organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o484-o485

4-(9-Anthryl)-2-methylbutyn-2-ol

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: art@chem.univ.gda.pl

(Received 10 January 2008; accepted 15 January 2008; online 23 January 2008)

There are two mol­ecules in the asymmetric unit of the title compound, C19H16O. Neighbouring mol­ecules are linked through O—H⋯O hydrogen bonds into an R44(8) ring motif. There are also C—H⋯π hydrogen and ππ inter­actions. The mol­ecules are either parallel to each other or are inclined at an angle of 12.5 (1)°.

Related literature

For applications of this class of compounds, see: Bunz (2000[Bunz, U. H. F. (2000). Chem. Rev. 100, 1605-1644.]); De Silva et al. (1999[De Silva, A. P., Dixon, I. M., Gunaratne, H. Q. N., Gunnlaugsson, T., Maxwell, P. R. S. M. & Rice, T. E. (1999). J. Am. Chem. Soc. 121, 1393-1394.]), Krasovitski & Bolotin (1988[Krasovitski, B. M. & Bolotin, B. M. (1988). Organic Luminescent Materials. Weinheim: VCH.]); O'Regan & Grätzel (1991[O'Regan, B. & Grätzel, M. (1991). Nature (London), 353, 737-738.]); Schumm et al. (1994[Schumm, J. S., Pearson, D. L. & Tour, J. M. (1994). Angew. Chem. Int. Ed. Engl. 33, 1360-1363.]). For the use of ethynyl­anthracene derivatives in organic synthesis, see Wen et al. (2004[Wen, J. Y., Chang, H. K., Mi-Yun, J., Seung, K. L., Ming, J. P., Seung, J. J. & Bong, R. C. (2004). Chem. Mater. 16, 2783-2789.]); Xiao et al. (2007[Xiao, Q., Ranasinghe, R. T., Tang, A. M. P. & Brown, T. (2007). Tetrahedron, 63, 3483-3490.]). For comparison bond dimensions of the anthracene skeleton, see: Cuffet et al. (2005[Cuffet, L., Hudson, R. D. A., Gallagher, J. F., Jennings, S., McAdam, C. J., Connelly, R. B. T., Manning, A. R., Robinson, B. H. & Simpson, J. (2005). Organometallics, 24, 2051-2060.]); Elangovan et al. (2005[Elangovan, A., Kao, K.-M., Yang, S.-W., Chen, Y.-L., Ho, T.-I. & Su, Y. O. (2005). J. Org. Chem. 35, 4460-4469.]). For the structure of 9,10-bis­(3-hydr­oxy-3-methyl-1-butyne)anthracene, see: Dang et al. (2002[Dang, H., Levitus, M. & Garcia-Garibay, M. A. (2002). J. Am. Chem. Soc. 124, 136-143.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16O

  • Mr = 260.32

  • Triclinic, [P \overline 1]

  • a = 9.995 (2) Å

  • b = 12.738 (3) Å

  • c = 12.905 (3) Å

  • α = 75.70 (3)°

  • β = 72.18 (3)°

  • γ = 68.84 (3)°

  • V = 1441.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (2) K

  • 0.60 × 0.20 × 0.10 mm

Data collection
  • Kuma KM-4 diffractometer

  • Absorption correction: none

  • 5258 measured reflections

  • 5011 independent reflections

  • 2370 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 standard reflections every 200 reflections intensity decay: 1.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.170

  • S = 0.98

  • 5011 reflections

  • 366 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O18—H18⋯O38i 0.82 2.01 2.726 (3) 145
O38—H38⋯O18ii 0.82 2.06 2.766 (3) 145
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y-1, z.

Table 2
C—H⋯π interactions (Å,°)

Cg1 is the centroid of the C5/C10–C14 ring and Cg2 is the centroid of the C1–C4/C12/C11 ring.

X H J H⋯J XJ XIJ
C19 H19C Cg1iii 2.87 3.810 (4) 167
C20 H20B Cg2iii 2.76 3.703 (4) 168
C24 H24 Cg2iv 2.64 3.472 (3) 149
C25 H25 Cg1iv 2.92 3.794 (3) 157
Symmetry codes: (iii) 1-y, -y, 1-z; (iv) 1-x, 1-y, -z.

Table 3
ππ interactions (Å,°)

Cg3 is the centroid of the C25/30–C34 ring and Cg4 is the centroid of the C26-C29/C33/C34 ring. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J.

CgI CgJ CgCg Dihedral angle Interplanar distance Offset
3 4v 3.794 (2) 1.2 3.370 (2) 1.336 (2)
4 3v 3.794 (2) 1.2 3.404 (2) 1.464 (2)
Symmetry code: (v) 1-x, -y, -z.

Data collection: KM-4 Software (Oxford Diffraction, 1995-2003[Oxford Diffraction (1995-2003). KM4 Software. Version 1.171. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Recently there is a need for molecules containing triple bond because of their electroconductive, magnetic and nonlinear optical properties. This class of the compounds are used as molecular wires (Bunz, 2000), molecular scale logic gates (De Silva et al., 1999), optical and microelectronic devices (Schumm et al., 1994), sensors (Krasovitski & Bolotin, 1988) and molecular photovoltaic cells (O'Regan & Grätzel, 1991)). Ethynylanthracene derivatives are substrates in many synthesis (Wen et al., 2004; Xiao et al., 2007). 2-Methyl-3-butyn-2-ol is an alternative protecting group for (trimethylsilyl)acetylene, more useful in reaction carried at higher temperature (because of its higher boiling point) as well as giving acetylene derivatives containing various substituents in homo- and heterocoupling. Because of that we use this protecting group to synthesize acetylene derivatives to study influence of the aromatic subtituent size on the photophysical properties of the compounds in search for organic material with extended π system, characterized by high fluorescence quantum yield. As an intermediate in the synthesis of anthracene derivative, 9-(3-hydroxy-3-methyl-1-butyne)anthracene was isolated and its crystal structure was determined.

Parameters characterizing the geometry of the anthracene skeleton are typical of anthracene-based derivatives (Cuffet et al., 2005; Elangovan et al., 2005).

In the crystal, the asymmetric unit consists of two molecules of the title compound (Fig. 1) which crystallizing in the triclinic crystal system, in P -1 space group, as well as 9,10-bis(3-hydroxy-3-methyl-1-butyne)anthracene (Dang et al., 2002).

In the crystal structure, neighbouring molecules are linked through O—H···O hydrogen bond forming R44(8) ring motif (Table 1 and Fig. 2). Molecules which forming this motif are linked by C—H···π hydrogen bonds (Table 2 and Fig. 2) or π-π interactions (Table 3 and Fig. 2). In the packing, the anthracene moieties are either parallel or inclined at an angle of 12.5 (1)°.

Related literature top

For applications of this class of compounds, see: Bunz (2000); De Silva et al. (1999), Krasovitski & Bolotin (1988); O'Regan & Grätzel (1991); Schumm et al. (1994). For the use of ethynylanthracene derivatives in organic synthesis, see Wen et al. (2004); Xiao et al. (2007). For comparison bond dimensions of the anthracene skeleton, see: Cuffet et al. (2005); Elangovan et al. (2005). For the structure of 9,10-bis(3-hydroxy-3-methyl-1-butyne)anthracene, see: Dang et al. (2002).

Experimental top

9-(3-hydroxy-3-methyl-1-butyne)anthracene has been synthesized by Sonogashira-Hagihara coupling from 9-bromoanthracene (10 mmol) and 2-methyl-3-butyn-2-ol (20 mmol) in DMF in the presence of Pd(PPh3)4 (0.0162 mmol) and Cu2I2 (0.13 mmol) as catalysts, triphenylphosphine (0.16 mmol), triethylamine (12 ml). The mixture was stirred at 333 K under argon atmosphere for 24 h. The reaction was monitored by TLC (petroleum ether-ethyl/acetate 10:1 v/v, Rf=0.64; Merck Silica-gel plates (Kieselgel 60 F254)). When the reaction was completed the catalysts were filtered off, filtrate was poured into water and extracted with ethyl acetate. The brownish-red organic layer was dried over anhydrous MgSO4. The solvent was removed in vacuo giving a brownish-red oil. The crude was isolated by column chromatography on silica gel (Merck, Silica gel 60, 0.040–0.063 mm) using petroleum ether-ethyl/acetate (10:1 v/v) as an eluent and then crystallized from ethyl acetate to give yellow crystals (79% yield) [m.p. = 400–402 K].

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H distances of 0.93 Å and with Uiso(H) = 1.2Ueq(C) (C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for the methyl group) and O—H distances of 0.82 Å and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: KM-4 Software (Oxford Diffraction, 1995-2003); cell refinement: KM-4 Software (Oxford Diffraction, 1995-2003); data reduction: KM-4 Software (Oxford Diffraction, 1995-2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radii. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids.
[Figure 2] Fig. 2. The arrangement of the ions in the unit cell, viewed along the c axis, showing R44(8) ring motifs. The O—H···O interactions are represented by dashed lines, and C—H···π and π-π interactions by dotted lines. H atoms not involved in interactions have been ommited. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 + x, -1 + y, z; (iii) 1 - x, -y, 1 - z; (iv) 1 - x, -y, -z; (v) 1 - x, -y, -z.]
4-(9-Anthryl)-2-methylbutyn-2-ol top
Crystal data top
C19H16OZ = 4
Mr = 260.32F(000) = 552
Triclinic, P1Dx = 1.200 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.995 (2) ÅCell parameters from 50 reflections
b = 12.738 (3) Åθ = 2.2–25.0°
c = 12.905 (3) ŵ = 0.07 mm1
α = 75.70 (3)°T = 298 K
β = 72.18 (3)°Block, white
γ = 68.84 (3)°0.60 × 0.20 × 0.10 mm
V = 1441.4 (7) Å3
Data collection top
Kuma KM4
diffractometer
Rint = 0.019
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
Graphite monochromatorh = 1111
θ/2θ scansk = 1414
5258 measured reflectionsl = 015
5011 independent reflections3 standard reflections every 200 reflections
2370 reflections with I > 2σ(I) intensity decay: 1.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.0961P)2 + 0.1391P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
5011 reflectionsΔρmax = 0.25 e Å3
366 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (4)
Crystal data top
C19H16Oγ = 68.84 (3)°
Mr = 260.32V = 1441.4 (7) Å3
Triclinic, P1Z = 4
a = 9.995 (2) ÅMo Kα radiation
b = 12.738 (3) ŵ = 0.07 mm1
c = 12.905 (3) ÅT = 298 K
α = 75.70 (3)°0.60 × 0.20 × 0.10 mm
β = 72.18 (3)°
Data collection top
Kuma KM4
diffractometer
Rint = 0.019
5258 measured reflections3 standard reflections every 200 reflections
5011 independent reflections intensity decay: 1.1%
2370 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 0.98Δρmax = 0.25 e Å3
5011 reflectionsΔρmin = 0.34 e Å3
366 parameters
Special details top

Experimental. no

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6439 (3)0.6352 (3)0.2744 (3)0.0703 (8)
H10.60360.67300.33530.084*
C20.7751 (4)0.6414 (3)0.2076 (3)0.0873 (10)
H20.82360.68390.22270.105*
C30.8389 (4)0.5848 (3)0.1160 (3)0.0878 (11)
H30.92930.58970.07050.105*
C40.7694 (3)0.5232 (3)0.0939 (3)0.0767 (9)
H40.81330.48500.03330.092*
C50.5568 (3)0.4561 (2)0.1365 (2)0.0635 (8)
H50.60000.41820.07570.076*
C60.3395 (4)0.3939 (3)0.1734 (3)0.0737 (9)
H60.38220.35520.11300.088*
C70.2042 (4)0.3938 (3)0.2325 (3)0.0816 (10)
H70.15330.35650.21250.098*
C80.1392 (4)0.4496 (3)0.3240 (3)0.0763 (9)
H80.04420.45070.36430.092*
C90.2129 (3)0.5021 (2)0.3547 (2)0.0626 (8)
H90.16930.53640.41780.075*
C100.4290 (3)0.5670 (2)0.3197 (2)0.0519 (7)
C110.5670 (3)0.5725 (2)0.2536 (2)0.0549 (7)
C120.6313 (3)0.5154 (2)0.1606 (2)0.0571 (7)
C130.3538 (3)0.5062 (2)0.2937 (2)0.0497 (6)
C140.4198 (3)0.4511 (2)0.1999 (2)0.0565 (7)
C150.3608 (3)0.6290 (2)0.4102 (2)0.0528 (7)
C160.3033 (3)0.6851 (2)0.4820 (2)0.0508 (7)
C170.2380 (3)0.7569 (2)0.5676 (2)0.0473 (6)
O180.1648 (2)0.86882 (14)0.52019 (15)0.0609 (5)
H180.14760.91390.56180.091*
C190.1281 (3)0.7122 (3)0.6591 (2)0.0733 (9)
H19A0.04700.71630.63160.110*
H19B0.09210.75720.71730.110*
H19C0.17480.63440.68690.110*
C200.3575 (3)0.7670 (3)0.6081 (3)0.0732 (9)
H20A0.42490.79620.54740.110*
H20B0.40980.69320.64130.110*
H20C0.31450.81780.66180.110*
C210.8461 (3)0.1228 (3)0.0840 (3)0.0745 (9)
H210.89290.07960.13990.089*
C220.9110 (4)0.1911 (3)0.0040 (3)0.0928 (11)
H221.00070.19600.00630.111*
C230.8464 (4)0.2547 (3)0.0822 (3)0.0838 (10)
H230.89330.30080.13780.101*
C240.7175 (4)0.2495 (2)0.0849 (2)0.0675 (8)
H240.67500.29260.14290.081*
C250.5086 (3)0.1752 (2)0.0037 (2)0.0576 (7)
H250.46490.21870.06100.069*
C260.2985 (3)0.1032 (3)0.0763 (3)0.0709 (9)
H260.25330.14800.02010.085*
C270.2306 (4)0.0359 (3)0.1544 (3)0.0865 (10)
H270.13920.03470.15200.104*
C280.2958 (4)0.0326 (3)0.2399 (3)0.0811 (10)
H280.24770.07900.29400.097*
C290.4271 (3)0.0314 (3)0.2436 (2)0.0646 (8)
H290.47010.07850.30000.078*
C300.6386 (3)0.0447 (2)0.1664 (2)0.0496 (6)
C310.7097 (3)0.1152 (2)0.0851 (2)0.0527 (7)
C320.6432 (3)0.1807 (2)0.0028 (2)0.0533 (7)
C330.5030 (3)0.0397 (2)0.1639 (2)0.0509 (7)
C340.4362 (3)0.1077 (2)0.0770 (2)0.0547 (7)
C350.7051 (3)0.0211 (2)0.2548 (2)0.0573 (7)
C360.7636 (3)0.0706 (2)0.3274 (2)0.0573 (7)
C370.8328 (3)0.1305 (2)0.4196 (2)0.0559 (7)
O380.9388 (2)0.07847 (15)0.41664 (16)0.0645 (6)
H380.99010.11790.45960.097*
C390.9208 (4)0.2512 (2)0.4034 (3)0.0831 (11)
H39A0.99370.25160.33470.125*
H39B0.85600.29110.40260.125*
H39C0.96900.28810.46260.125*
C400.7207 (4)0.1233 (3)0.5257 (3)0.0870 (11)
H40A0.66510.04490.53130.130*
H40B0.76890.15580.58530.130*
H40C0.65520.16440.52930.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (2)0.082 (2)0.072 (2)0.0160 (16)0.0187 (16)0.0192 (17)
C20.063 (2)0.114 (3)0.092 (3)0.034 (2)0.019 (2)0.021 (2)
C30.052 (2)0.127 (3)0.080 (2)0.026 (2)0.0044 (18)0.023 (2)
C40.0560 (19)0.102 (3)0.0614 (19)0.0108 (17)0.0111 (15)0.0175 (17)
C50.066 (2)0.0655 (18)0.0487 (16)0.0035 (15)0.0127 (14)0.0175 (14)
C60.091 (3)0.069 (2)0.0673 (19)0.0273 (18)0.0207 (19)0.0149 (16)
C70.098 (3)0.081 (2)0.082 (2)0.050 (2)0.015 (2)0.0135 (19)
C80.082 (2)0.074 (2)0.075 (2)0.0402 (18)0.0072 (18)0.0058 (18)
C90.070 (2)0.0516 (17)0.0559 (17)0.0165 (14)0.0066 (15)0.0040 (13)
C100.0499 (16)0.0473 (14)0.0472 (15)0.0010 (12)0.0148 (12)0.0046 (12)
C110.0484 (17)0.0554 (16)0.0547 (16)0.0031 (13)0.0208 (13)0.0065 (13)
C120.0517 (17)0.0650 (17)0.0479 (15)0.0064 (13)0.0155 (13)0.0103 (13)
C130.0552 (16)0.0411 (13)0.0448 (14)0.0081 (12)0.0141 (12)0.0000 (12)
C140.0618 (18)0.0518 (16)0.0489 (16)0.0089 (14)0.0169 (14)0.0038 (13)
C150.0551 (16)0.0451 (15)0.0520 (16)0.0062 (12)0.0163 (13)0.0066 (14)
C160.0510 (16)0.0478 (15)0.0505 (15)0.0094 (12)0.0146 (13)0.0081 (14)
C170.0502 (15)0.0398 (14)0.0510 (15)0.0076 (11)0.0191 (12)0.0064 (12)
O180.0694 (13)0.0396 (10)0.0797 (13)0.0064 (8)0.0369 (10)0.0116 (9)
C190.078 (2)0.079 (2)0.0551 (17)0.0200 (17)0.0087 (16)0.0109 (16)
C200.071 (2)0.0691 (19)0.091 (2)0.0075 (15)0.0479 (18)0.0183 (17)
C210.065 (2)0.085 (2)0.077 (2)0.0254 (17)0.0344 (17)0.0080 (18)
C220.071 (2)0.111 (3)0.101 (3)0.044 (2)0.033 (2)0.015 (2)
C230.080 (2)0.090 (2)0.078 (2)0.038 (2)0.0195 (19)0.0091 (19)
C240.076 (2)0.0655 (19)0.0596 (18)0.0212 (16)0.0258 (16)0.0034 (15)
C250.0621 (19)0.0519 (16)0.0553 (16)0.0027 (14)0.0327 (14)0.0013 (13)
C260.0574 (19)0.076 (2)0.084 (2)0.0115 (16)0.0340 (17)0.0128 (17)
C270.0499 (19)0.112 (3)0.100 (3)0.0241 (19)0.0234 (18)0.015 (2)
C280.066 (2)0.105 (3)0.077 (2)0.041 (2)0.0083 (18)0.0102 (19)
C290.070 (2)0.0683 (19)0.0545 (17)0.0186 (15)0.0169 (15)0.0090 (14)
C300.0517 (16)0.0496 (15)0.0488 (15)0.0073 (12)0.0228 (12)0.0087 (12)
C310.0480 (16)0.0565 (16)0.0526 (15)0.0089 (13)0.0198 (13)0.0078 (13)
C320.0556 (17)0.0497 (15)0.0510 (15)0.0077 (13)0.0223 (13)0.0028 (13)
C330.0509 (16)0.0525 (15)0.0464 (15)0.0076 (12)0.0162 (13)0.0096 (12)
C340.0497 (16)0.0564 (16)0.0592 (16)0.0061 (13)0.0226 (13)0.0148 (14)
C350.0625 (18)0.0565 (16)0.0545 (16)0.0120 (13)0.0278 (14)0.0033 (13)
C360.0665 (18)0.0537 (16)0.0572 (16)0.0168 (13)0.0281 (14)0.0043 (13)
C370.0611 (18)0.0561 (17)0.0563 (16)0.0114 (13)0.0347 (14)0.0032 (13)
O380.0616 (12)0.0555 (11)0.0874 (14)0.0091 (9)0.0470 (11)0.0072 (10)
C390.121 (3)0.0475 (17)0.088 (2)0.0088 (17)0.059 (2)0.0052 (16)
C400.089 (2)0.103 (3)0.061 (2)0.026 (2)0.0264 (18)0.0053 (18)
Geometric parameters (Å, º) top
C1—C21.348 (4)C21—C221.341 (4)
C1—C111.407 (4)C21—C311.397 (4)
C1—H10.9300C21—H210.9300
C2—C31.397 (5)C22—C231.388 (4)
C2—H20.9300C22—H220.9300
C3—C41.343 (5)C23—C241.325 (4)
C3—H30.9300C23—H230.9300
C4—C121.409 (4)C24—C321.404 (4)
C4—H40.9300C24—H240.9300
C5—C121.373 (4)C25—C321.375 (4)
C5—C141.378 (4)C25—C341.375 (4)
C5—H50.9300C25—H250.9300
C6—C71.334 (5)C26—C271.336 (5)
C6—C141.417 (4)C26—C341.401 (4)
C6—H60.9300C26—H260.9300
C7—C81.391 (5)C27—C281.399 (5)
C7—H70.9300C27—H270.9300
C8—C91.346 (4)C28—C291.333 (4)
C8—H80.9300C28—H280.9300
C9—C131.400 (4)C29—C331.419 (4)
C9—H90.9300C29—H290.9300
C10—C111.398 (4)C30—C331.390 (4)
C10—C131.407 (4)C30—C311.397 (4)
C10—C151.426 (4)C30—C351.427 (3)
C11—C121.416 (4)C31—C321.421 (3)
C13—C141.411 (4)C33—C341.420 (3)
C15—C161.185 (4)C35—C361.180 (3)
C16—C171.453 (4)C36—C371.466 (3)
C17—O181.425 (3)C37—O381.426 (3)
C17—C201.498 (4)C37—C401.479 (4)
C17—C191.500 (4)C37—C391.500 (4)
O18—H180.8200O38—H380.8200
C19—H19A0.9600C39—H39A0.9600
C19—H19B0.9600C39—H39B0.9600
C19—H19C0.9600C39—H39C0.9600
C20—H20A0.9600C40—H40A0.9600
C20—H20B0.9600C40—H40B0.9600
C20—H20C0.9600C40—H40C0.9600
C2—C1—C11121.2 (3)C22—C21—C31121.3 (3)
C2—C1—H1119.4C22—C21—H21119.4
C11—C1—H1119.4C31—C21—H21119.4
C1—C2—C3120.7 (3)C21—C22—C23121.0 (3)
C1—C2—H2119.7C21—C22—H22119.5
C3—C2—H2119.7C23—C22—H22119.5
C4—C3—C2119.9 (3)C24—C23—C22119.7 (3)
C4—C3—H3120.0C24—C23—H23120.1
C2—C3—H3120.0C22—C23—H23120.1
C3—C4—C12121.4 (3)C23—C24—C32122.0 (3)
C3—C4—H4119.3C23—C24—H24119.0
C12—C4—H4119.3C32—C24—H24119.0
C12—C5—C14121.9 (3)C32—C25—C34122.5 (2)
C12—C5—H5119.1C32—C25—H25118.8
C14—C5—H5119.1C34—C25—H25118.8
C7—C6—C14121.9 (3)C27—C26—C34121.5 (3)
C7—C6—H6119.1C27—C26—H26119.2
C14—C6—H6119.1C34—C26—H26119.2
C6—C7—C8119.9 (3)C26—C27—C28120.6 (3)
C6—C7—H7120.0C26—C27—H27119.7
C8—C7—H7120.0C28—C27—H27119.7
C9—C8—C7120.5 (3)C29—C28—C27119.9 (3)
C9—C8—H8119.7C29—C28—H28120.0
C7—C8—H8119.7C27—C28—H28120.0
C8—C9—C13121.4 (3)C28—C29—C33121.9 (3)
C8—C9—H9119.3C28—C29—H29119.1
C13—C9—H9119.3C33—C29—H29119.1
C11—C10—C13120.4 (2)C33—C30—C31121.1 (2)
C11—C10—C15119.5 (3)C33—C30—C35119.7 (3)
C13—C10—C15120.0 (2)C31—C30—C35119.2 (2)
C10—C11—C1122.4 (3)C30—C31—C21123.2 (2)
C10—C11—C12119.4 (3)C30—C31—C32119.1 (2)
C1—C11—C12118.2 (3)C21—C31—C32117.7 (3)
C5—C12—C4121.9 (3)C25—C32—C24122.7 (2)
C5—C12—C11119.5 (3)C25—C32—C31119.0 (3)
C4—C12—C11118.7 (3)C24—C32—C31118.3 (3)
C9—C13—C10122.5 (3)C30—C33—C29123.4 (2)
C9—C13—C14118.4 (3)C30—C33—C34119.1 (2)
C10—C13—C14119.0 (3)C29—C33—C34117.5 (3)
C5—C14—C13119.8 (3)C25—C34—C26122.3 (3)
C5—C14—C6122.4 (3)C25—C34—C33119.2 (2)
C13—C14—C6117.8 (3)C26—C34—C33118.6 (3)
C16—C15—C10176.9 (3)C36—C35—C30176.2 (3)
C15—C16—C17177.3 (3)C35—C36—C37178.5 (3)
O18—C17—C16108.37 (19)O38—C37—C36107.7 (2)
O18—C17—C20106.5 (2)O38—C37—C40110.3 (2)
C16—C17—C20109.6 (2)C36—C37—C40110.7 (2)
O18—C17—C19109.2 (2)O38—C37—C39105.0 (2)
C16—C17—C19110.9 (2)C36—C37—C39110.5 (2)
C20—C17—C19112.1 (2)C40—C37—C39112.4 (3)
C17—O18—H18109.5C37—O38—H38109.5
C17—C19—H19A109.5C37—C39—H39A109.5
C17—C19—H19B109.5C37—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
C17—C19—H19C109.5C37—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
C17—C20—H20A109.5C37—C40—H40A109.5
C17—C20—H20B109.5C37—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
C17—C20—H20C109.5C37—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
C11—C1—C2—C30.5 (5)C31—C21—C22—C231.6 (6)
C1—C2—C3—C40.0 (6)C21—C22—C23—C241.1 (6)
C2—C3—C4—C120.8 (5)C22—C23—C24—C320.2 (5)
C14—C6—C7—C81.0 (5)C34—C26—C27—C280.1 (5)
C6—C7—C8—C91.2 (5)C26—C27—C28—C290.2 (6)
C7—C8—C9—C132.5 (5)C27—C28—C29—C331.2 (5)
C13—C10—C11—C1177.9 (2)C33—C30—C31—C21179.8 (3)
C15—C10—C11—C11.6 (4)C35—C30—C31—C211.7 (4)
C13—C10—C11—C120.6 (4)C33—C30—C31—C321.5 (4)
C15—C10—C11—C12176.9 (2)C35—C30—C31—C32179.9 (2)
C2—C1—C11—C10178.2 (3)C22—C21—C31—C30179.6 (3)
C2—C1—C11—C120.3 (4)C22—C21—C31—C321.3 (5)
C14—C5—C12—C4178.1 (3)C34—C25—C32—C24179.9 (3)
C14—C5—C12—C110.6 (4)C34—C25—C32—C310.6 (4)
C3—C4—C12—C5177.6 (3)C23—C24—C32—C25179.3 (3)
C3—C4—C12—C111.0 (4)C23—C24—C32—C310.1 (5)
C10—C11—C12—C50.3 (4)C30—C31—C32—C251.8 (4)
C1—C11—C12—C5178.2 (3)C21—C31—C32—C25179.8 (3)
C10—C11—C12—C4179.0 (2)C30—C31—C32—C24178.9 (2)
C1—C11—C12—C40.5 (4)C21—C31—C32—C240.4 (4)
C8—C9—C13—C10175.6 (3)C31—C30—C33—C29179.2 (3)
C8—C9—C13—C141.7 (4)C35—C30—C33—C292.4 (4)
C11—C10—C13—C9177.3 (2)C31—C30—C33—C340.0 (4)
C15—C10—C13—C91.0 (4)C35—C30—C33—C34178.4 (2)
C11—C10—C13—C140.0 (3)C28—C29—C33—C30178.8 (3)
C15—C10—C13—C14176.3 (2)C28—C29—C33—C342.0 (4)
C12—C5—C14—C131.2 (4)C32—C25—C34—C26179.4 (3)
C12—C5—C14—C6177.5 (3)C32—C25—C34—C330.9 (4)
C9—C13—C14—C5178.3 (2)C27—C26—C34—C25179.0 (3)
C10—C13—C14—C50.9 (3)C27—C26—C34—C330.7 (4)
C9—C13—C14—C60.4 (3)C30—C33—C34—C251.2 (4)
C10—C13—C14—C6177.8 (2)C29—C33—C34—C25178.0 (3)
C7—C6—C14—C5177.0 (3)C30—C33—C34—C26179.1 (3)
C7—C6—C14—C131.7 (4)C29—C33—C34—C261.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···O38i0.822.012.726 (3)145
O38—H38···O18ii0.822.062.766 (3)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC19H16O
Mr260.32
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.995 (2), 12.738 (3), 12.905 (3)
α, β, γ (°)75.70 (3), 72.18 (3), 68.84 (3)
V3)1441.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.60 × 0.20 × 0.10
Data collection
DiffractometerKuma KM4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5258, 5011, 2370
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.170, 0.98
No. of reflections5011
No. of parameters366
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.34

Computer programs: KM-4 Software (Oxford Diffraction, 1995-2003), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O18—H18···O38i0.822.012.726 (3)145
O38—H38···O18ii0.822.062.766 (3)145
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z.
C—H···π interactions (Å,°). top
XHJH···JX···JX-I···J
C19H19CCg1iii2.873.810 (4)167
C20H20BCg2iii2.763.703 (4)168
C24H24Cg2iv2.643.472 (3)149
C25H25Cg1iv2.923.794 (3)157
Symmetry codes: (iii) 1-y, -y, 1-z; (iv) 1-x, 1-y, -z. Cg1 is the centroid of the C5/C10–C14 ring and Cg2 is the centroid of the C1–C4/C12/C11 ring.
π-π interactions (Å,°). top
CgICgJCg···CgDihedral angleInterplanar distanceOffset
34v3.794 (2)1.23.370 (2)1.336 (2)
43v3.794 (2)1.23.404 (2)1.464 (2)
Symmetry code: (v) 1-x, -y, -z. Cg3 is the centroid of the C25/30–C34 ring and Cg4 is the centroid of the C26-C29/C33/C34 ring. The dihedral angle is that between the planes of the rings CgI and CgJ. The interplanar distance is the perpendicular distance of CgI from ring J. The offset is the perpendicular distance of ring I from ring J.
 

Acknowledgements

This work was financially supported by the Ministry of Science and Higher Education (Poland) under grant BW 8000-5-0408-7.

References

First citationBunz, U. H. F. (2000). Chem. Rev. 100, 1605–1644.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCuffet, L., Hudson, R. D. A., Gallagher, J. F., Jennings, S., McAdam, C. J., Connelly, R. B. T., Manning, A. R., Robinson, B. H. & Simpson, J. (2005). Organometallics, 24, 2051–2060.  Google Scholar
First citationDang, H., Levitus, M. & Garcia-Garibay, M. A. (2002). J. Am. Chem. Soc. 124, 136–143.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDe Silva, A. P., Dixon, I. M., Gunaratne, H. Q. N., Gunnlaugsson, T., Maxwell, P. R. S. M. & Rice, T. E. (1999). J. Am. Chem. Soc. 121, 1393–1394.  Web of Science CrossRef CAS Google Scholar
First citationElangovan, A., Kao, K.-M., Yang, S.-W., Chen, Y.-L., Ho, T.-I. & Su, Y. O. (2005). J. Org. Chem. 35, 4460–4469.  Web of Science CSD CrossRef Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKrasovitski, B. M. & Bolotin, B. M. (1988). Organic Luminescent Materials. Weinheim: VCH.  Google Scholar
First citationO'Regan, B. & Grätzel, M. (1991). Nature (London), 353, 737–738.  CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (1995–2003). KM4 Software. Version 1.171. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationSchumm, J. S., Pearson, D. L. & Tour, J. M. (1994). Angew. Chem. Int. Ed. Engl. 33, 1360–1363.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, J. Y., Chang, H. K., Mi-Yun, J., Seung, K. L., Ming, J. P., Seung, J. J. & Bong, R. C. (2004). Chem. Mater. 16, 2783–2789.  Google Scholar
First citationXiao, Q., Ranasinghe, R. T., Tang, A. M. P. & Brown, T. (2007). Tetrahedron, 63, 3483–3490.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages o484-o485
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds