metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m382-m383

Aqua­(3-hy­droxy­benzoato-κO)bis­­(1,10-phenanthroline-κ2N,N′)cobalt(II) 3-hy­droxy­benzoate penta­hydrate

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 15 January 2008; accepted 17 January 2008; online 23 January 2008)

The crystal structure of the title compound, [Co(C7H5O3)(C12H8N2)2(H2O)](C7H5O3)·5H2O, consists of CoII complex cations, uncoordinated hydroxy­benzoate anions and uncoord­inated water mol­ecules. The CoII ion is coordinated by two phenanthroline ligands, a water mol­ecule and a 3-hydroxy­benzoate anion, and displays a distorted octa­hedral geometry. ππ stacking is observed between parallel phenanthroline ligands, the face-to-face separations being 3.454 (19) and 3.435 (7) Å. An extensive hydrogen-bonding network helps to stabilize the crystal structure. The hydroxybenzoate ligand is disordered over two positions, with site occupancy factors 0.6 and 0.4. One solvent water molecule is also disordered over two positions, with site occupancy factors 0.6 and 0.4.

Related literature

For general background, see: Hu et al. (2002[Hu, M.-L., Xu, D.-J. & Cheng, D.-P. (2002). J. Coord. Chem. 55, 11-16.]); Li et al. (2005[Li, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19-m21.]). For related structures, see: Su et al. (2005[Su, J.-R., Zhang, L. & Xu, D.-J. (2005). Acta Cryst. E61, m939-m941.]); Pan et al. (2006[Pan, T.-T., Su, J.-R. & Xu, D.-J. (2006). Acta Cryst. E62, m1403-m1404.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H5O3)(C12H8N2)2(H2O)](C7H5O3)·5H2O

  • Mr = 801.65

  • Triclinic, [P \overline 1]

  • a = 12.3404 (12) Å

  • b = 12.6844 (16) Å

  • c = 13.561 (2) Å

  • α = 101.507 (5)°

  • β = 101.781 (4)°

  • γ = 111.823 (7)°

  • V = 1838.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.54 mm−1

  • T = 295 (2) K

  • 0.32 × 0.28 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.850, Tmax = 0.905

  • 11865 measured reflections

  • 6450 independent reflections

  • 4935 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.247

  • S = 1.02

  • 6450 reflections

  • 577 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Co—O1 2.107 (3)
Co—O1A 2.116 (14)
Co—O1B 2.05 (2)
Co—N1 2.154 (4)
Co—N2 2.153 (3)
Co—N3 2.155 (4)
Co—N4 2.185 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O11 0.93 1.77 2.671 (5) 162
O1—H1B⋯O2A 0.88 1.95 2.78 (2) 159
O3A—H1⋯O1Wi 0.88 1.78 2.650 (10) 170
O13—H13⋯O2Aii 0.97 1.86 2.81 (2) 166
O1W—H1AW⋯O12 0.97 1.85 2.810 (7) 168
O1W—H1BW⋯O1Wiii 0.89 2.33 2.833 (8) 116
O2W—H2AW⋯O11 0.88 1.99 2.851 (11) 167
O2W—H2BW⋯O2A 0.89 2.04 2.90 (2) 162
O3W—H3AW⋯O12 0.91 1.92 2.824 (10) 168
O3W—H3BW⋯O5WAiv 0.90 1.94 2.589 (16) 127
O3W—H3BW⋯O5WB 0.90 1.98 2.87 (3) 168
O4W—H4AW⋯O5WAiv 0.93 2.05 2.66 (2) 122
O4W—H4AW⋯O3W 0.93 2.39 3.284 (17) 161
O4W—H4BW⋯O2W 0.89 1.82 2.569 (18) 140
O5WA—H5A1⋯O13v 0.88 2.13 2.851 (13) 138
O5WA—H5A2⋯O3A 0.84 1.91 2.754 (14) 176
O5WB—H5B2⋯O1Wiii 0.89 2.16 2.955 (17) 148
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+2; (iv) x, y, z+1; (v) x-1, y, z-1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on the nature of aromatic stacking in crystals of metal complexes (Hu et al., 2002; Li et al., 2005), the title compound has been prepared and its crystal structure is presented here.

The crystal consists of CoII complex cations, uncoordinated 3-hydroxybenzoate (HBA) anions and lattice water molecules. The CoII ion is coordinated by two 1,10-phenanthroline (phen), one water molecule and one HBA anion in a distorted octahedral geometry (Fig. 1 and Table 1). This is similar to that found in aqua(4-hydroxybenzoato)bis(phenanthroline)manganese(II) 4-hydroxybenzoate monohydrate (Su et al., 2005) and in aqua(3-hydroxybenzoato)bis(1,10-phenanthroline)manganese(II) 3-hydroxybenzoate (Pan et al., 2006). Within the molecule two phen ligands are nearly perpendicular to each other, the dihedral angle being 78.68 (18)°. The uncoordinated HBA anion links with the complex cation via O—H···O hydrogen bonding (Table 2).

π-π stacking is observed in the crystal structure (Fig. 2 and 3). The face-to-face separation between parallel N1-phen and N1A-phen rings is 3.454 (19) Å [symmetry code: (A) 1 - x,-y,-z]; face-to-face separation between parallel N3-phen and N3B-phen rings is 3.435 (7) Å [symmetry code: (B) 2 - x,1 - y,1 - z]. The extensive hydrogen bonding network (Table 2) helps to stabilize the crystal structure.

Related literature top

For general background, see: Hu et al. (2002); Li et al. (2005). For related structures, see: Su et al. (2005); Pan et al. (2006).

Experimental top

Co(CH3COO)2.4H2O (0.24 g, 1 mmol), sodium 3-hydroxybenzoate (0.16 g, 1 mmol) and phen (0.20 g, 1 mmol) was dissolved in water (15 ml). The solution was refluxed for 5 h, and filtered after cooling to room temperature. Single crystals of the title compound were obtained after 5 d.

Refinement top

The coordinated HBA anion is disordered over two sites, with the hydroxyl group located on the opposite position; occupancies were initially refined and converged to 0.588:0.412, and were fixed as 0.6 and 0.4, respectively, in final cycles of refinement. Accordingly, lattice water molecule O5W is disordered over two sites. One disordered component O5WA is hydrogen bonded to the O3A while the other component O5WB is hydrogen bonded to the other lattice water molecules. Occupancies for O5WA and O5WB were set as 0.6 and 0.4, respectively. The C—Ocarboxyl distances in the disordered HBA components were restrained as 1.25±0.01 Å. The thermal parameters for C1A, C1B, C7A and C7B were constrained to be the same. H atoms of water molecules were placed in chemically sensible positions on the basis of hydrogen bonding interactions, Uiso(H) = 1.5Ueq(O). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms). One of disordered components has been omitted for clarity.
[Figure 2] Fig. 2. A diagram showing π-π stacking between N1-containing phen rings [symmetry code: (A) 1 - x,-y,-z].
[Figure 3] Fig. 3. A diagram showing π-π stacking between N3-containing phen rings [symmetry code: (B) 2 - x,1 - y,1 - z].
Aqua(3-hydroxybenzoato-κO)bis(1,10-phenanthroline-κ2N,N')cobalt(II) 3-hydroxybenzoate pentahydrate top
Crystal data top
[Co(C7H5O3)(C12H8N2)2(H2O)](C7H5O3)·5H2OZ = 2
Mr = 801.65F(000) = 834
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.3404 (12) ÅCell parameters from 6882 reflections
b = 12.6844 (16) Åθ = 2.5–25.0°
c = 13.561 (2) ŵ = 0.54 mm1
α = 101.507 (5)°T = 295 K
β = 101.781 (4)°Prism, pink
γ = 111.823 (7)°0.32 × 0.28 × 0.20 mm
V = 1838.4 (4) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
6450 independent reflections
Radiation source: fine-focus sealed tube4935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 10.00 pixels mm-1θmax = 25.2°, θmin = 1.6°
ω scansh = 1414
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.850, Tmax = 0.905l = 1616
11865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.247H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.196P)2]
where P = (Fo2 + 2Fc2)/3
6450 reflections(Δ/σ)max = 0.001
577 parametersΔρmax = 0.42 e Å3
4 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Co(C7H5O3)(C12H8N2)2(H2O)](C7H5O3)·5H2Oγ = 111.823 (7)°
Mr = 801.65V = 1838.4 (4) Å3
Triclinic, P1Z = 2
a = 12.3404 (12) ÅMo Kα radiation
b = 12.6844 (16) ŵ = 0.54 mm1
c = 13.561 (2) ÅT = 295 K
α = 101.507 (5)°0.32 × 0.28 × 0.20 mm
β = 101.781 (4)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
6450 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4935 reflections with I > 2σ(I)
Tmin = 0.850, Tmax = 0.905Rint = 0.050
11865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0704 restraints
wR(F2) = 0.247H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
6450 reflectionsΔρmin = 0.69 e Å3
577 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co0.60509 (5)0.22032 (5)0.34437 (4)0.0424 (2)
N10.6556 (3)0.4006 (3)0.4352 (3)0.0471 (8)
N20.7823 (3)0.2680 (3)0.4520 (3)0.0483 (8)
N30.6048 (3)0.0665 (3)0.2420 (3)0.0465 (8)
N40.6569 (3)0.2830 (3)0.2146 (3)0.0456 (8)
O10.5335 (3)0.1227 (3)0.4432 (2)0.0551 (8)
H1A0.53940.16550.51020.083*
H1B0.45740.08550.40180.083*
O110.5066 (4)0.2421 (4)0.6154 (3)0.0735 (10)
O120.5309 (4)0.4010 (4)0.7405 (3)0.0783 (11)
O130.8806 (3)0.1749 (4)0.7731 (3)0.0789 (11)
H130.81290.09790.73270.118*
C1A0.2218 (10)0.1511 (11)0.1942 (9)0.0508 (15)0.60
C2A0.2545 (14)0.2317 (14)0.1350 (17)0.059 (4)0.60
H2A0.33680.27880.14550.071*0.60
C3A0.1661 (14)0.2409 (12)0.0626 (12)0.075 (4)0.60
C4A0.0412 (15)0.1750 (12)0.0547 (10)0.078 (3)0.60
H4A0.01910.18420.00840.094*0.60
C5A0.0067 (13)0.0990 (14)0.1122 (14)0.071 (4)0.60
H5A0.07560.05500.10440.085*0.60
C6A0.0984 (13)0.0895 (12)0.1828 (10)0.067 (3)0.60
H6A0.07630.03990.22430.081*0.60
C7A0.3203 (11)0.1353 (11)0.2694 (14)0.0508 (15)0.60
O1A0.4263 (12)0.1942 (12)0.2653 (15)0.053 (4)0.60
O2A0.2963 (17)0.0622 (16)0.3208 (15)0.071 (4)0.60
O3A0.1860 (7)0.3081 (6)0.0005 (5)0.0820 (19)0.60
H10.26260.36000.01500.123*0.60
C1B0.2094 (15)0.1263 (15)0.2168 (11)0.0508 (15)0.40
C2B0.0995 (14)0.0641 (15)0.2263 (16)0.060 (4)0.40
H2B0.09390.01320.26780.072*0.40
C3B0.0032 (12)0.0716 (15)0.1789 (19)0.084 (5)0.40
C4B0.006 (2)0.147 (2)0.112 (3)0.083 (9)0.40
H4B0.06140.16000.08320.100*0.40
C5B0.120 (2)0.204 (2)0.0892 (18)0.088 (8)0.40
H5B0.12650.24670.04030.106*0.40
C6B0.218 (2)0.192 (2)0.144 (2)0.058 (6)0.40
H6B0.29290.22760.13300.070*0.40
C7B0.3307 (16)0.1191 (18)0.268 (2)0.0508 (15)0.40
O1B0.4321 (19)0.202 (2)0.278 (2)0.070 (8)0.40
O2B0.311 (2)0.037 (2)0.310 (2)0.059 (5)0.40
O3B0.1123 (10)0.0191 (15)0.2019 (15)0.142 (6)0.40
H20.10000.00150.26570.213*0.40
C110.5705 (5)0.3309 (5)0.6973 (4)0.0636 (13)
C120.6997 (5)0.3480 (4)0.7466 (3)0.0565 (11)
C130.7313 (4)0.2527 (5)0.7315 (4)0.0576 (12)
H140.67370.17840.68610.069*
C140.8459 (5)0.2668 (5)0.7826 (4)0.0609 (12)
C150.9346 (5)0.3798 (5)0.8489 (4)0.0678 (14)
H151.01260.39050.88440.081*
C160.9037 (5)0.4740 (6)0.8601 (4)0.0753 (16)
H160.96320.54940.90140.090*
C170.7878 (5)0.4609 (5)0.8125 (4)0.0655 (13)
H170.76830.52550.82390.079*
C210.5936 (4)0.4671 (5)0.4228 (4)0.0560 (11)
H210.51670.43180.37240.067*
C220.6393 (5)0.5870 (5)0.4822 (5)0.0688 (14)
H220.59410.63040.47080.083*
C230.7511 (5)0.6384 (5)0.5569 (4)0.0669 (13)
H230.78270.71760.59760.080*
C240.8187 (4)0.5724 (4)0.5726 (3)0.0540 (11)
C250.9376 (5)0.6207 (4)0.6496 (4)0.0633 (13)
H250.97280.69940.69230.076*
C260.9991 (5)0.5519 (5)0.6602 (4)0.0623 (13)
H261.07540.58460.71110.075*
C270.9495 (4)0.4305 (5)0.5953 (3)0.0553 (11)
C281.0094 (5)0.3559 (5)0.6036 (4)0.0659 (14)
H281.08540.38470.65400.079*
C290.9566 (5)0.2421 (5)0.5383 (4)0.0681 (14)
H290.99580.19260.54420.082*
C300.8434 (4)0.2004 (5)0.4624 (4)0.0589 (12)
H300.80870.12290.41720.071*
C310.8347 (4)0.3812 (4)0.5182 (3)0.0471 (10)
C320.7674 (4)0.4524 (4)0.5088 (3)0.0462 (10)
C330.5792 (4)0.0416 (4)0.2556 (4)0.0555 (11)
H330.56020.05380.31660.067*
C340.5797 (5)0.1353 (5)0.1835 (5)0.0694 (14)
H340.56000.20850.19630.083*
C350.6090 (5)0.1212 (5)0.0941 (4)0.0690 (14)
H350.61010.18380.04590.083*
C360.6376 (4)0.0094 (5)0.0760 (4)0.0595 (12)
C370.6691 (5)0.0159 (6)0.0152 (4)0.0748 (16)
H370.67070.04380.06650.090*
C380.6962 (5)0.1239 (6)0.0284 (4)0.0705 (15)
H380.71690.13720.08850.085*
C390.6943 (4)0.2189 (5)0.0470 (4)0.0567 (12)
C400.7194 (5)0.3336 (5)0.0369 (4)0.0646 (13)
H400.74210.35230.02090.077*
C410.7105 (5)0.4165 (5)0.1111 (4)0.0696 (15)
H410.72510.49130.10320.084*
C420.6791 (4)0.3893 (4)0.2002 (4)0.0584 (12)
H420.67360.44720.25050.070*
C430.6633 (3)0.1978 (4)0.1388 (3)0.0461 (10)
C440.6349 (4)0.0821 (4)0.1533 (3)0.0455 (9)
O1W0.5758 (4)0.5521 (5)0.9411 (4)0.1013 (15)
H1AW0.56570.50950.86950.152*
H1BW0.57280.49700.97300.152*
O2W0.2485 (9)0.1055 (6)0.5219 (5)0.172 (3)
H2AW0.32510.15040.56020.258*
H2BW0.25010.07600.45750.258*
O3W0.2752 (6)0.3142 (7)0.7040 (6)0.154 (3)
H3AW0.35870.35230.72180.231*
H3BW0.25480.31570.76430.231*
O4W0.0758 (10)0.0332 (12)0.6051 (12)0.280 (6)
H4AW0.11660.11490.63770.419*
H4BW0.12660.02190.57070.419*
O5WA0.1205 (9)0.1918 (12)0.2128 (10)0.148 (4)0.60
H5A10.04080.14830.22830.222*0.60
H5A20.14330.22990.14800.222*0.60
O5WB0.198 (2)0.2812 (15)0.8858 (16)0.170 (8)0.40
H5B10.17720.33850.90990.255*0.40
H5B20.27550.31100.92540.255*0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0402 (4)0.0439 (4)0.0377 (3)0.0111 (3)0.0110 (2)0.0161 (2)
N10.0447 (19)0.053 (2)0.0433 (18)0.0178 (17)0.0141 (15)0.0188 (16)
N20.0487 (19)0.048 (2)0.0475 (19)0.0182 (17)0.0114 (16)0.0201 (16)
N30.0439 (18)0.049 (2)0.0393 (17)0.0112 (16)0.0127 (15)0.0161 (15)
N40.0440 (18)0.0445 (19)0.0447 (18)0.0128 (15)0.0128 (15)0.0192 (15)
O10.0611 (18)0.0548 (18)0.0506 (16)0.0186 (15)0.0242 (14)0.0235 (14)
O110.080 (2)0.088 (3)0.0471 (18)0.034 (2)0.0138 (17)0.0177 (18)
O120.090 (3)0.083 (3)0.068 (2)0.047 (2)0.025 (2)0.016 (2)
O130.059 (2)0.079 (3)0.093 (3)0.0218 (19)0.0203 (19)0.032 (2)
C1A0.040 (2)0.059 (3)0.042 (2)0.016 (2)0.0118 (19)0.000 (2)
C2A0.049 (8)0.057 (9)0.061 (6)0.019 (6)0.008 (6)0.012 (6)
C3A0.075 (9)0.051 (6)0.075 (7)0.012 (6)0.009 (6)0.014 (5)
C4A0.072 (8)0.077 (8)0.082 (8)0.037 (6)0.014 (7)0.018 (6)
C5A0.050 (6)0.051 (9)0.092 (9)0.009 (6)0.008 (5)0.018 (8)
C6A0.061 (7)0.053 (7)0.083 (8)0.019 (5)0.016 (6)0.025 (5)
C7A0.040 (2)0.059 (3)0.042 (2)0.016 (2)0.0118 (19)0.000 (2)
O1A0.040 (7)0.059 (7)0.055 (7)0.025 (6)0.005 (4)0.011 (4)
O2A0.051 (7)0.086 (10)0.058 (6)0.002 (6)0.024 (4)0.031 (7)
O3A0.089 (5)0.073 (4)0.065 (4)0.023 (4)0.003 (3)0.030 (3)
C1B0.040 (2)0.059 (3)0.042 (2)0.016 (2)0.0118 (19)0.000 (2)
C2B0.027 (6)0.039 (8)0.102 (14)0.012 (5)0.010 (8)0.012 (8)
C3B0.033 (7)0.068 (10)0.141 (17)0.018 (6)0.011 (8)0.034 (11)
C4B0.065 (11)0.047 (14)0.125 (19)0.036 (12)0.005 (11)0.003 (15)
C5B0.055 (13)0.091 (17)0.084 (14)0.043 (12)0.035 (12)0.010 (11)
C6B0.052 (13)0.068 (15)0.044 (9)0.031 (10)0.001 (9)0.002 (11)
C7B0.040 (2)0.059 (3)0.042 (2)0.016 (2)0.0118 (19)0.000 (2)
O1B0.042 (10)0.099 (16)0.046 (8)0.002 (8)0.010 (7)0.041 (10)
O2B0.034 (6)0.067 (9)0.058 (8)0.016 (5)0.010 (5)0.000 (6)
O3B0.053 (6)0.160 (13)0.241 (19)0.037 (7)0.063 (9)0.114 (13)
C110.077 (3)0.066 (3)0.045 (2)0.022 (3)0.021 (2)0.027 (2)
C120.068 (3)0.059 (3)0.043 (2)0.021 (2)0.021 (2)0.024 (2)
C130.055 (3)0.065 (3)0.044 (2)0.014 (2)0.016 (2)0.023 (2)
C140.062 (3)0.066 (3)0.057 (3)0.023 (3)0.022 (2)0.029 (2)
C150.054 (3)0.071 (3)0.054 (3)0.004 (3)0.011 (2)0.020 (2)
C160.077 (4)0.070 (4)0.056 (3)0.007 (3)0.020 (3)0.017 (3)
C170.075 (3)0.063 (3)0.056 (3)0.020 (3)0.027 (3)0.024 (2)
C210.059 (3)0.064 (3)0.053 (2)0.032 (2)0.021 (2)0.021 (2)
C220.080 (4)0.069 (3)0.077 (3)0.044 (3)0.032 (3)0.031 (3)
C230.078 (3)0.055 (3)0.068 (3)0.026 (3)0.029 (3)0.015 (2)
C240.055 (3)0.053 (3)0.046 (2)0.013 (2)0.020 (2)0.014 (2)
C250.068 (3)0.045 (3)0.048 (2)0.006 (2)0.008 (2)0.002 (2)
C260.056 (3)0.057 (3)0.047 (2)0.004 (2)0.004 (2)0.014 (2)
C270.047 (2)0.066 (3)0.045 (2)0.011 (2)0.0112 (19)0.029 (2)
C280.052 (3)0.078 (4)0.057 (3)0.017 (3)0.006 (2)0.029 (3)
C290.062 (3)0.075 (4)0.071 (3)0.033 (3)0.010 (3)0.034 (3)
C300.055 (3)0.053 (3)0.066 (3)0.022 (2)0.012 (2)0.023 (2)
C310.044 (2)0.051 (2)0.041 (2)0.0097 (19)0.0135 (17)0.0233 (19)
C320.051 (2)0.051 (2)0.0370 (19)0.016 (2)0.0169 (18)0.0204 (18)
C330.059 (3)0.058 (3)0.055 (2)0.022 (2)0.023 (2)0.026 (2)
C340.077 (3)0.053 (3)0.079 (3)0.024 (3)0.028 (3)0.024 (3)
C350.080 (4)0.061 (3)0.070 (3)0.034 (3)0.029 (3)0.014 (3)
C360.055 (3)0.068 (3)0.055 (3)0.026 (2)0.020 (2)0.015 (2)
C370.088 (4)0.090 (4)0.056 (3)0.043 (3)0.038 (3)0.019 (3)
C380.071 (3)0.091 (4)0.051 (3)0.028 (3)0.030 (2)0.023 (3)
C390.051 (2)0.074 (3)0.047 (2)0.021 (2)0.021 (2)0.028 (2)
C400.061 (3)0.081 (4)0.057 (3)0.024 (3)0.024 (2)0.040 (3)
C410.057 (3)0.068 (3)0.078 (4)0.012 (3)0.013 (3)0.047 (3)
C420.051 (3)0.056 (3)0.060 (3)0.010 (2)0.012 (2)0.030 (2)
C430.0334 (19)0.058 (3)0.041 (2)0.0113 (18)0.0091 (16)0.0220 (19)
C440.038 (2)0.053 (2)0.043 (2)0.0153 (19)0.0111 (17)0.0191 (19)
O1W0.104 (3)0.128 (4)0.080 (3)0.045 (3)0.037 (2)0.047 (3)
O2W0.281 (10)0.121 (5)0.108 (4)0.075 (6)0.063 (5)0.039 (4)
O3W0.123 (5)0.190 (7)0.217 (7)0.092 (5)0.082 (5)0.122 (6)
O4W0.204 (10)0.316 (15)0.370 (16)0.166 (11)0.087 (10)0.102 (13)
O5WA0.097 (7)0.185 (11)0.149 (9)0.044 (7)0.049 (6)0.044 (9)
O5WB0.23 (2)0.096 (11)0.167 (16)0.043 (13)0.094 (16)0.019 (11)
Geometric parameters (Å, º) top
Co—O12.107 (3)C15—C161.374 (9)
Co—O1A2.116 (14)C15—H150.9300
Co—O1B2.05 (2)C16—C171.375 (8)
Co—N12.154 (4)C16—H160.9300
Co—N22.153 (3)C17—H170.9300
Co—N32.155 (4)C21—C221.404 (7)
Co—N42.185 (3)C21—H210.9300
N1—C211.345 (6)C22—C231.361 (8)
N1—C321.353 (5)C22—H220.9300
N2—C301.345 (6)C23—C241.400 (7)
N2—C311.359 (6)C23—H230.9300
N3—C331.348 (6)C24—C321.415 (6)
N3—C441.359 (5)C24—C251.439 (7)
N4—C421.336 (6)C25—C261.361 (8)
N4—C431.373 (6)C25—H250.9300
O1—H1A0.9347C26—C271.435 (7)
O1—H1B0.8775C26—H260.9300
O11—C111.268 (6)C27—C311.402 (6)
O12—C111.266 (7)C27—C281.408 (8)
O13—C141.377 (7)C28—C291.359 (8)
O13—H130.9714C28—H280.9300
C1A—C6A1.388 (18)C29—C301.392 (7)
C1A—C2A1.415 (18)C29—H290.9300
C1A—C7A1.522 (17)C30—H300.9300
C2A—C3A1.37 (3)C31—C321.443 (6)
C2A—H2A0.9300C33—C341.384 (7)
C3A—O3A1.319 (14)C33—H330.9300
C3A—C4A1.422 (19)C34—C351.360 (8)
C4A—C5A1.36 (2)C34—H340.9300
C4A—H4A0.9300C35—C361.414 (7)
C5A—C6A1.38 (2)C35—H350.9300
C5A—H5A0.9300C36—C441.415 (7)
C6A—H6A0.9300C36—C371.431 (7)
C7A—O2A1.253 (8)C37—C381.343 (8)
C7A—O1A1.261 (8)C37—H370.9300
O3A—H10.8786C38—C391.428 (8)
C1B—C2B1.34 (2)C38—H380.9300
C1B—C6B1.40 (3)C39—C401.411 (8)
C1B—C7B1.56 (2)C39—C431.421 (6)
C2B—C3B1.35 (2)C40—C411.356 (8)
C2B—H2B0.9300C40—H400.9300
C3B—O3B1.39 (2)C41—C421.410 (7)
C3B—C4B1.44 (4)C41—H410.9300
C4B—C5B1.45 (4)C42—H420.9300
C4B—H4B0.9300C43—C441.441 (6)
C5B—C6B1.36 (3)O1W—H1AW0.9705
C5B—H5B0.9300O1W—H1BW0.8857
C6B—H6B0.9300O2W—H2AW0.8762
C7B—O2B1.253 (10)O2W—H2BW0.8867
C7B—O1B1.259 (10)O3W—H3AW0.9143
O3B—H20.9326O3W—H3BW0.9019
C11—C121.512 (7)O4W—H4AW0.9284
C12—C131.393 (7)O4W—H4BW0.8901
C12—C171.402 (7)O5WA—H5A10.8846
C13—C141.369 (7)O5WA—H5A20.8442
C13—H140.9300O5WB—H5B10.8813
C14—C151.407 (7)O5WB—H5B20.8883
O1B—Co—O187.8 (6)C12—C13—H14119.5
O1B—Co—O1A4.0 (12)C13—C14—O13123.4 (5)
O1—Co—O1A89.6 (4)C13—C14—C15119.8 (5)
O1B—Co—N2164.3 (8)O13—C14—C15116.9 (5)
O1—Co—N285.65 (13)C16—C15—C14118.6 (5)
O1A—Co—N2168.3 (5)C16—C15—H15120.7
O1B—Co—N189.9 (8)C14—C15—H15120.7
O1—Co—N1102.07 (13)C15—C16—C17122.4 (5)
O1A—Co—N193.0 (4)C15—C16—H16118.8
N2—Co—N177.61 (13)C17—C16—H16118.8
O1B—Co—N3101.1 (8)C16—C17—C12118.6 (5)
O1—Co—N391.94 (13)C16—C17—H17120.7
O1A—Co—N397.5 (4)C12—C17—H17120.7
N2—Co—N393.34 (14)N1—C21—C22123.1 (4)
N1—Co—N3162.56 (13)N1—C21—H21118.4
O1B—Co—N488.3 (7)C22—C21—H21118.4
O1—Co—N4167.18 (13)C23—C22—C21118.5 (5)
O1A—Co—N485.8 (5)C23—C22—H22120.7
N2—Co—N4101.06 (13)C21—C22—H22120.7
N1—Co—N490.11 (13)C22—C23—C24120.2 (5)
N3—Co—N476.88 (13)C22—C23—H23119.9
C21—N1—C32118.2 (4)C24—C23—H23119.9
C21—N1—Co127.9 (3)C23—C24—C32118.1 (4)
C32—N1—Co113.8 (3)C23—C24—C25123.3 (5)
C30—N2—C31117.9 (4)C32—C24—C25118.6 (5)
C30—N2—Co128.6 (3)C26—C25—C24120.4 (4)
C31—N2—Co113.4 (3)C26—C25—H25119.8
C33—N3—C44116.8 (4)C24—C25—H25119.8
C33—N3—Co128.1 (3)C25—C26—C27121.9 (4)
C44—N3—Co115.1 (3)C25—C26—H26119.0
C42—N4—C43118.3 (4)C27—C26—H26119.0
C42—N4—Co128.5 (3)C31—C27—C28116.9 (5)
C43—N4—Co113.2 (3)C31—C27—C26119.2 (5)
Co—O1—H1A117.8C28—C27—C26124.0 (4)
Co—O1—H1B96.8C29—C28—C27120.3 (5)
H1A—O1—H1B111.6C29—C28—H28119.8
C14—O13—H13112.7C27—C28—H28119.8
C6A—C1A—C2A118.0 (12)C28—C29—C30119.4 (5)
C6A—C1A—C7A121.5 (11)C28—C29—H29120.3
C2A—C1A—C7A120.4 (12)C30—C29—H29120.3
C3A—C2A—C1A120.6 (12)N2—C30—C29122.5 (5)
C3A—C2A—H2A119.7N2—C30—H30118.8
C1A—C2A—H2A119.7C29—C30—H30118.8
O3A—C3A—C2A125.6 (13)N2—C31—C27123.0 (4)
O3A—C3A—C4A116.0 (13)N2—C31—C32117.8 (4)
C2A—C3A—C4A118.3 (12)C27—C31—C32119.2 (4)
C5A—C4A—C3A122.5 (13)N1—C32—C24121.9 (4)
C5A—C4A—H4A118.8N1—C32—C31117.4 (4)
C3A—C4A—H4A118.8C24—C32—C31120.7 (4)
C4A—C5A—C6A117.6 (13)N3—C33—C34123.4 (4)
C4A—C5A—H5A121.2N3—C33—H33118.3
C6A—C5A—H5A121.2C34—C33—H33118.3
C5A—C6A—C1A122.7 (13)C35—C34—C33120.5 (5)
C5A—C6A—H6A118.7C35—C34—H34119.8
C1A—C6A—H6A118.7C33—C34—H34119.8
O2A—C7A—O1A124.2 (15)C34—C35—C36118.7 (5)
O2A—C7A—C1A123.1 (13)C34—C35—H35120.6
O1A—C7A—C1A112.4 (15)C36—C35—H35120.6
C7A—O1A—Co134.9 (13)C35—C36—C44117.5 (4)
C3A—O3A—H1114.8C35—C36—C37123.7 (5)
O5WBi—O3A—H182.4C44—C36—C37118.8 (5)
C2B—C1B—C6B119.4 (18)C38—C37—C36121.4 (5)
C2B—C1B—C7B125.2 (14)C38—C37—H37119.3
C6B—C1B—C7B114.7 (18)C36—C37—H37119.3
C1B—C2B—C3B123.2 (18)C37—C38—C39122.0 (5)
C1B—C2B—H2B118.4C37—C38—H38119.0
C3B—C2B—H2B118.4C39—C38—H38119.0
C2B—C3B—O3B121.8 (19)C40—C39—C43116.6 (5)
C2B—C3B—C4B117.7 (17)C40—C39—C38124.9 (5)
O3B—C3B—C4B120.1 (17)C43—C39—C38118.5 (5)
C3B—C4B—C5B120.5 (19)C41—C40—C39120.4 (4)
C3B—C4B—H4B119.7C41—C40—H40119.8
C5B—C4B—H4B119.7C39—C40—H40119.8
C6B—C5B—C4B115 (2)C40—C41—C42119.9 (5)
C6B—C5B—H5B122.3C40—C41—H41120.0
C4B—C5B—H5B122.3C42—C41—H41120.0
C5B—C6B—C1B123 (2)N4—C42—C41122.1 (5)
C5B—C6B—H6B118.5N4—C42—H42119.0
C1B—C6B—H6B118.5C41—C42—H42119.0
O2B—C7B—O1B128 (3)N4—C43—C39122.7 (4)
O2B—C7B—C1B111.4 (18)N4—C43—C44117.8 (4)
O1B—C7B—C1B119 (2)C39—C43—C44119.5 (4)
C7B—O1B—Co129 (2)N3—C44—C36123.2 (4)
C3B—O3B—H2112.5N3—C44—C43117.0 (4)
O12—C11—O11124.0 (5)C36—C44—C43119.8 (4)
O12—C11—C12119.7 (5)H1AW—O1W—H1BW100.9
O11—C11—C12116.2 (5)H2AW—O2W—H2BW106.1
C13—C12—C17119.4 (5)H3AW—O3W—H3BW107.9
C13—C12—C11121.2 (4)H4AW—O4W—H4BW100.6
C17—C12—C11119.3 (5)H5A1—O5WA—H5A2104.6
C14—C13—C12121.0 (5)H5B1—O5WB—H5B2101.6
C14—C13—H14119.5
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O110.931.772.671 (5)162
O1—H1B···O2A0.881.952.78 (2)159
O3A—H1···O1Wii0.881.782.650 (10)170
O13—H13···O2Aiii0.971.862.81 (2)166
O1W—H1AW···O120.971.852.810 (7)168
O1W—H1BW···O1Wiv0.892.332.833 (8)116
O2W—H2AW···O110.881.992.851 (11)167
O2W—H2BW···O2A0.892.042.90 (2)162
O3W—H3AW···O120.911.922.824 (10)168
O3W—H3BW···O5WAv0.901.942.589 (16)127
O3W—H3BW···O5WB0.901.982.87 (3)168
O4W—H4AW···O5WAv0.932.052.66 (2)122
O4W—H4AW···O3W0.932.393.284 (17)161
O4W—H4BW···O2W0.891.822.569 (18)140
O5WA—H5A1···O13vi0.882.132.851 (13)138
O5WA—H5A2···O3A0.841.912.754 (14)176
O5WB—H5B2···O1Wiv0.892.162.955 (17)148
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+2; (v) x, y, z+1; (vi) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Co(C7H5O3)(C12H8N2)2(H2O)](C7H5O3)·5H2O
Mr801.65
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)12.3404 (12), 12.6844 (16), 13.561 (2)
α, β, γ (°)101.507 (5), 101.781 (4), 111.823 (7)
V3)1838.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.54
Crystal size (mm)0.32 × 0.28 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.850, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
11865, 6450, 4935
Rint0.050
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.247, 1.02
No. of reflections6450
No. of parameters577
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.69

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co—O12.107 (3)Co—N22.153 (3)
Co—O1A2.116 (14)Co—N32.155 (4)
Co—O1B2.05 (2)Co—N42.185 (3)
Co—N12.154 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O110.931.772.671 (5)162
O1—H1B···O2A0.881.952.78 (2)159
O3A—H1···O1Wi0.881.782.650 (10)170
O13—H13···O2Aii0.971.862.81 (2)166
O1W—H1AW···O120.971.852.810 (7)168
O1W—H1BW···O1Wiii0.892.332.833 (8)116
O2W—H2AW···O110.881.992.851 (11)167
O2W—H2BW···O2A0.892.042.90 (2)162
O3W—H3AW···O120.911.922.824 (10)168
O3W—H3BW···O5WAiv0.901.942.589 (16)127
O3W—H3BW···O5WB0.901.982.87 (3)168
O4W—H4AW···O5WAiv0.932.052.66 (2)122
O4W—H4AW···O3W0.932.393.284 (17)161
O4W—H4BW···O2W0.891.822.569 (18)140
O5WA—H5A1···O13v0.882.132.851 (13)138
O5WA—H5A2···O3A0.841.912.754 (14)176
O5WB—H5B2···O1Wiii0.892.162.955 (17)148
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+2; (iv) x, y, z+1; (v) x1, y, z1.
 

Acknowledgements

This work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, M.-L., Xu, D.-J. & Cheng, D.-P. (2002). J. Coord. Chem. 55, 11–16.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H., Yin, K.-L. & Xu, D.-J. (2005). Acta Cryst. C61, m19–m21.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPan, T.-T., Su, J.-R. & Xu, D.-J. (2006). Acta Cryst. E62, m1403–m1404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R., Zhang, L. & Xu, D.-J. (2005). Acta Cryst. E61, m939–m941.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m382-m383
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds