (5)
C30.0163 (7)0.0131 (6)0.0133 (6)0.0010 (5)0.0013 (5)0.0009 (5)
C40.0187 (7)0.0127 (6)0.0118 (6)0.0001 (5)0.0002 (5)0.0013 (5)
C50.0146 (6)0.0244 (7)0.0109 (5)0.0002 (5)0.0002 (5)0.0009 (5)
C60.0183 (7)0.0210 (8)0.0170 (7)0.0030 (5)0.0020 (5)0.0072 (6)
C70.0159 (6)0.0181 (7)0.0152 (6)0.0024 (5)0.0017 (5)0.0045 (5)
C80.0166 (6)0.0156 (7)0.0123 (6)0.0012 (5)0.0026 (5)0.0010 (5)
C90.0174 (7)0.0180 (7)0.0097 (5)0.0004 (5)0.0004 (5)0.0014 (5)
C100.0169 (7)0.0156 (7)0.0161 (6)0.0014 (5)0.0009 (5)0.0024 (5)
C110.0169 (7)0.0185 (7)0.0150 (6)0.0038 (5)0.0000 (5)0.0031 (5)
C120.0156 (6)0.0167 (7)0.0116 (6)0.0013 (5)0.0011 (5)0.0009 (5)
Geometric parameters (Å, º) top
Cl1—O31.4351 (11)C1—C21.514 (2)
Cl1—O21.4391 (12)C1—H1A0.975 (18)
Cl1—O41.4415 (10)C1—H1B0.900 (18)
Cl1—O11.4415 (11)C2—H2A0.9900
Cl2—O51.4359 (11)C2—H2B0.9900
Cl2—O61.4367 (11)C3—C41.5121 (19)
Cl2—O71.4385 (10)C3—H3A0.9900
Cl2—O81.4496 (10)C3—H3B0.9900
Cl3—O111.4374 (11)C4—H4A0.9900
Cl3—O101.4376 (11)C4—H4B0.9900
Cl3—O121.4379 (10)C5—C61.503 (2)
Cl3—O91.4390 (13)C5—H5A0.9900
O13—C21.4301 (17)C5—H5B0.9900
O13—C31.4415 (16)C6—H6A0.9900
O14—C71.4308 (16)C6—H6B0.9900
O14—C61.4342 (17)C7—C81.513 (2)
O15—C111.4333 (17)C7—H7A0.9900
O15—C101.4349 (17)C7—H7B0.9900
N1—C11.4926 (17)C8—H8A0.9900
N1—C41.4951 (17)C8—H8B0.9900
N1—H1C0.877 (9)C9—C101.513 (2)
N1—H1D0.871 (9)C9—H9A0.9900
N2—C51.4943 (18)C9—H9B0.9900
N2—C81.4955 (17)C10—H10A0.9900
N2—H2C0.884 (9)C10—H10B0.9900
N2—H2D0.889 (9)C11—C121.5169 (19)
N3—C121.4903 (17)C11—H11A0.9900
N3—C91.4956 (18)C11—H11B0.9900
N3—H3C0.878 (9)C12—H12A0.9900
N3—H3D0.870 (9)C12—H12B0.9900
O3—Cl1—O2109.78 (7)H3A—C3—H3B108.2
O3—Cl1—O4110.06 (6)N1—C4—C3109.05 (11)
O2—Cl1—O4108.26 (7)N1—C4—H4A109.9
O3—Cl1—O1109.45 (7)C3—C4—H4A109.9
O2—Cl1—O1110.14 (8)N1—C4—H4B109.9
O4—Cl1—O1109.14 (7)C3—C4—H4B109.9
O5—Cl2—O6110.75 (7)H4A—C4—H4B108.3
O5—Cl2—O7110.04 (7)N2—C5—C6109.01 (12)
O6—Cl2—O7109.41 (7)N2—C5—H5A109.9
O5—Cl2—O8108.60 (7)C6—C5—H5A109.9
O6—Cl2—O8108.45 (7)N2—C5—H5B109.9
O7—Cl2—O8109.55 (7)C6—C5—H5B109.9
O11—Cl3—O10109.51 (7)H5A—C5—H5B108.3
O11—Cl3—O12109.94 (7)O14—C6—C5109.94 (12)
O10—Cl3—O12108.83 (7)O14—C6—H6A109.7
O11—Cl3—O9109.91 (8)C5—C6—H6A109.7
O10—Cl3—O9110.39 (9)O14—C6—H6B109.7
O12—Cl3—O9108.24 (7)C5—C6—H6B109.7
C2—O13—C3110.89 (10)H6A—C6—H6B108.2
C7—O14—C6110.37 (10)O14—C7—C8110.61 (11)
C11—O15—C10111.00 (10)O14—C7—H7A109.5
C1—N1—C4110.64 (10)C8—C7—H7A109.5
C1—N1—H1C109.7 (11)O14—C7—H7B109.5
C4—N1—H1C109.6 (11)C8—C7—H7B109.5
C1—N1—H1D109.9 (11)H7A—C7—H7B108.1
C4—N1—H1D109.2 (11)N2—C8—C7109.49 (11)
H1C—N1—H1D107.8 (16)N2—C8—H8A109.8
C5—N2—C8110.58 (10)C7—C8—H8A109.8
C5—N2—H2C110.1 (11)N2—C8—H8B109.8
C8—N2—H2C108.7 (11)C7—C8—H8B109.8
C5—N2—H2D109.2 (11)H8A—C8—H8B108.2
C8—N2—H2D108.7 (11)N3—C9—C10109.02 (11)
H2C—N2—H2D109.6 (15)N3—C9—H9A109.9
C12—N3—C9110.54 (11)C10—C9—H9A109.9
C12—N3—H3C108.1 (11)N3—C9—H9B109.9
C9—N3—H3C108.8 (11)C10—C9—H9B109.9
C12—N3—H3D106.5 (11)H9A—C9—H9B108.3
C9—N3—H3D109.9 (12)O15—C10—C9110.41 (11)
H3C—N3—H3D113.0 (17)O15—C10—H10A109.6
N1—C1—C2108.86 (11)C9—C10—H10A109.6
N1—C1—H1A109.9 (10)O15—C10—H10B109.6
C2—C1—H1A111.7 (11)C9—C10—H10B109.6
N1—C1—H1B109.0 (11)H10A—C10—H10B108.1
C2—C1—H1B110.8 (12)O15—C11—C12110.44 (12)
H1A—C1—H1B106.5 (15)O15—C11—H11A109.6
O13—C2—C1110.88 (11)C12—C11—H11A109.6
O13—C2—H2A109.5O15—C11—H11B109.6
C1—C2—H2A109.5C12—C11—H11B109.6
O13—C2—H2B109.5H11A—C11—H11B108.1
C1—C2—H2B109.5N3—C12—C11108.78 (11)
H2A—C2—H2B108.1N3—C12—H12A109.9
O13—C3—C4110.07 (11)C11—C12—H12A109.9
O13—C3—H3A109.6N3—C12—H12B109.9
C4—C3—H3A109.6C11—C12—H12B109.9
O13—C3—H3B109.6H12A—C12—H12B108.3
C4—C3—H3B109.6
C4—N1—C1—C256.08 (15)C6—O14—C7—C861.45 (14)
C3—O13—C2—C160.92 (15)C5—N2—C8—C754.51 (14)
N1—C1—C2—O1357.76 (15)O14—C7—C8—N256.81 (14)
C2—O13—C3—C461.05 (15)C12—N3—C9—C1056.67 (14)
C1—N1—C4—C356.79 (15)C11—O15—C10—C960.83 (14)
O13—C3—C4—N158.36 (14)N3—C9—C10—O1557.92 (14)
C8—N2—C5—C656.06 (14)C10—O15—C11—C1261.04 (14)
C7—O14—C6—C562.99 (15)C9—N3—C12—C1156.71 (15)
N2—C5—C6—O1459.76 (15)O15—C11—C12—N358.34 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O20.88 (1)2.05 (1)2.7872 (16)141 (2)
N1—H1D···O15i0.87 (1)2.02 (1)2.8642 (15)165 (2)
N2—H2C···O14ii0.88 (1)1.98 (1)2.8441 (14)166 (2)
N2—H2D···O80.89 (1)2.02 (1)2.8465 (15)154 (2)
N3—H3C···O13i0.88 (1)2.00 (1)2.8690 (15)168 (2)
N3—H3D···O90.87 (1)2.04 (1)2.7895 (17)144 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC4H10NO+·ClO4
Mr187.58
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)8.1515 (3), 9.5435 (4), 28.9022 (12)
V3)2248.41 (16)
Z12
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker KappaAPEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
31159, 6453, 5928
Rint0.038
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.03
No. of reflections6453
No. of parameters323
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.32
Absolute structureFlack (1983), 2793 Friedel pairs
Absolute structure parameter0.42 (3)

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O20.877 (9)2.051 (13)2.7872 (16)141.0 (15)
N1—H1D···O15i0.871 (9)2.015 (10)2.8642 (15)164.7 (16)
N2—H2C···O14ii0.884 (9)1.980 (10)2.8441 (14)165.5 (16)
N2—H2D···O80.889 (9)2.020 (11)2.8465 (15)154.1 (15)
N3—H3C···O13i0.878 (9)2.004 (10)2.8690 (15)168.0 (17)
N3—H3D···O90.870 (9)2.039 (13)2.7895 (17)143.9 (16)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1.
 

References

First citationBruker (1998). SAINT-Plus. Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrigoriev, M. S., German, K. E. & Maruk, A. Y. (2007). Acta Cryst. E63, m2355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds