metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-4,4′-Bi­pyridine-κ2N:N′-bis­­[aqua­(4,4′-bi­pyridine-κN)(L-valinato-κ2N,O)copper(II)] dinitrate dihydrate

aDepartment of Chemistry and Chemical Engineering, Minjiang University, Fuzhou 350108, People's Republic of China, and bState Key Laboratory of Structural Chemistry, FuJian Institute of Research on the Structure of Matter, Fuzhou 350002, People's Republic of China
*Correspondence e-mail: loubenyong@yahoo.com.cn

(Received 18 January 2008; accepted 21 January 2008; online 25 January 2008)

In the title dinuclear complex, [Cu2(C5H10NO2)2(C10H8N2)3(H2O)2](NO3)2·2H2O, each of the two L-valinate anions chelates a CuII center through the amino N and carboxyl­ate O atom, forming a five-membered ring. A 4,4′-bipyridine mol­ecule bridges two water-coordinated Cu atoms, each of which is connected to another 4,4′-bipyridine, giving rise to a square-pyramidal coordination geometry for the CuII centers. The dinuclear dications, nitrate anions and uncoord­inated water mol­ecules are linked into a two-dimensional structure.

Related literature

For background, see: Yamauchi et al. (2002[Yamauchi, O., Odani, A. & Takani, M. (2002). J. Chem. Soc. Dalton Trans. pp. 3411-3421.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C5H10NO2)2(C10H8N2)3(H2O)2](NO3)2·2H2O

  • Mr = 1024.00

  • Triclinic, P 1

  • a = 8.9675 (14) Å

  • b = 9.6545 (16) Å

  • c = 13.9421 (15) Å

  • α = 91.533 (5)°

  • β = 100.384 (4)°

  • γ = 105.393 (8)°

  • V = 1141.2 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 (2) K

  • 0.20 × 0.15 × 0.13 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2000[Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.824, Tmax = 0.880

  • 8898 measured reflections

  • 6761 independent reflections

  • 5710 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.086

  • S = 1.02

  • 6761 reflections

  • 599 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1599 Friedel pairs

  • Flack parameter: 0.006 (12)

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 1.937 (5)
Cu1—N4 1.993 (5)
Cu1—N1 2.011 (5)
Cu1—N5 2.031 (5)
Cu1—O3 2.275 (4)
Cu2—O4 1.944 (5)
Cu2—N2 1.967 (5)
Cu2—N3 2.001 (5)
Cu2—N7 2.028 (5)
Cu2—O6 2.308 (4)
O1—Cu1—N4 172.71 (19)
O1—Cu1—N1 83.15 (19)
N4—Cu1—N1 95.7 (2)
O1—Cu1—N5 88.54 (19)
N4—Cu1—N5 90.7 (2)
N1—Cu1—N5 162.53 (18)
O1—Cu1—O3 92.32 (18)
N4—Cu1—O3 94.97 (18)
N1—Cu1—O3 98.71 (17)
N5—Cu1—O3 96.94 (17)
O4—Cu2—N2 84.0 (2)
O4—Cu2—N3 171.74 (19)
N2—Cu2—N3 95.2 (2)
O4—Cu2—N7 89.66 (19)
N2—Cu2—N7 165.8 (2)
N3—Cu2—N7 89.2 (2)
O4—Cu2—O6 92.17 (18)
N2—Cu2—O6 95.07 (18)
N3—Cu2—O6 96.10 (18)
N7—Cu2—O6 97.82 (17)

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal–amino acid complexes have been attracting considerable interests due to their structural feature and biological relevance (Yamauchi et al., 2002). In the contribution, we report the title binuclear complex (I) in which there exist various hydrogen-bonding interactions cooperatively engineering the binuclear unit into ordered supramolecular structure.

In the structure of (I), deprotonated L-valine chelates CuII center through amino N and carboxylic O to form a five-membered ring of CuII-amino acid. One bridging 4,4'-bipyridine molecule connects two CuII-amino acid units into a chiral cation binuclear complex and two terminal 4,4'-bipyridine and two water molecules complete the square-pyramidal coordination geometry of CuII center (Fig1). Nitrate anion as H-bonded acceptors is simultaneously hydrogen-bonded to amino N and coordinated water (O3—H3A···O9; N1—H1B···O8; O6—H6A···O10; N2—H2A··· O12; Table 2). Solvent water molecule is simultaneously hydrogen-bonded to coordinated water and two symmetry-related carboxylic groups (O6—H6B···O13; O13—H13A···O5; O13—H13B···O1; O14—H14A···O4; O14—H14B···O2; O3—H3B···O14; Table 2). As a result, two solvent water, two coordinated water and two CuII -amino acid unit form a supramolecular synthon R44(12). And two solvent water and two carboxylic groups form another synthon R44(12). The two synthons connect the binuclear unit parallel to each other into a two-dimensional structure (Fig2). Moreover, two deprotonated L-valine in the binuclear unit are involved in different weak hydrogen-bonding interactions with terminal 4,4'- bipyridine. One interacts with 4,4'-bipyridine through C—H···N interactions between the C—H group of L-valine and N atom of 4,4'-bipyridine (C2—H2···N8). And the other is involved in C—H···O interactions with 4,4'-bipyridine between carboxylic O atom of L-valine and C—H group of 4,4'-bipyridine (C37—H37 ···O5). The bridging 4,4'-bipyridine is also involved in C—H···O interactions with two nitrate anions (C11—H11···O11; C13—H13···O11; C17—H17··· O11; C14—H14···O7; C18—H18···O7). The C—H···O(N) interactions connect the layers into ordered packing structure (Fig. 3).

Related literature top

For background, see: Yamauchi et al. (2002)

Experimental top

To an aqueous solution (10 ml) of L-valine (29 mg, 0.25 mmol) and NaOH (10 mg, 0.25 mmol), Cu(NO3)2.3H2O (60 mg, 0.25 mmol) in water (10 ml) was added slowly. The reaction solution was stirred for half an hour and then 4,4'-bipyridine (39 mg, 0.25 mmol) in ethanol (5 ml) was added. The solution was kept in air and after several days blue crystals were obtained.

Refinement top

H atoms bonded to C or N were located geometrically (C—H = 0.95–1.00 Å, N—H = 0.92 Å) with Uiso(H) = 1.2 Ueq(C,N) or 1.5 Ueq(C). H atoms bonded to O were located by difference maps and constrained to ride on their parent atoms with Uiso(H) = 1.2 Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalClear (Rigaku, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of complex (I) with 50% thermal ellipsoids. Anions and solvent water were omitted.
[Figure 2] Fig. 2. two-dimensional hydrogen-bonded structure in (I). Terminal 4,4'-bipyridine molecules were omitted.
[Figure 3] Fig. 3. The packing structure viewed along a axis.
µ-4,4'-Bipyridine-κ2N:N'-bis[aqua(4,4'-bipyridine- κN)(L-valinato-κ2N,O)copper(II)] dinitrate dihydrate top
Crystal data top
[Cu2(C5H10NO2)2(C10H8N2)3(H2O)2](NO3)2·2H2OZ = 1
Mr = 1024.00F(000) = 532
Triclinic, P1Dx = 1.490 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9675 (14) ÅCell parameters from 3138 reflections
b = 9.6545 (16) Åθ = 3.0–27.5°
c = 13.9421 (15) ŵ = 1.01 mm1
α = 91.533 (5)°T = 293 K
β = 100.384 (4)°Prism, blue
γ = 105.393 (8)°0.20 × 0.15 × 0.13 mm
V = 1141.2 (3) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
6761 independent reflections
Radiation source: fine-focus sealed tube5710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD scansh = 1110
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
k = 1211
Tmin = 0.824, Tmax = 0.880l = 1818
8898 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0466P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6761 reflectionsΔρmax = 0.38 e Å3
599 parametersΔρmin = 0.34 e Å3
3 restraintsAbsolute structure: Flack (1983), 1599 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (12)
Crystal data top
[Cu2(C5H10NO2)2(C10H8N2)3(H2O)2](NO3)2·2H2Oγ = 105.393 (8)°
Mr = 1024.00V = 1141.2 (3) Å3
Triclinic, P1Z = 1
a = 8.9675 (14) ÅMo Kα radiation
b = 9.6545 (16) ŵ = 1.01 mm1
c = 13.9421 (15) ÅT = 293 K
α = 91.533 (5)°0.20 × 0.15 × 0.13 mm
β = 100.384 (4)°
Data collection top
Rigaku Mercury CCD
diffractometer
6761 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2000)
5710 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.880Rint = 0.017
8898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.38 e Å3
S = 1.02Δρmin = 0.34 e Å3
6761 reflectionsAbsolute structure: Flack (1983), 1599 Friedel pairs
599 parametersAbsolute structure parameter: 0.006 (12)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.44365 (4)1.34168 (4)0.93159 (3)0.03451 (16)
Cu20.46068 (4)0.60988 (4)0.41250 (3)0.03179 (14)
O11.6220 (5)1.4275 (5)1.0358 (3)0.0414 (10)
O21.8726 (5)1.5493 (5)1.0699 (3)0.0547 (10)
O31.3283 (6)1.5205 (4)0.9533 (3)0.0489 (11)
H3A1.32301.57990.90680.079*
H3B1.27751.54350.99630.079*
O40.2748 (5)0.5222 (5)0.3128 (3)0.0401 (10)
O50.0406 (5)0.3648 (5)0.2886 (3)0.0562 (11)
O60.5689 (6)0.4220 (5)0.3910 (3)0.0513 (11)
H6A0.57180.36620.43720.079*
H6B0.60610.40080.34200.079*
O70.2765 (6)0.7359 (5)0.6583 (3)0.0569 (13)
O80.3912 (11)0.5947 (8)0.7363 (5)0.128 (3)
O90.3206 (10)0.7456 (7)0.8172 (4)0.105 (3)
O100.5740 (10)0.1982 (7)0.5340 (4)0.103 (2)
O110.6212 (7)0.2018 (6)0.6897 (4)0.0755 (16)
O120.5171 (11)0.3504 (9)0.6218 (5)0.133 (3)
O130.7221 (6)0.3668 (6)0.2437 (3)0.0617 (12)
H13A0.81530.35830.25680.079*
H13B0.69960.38010.18210.079*
O140.1903 (6)0.5750 (6)0.1060 (3)0.0594 (12)
H14B0.08880.55680.08900.079*
H14A0.19240.51220.15210.079*
N11.5915 (6)1.4398 (5)0.8460 (3)0.0375 (10)
H1A1.58041.38050.79090.045*
H1B1.56851.52340.82670.045*
N20.3291 (6)0.5138 (5)0.5031 (3)0.0387 (11)
H2A0.39020.48370.55410.046*
H2B0.28250.57690.52840.046*
N30.6375 (6)0.7231 (5)0.5173 (4)0.0322 (10)
N41.2736 (6)1.2338 (5)0.8221 (4)0.0331 (10)
N51.3457 (6)1.2108 (5)1.0285 (3)0.0365 (11)
N61.1150 (9)0.7765 (7)1.4081 (4)0.0727 (18)
N70.5556 (6)0.7360 (5)0.3126 (3)0.0357 (11)
N80.8214 (9)1.1567 (7)0.0611 (5)0.0682 (17)
N90.3331 (8)0.6965 (6)0.7384 (4)0.0563 (15)
N100.5720 (8)0.2485 (6)0.6131 (4)0.0542 (15)
C11.7529 (7)1.4877 (5)1.0111 (4)0.0347 (11)
C21.7546 (4)1.4731 (4)0.9019 (3)0.0356 (8)
H21.79081.38540.89140.043*
C31.8748 (6)1.5980 (6)0.8693 (4)0.0443 (12)
H31.98031.60630.91110.053*
C41.8349 (8)1.7429 (5)0.8827 (4)0.0742 (17)
H4A1.74001.74280.83510.111*
H4B1.92331.82220.87250.111*
H4C1.81611.75530.94910.111*
C51.8858 (7)1.5663 (5)0.7628 (3)0.0593 (12)
H5A1.91081.47410.75610.089*
H5B1.96891.64340.74430.089*
H5C1.78471.56120.72000.089*
C60.1648 (6)0.4266 (5)0.3431 (4)0.0354 (11)
C70.2064 (5)0.3883 (4)0.4487 (3)0.0373 (8)
H70.25830.30900.44570.045*
C80.0700 (6)0.3324 (6)0.5031 (4)0.0520 (13)
H80.12030.32100.57140.062*
C90.0243 (6)0.4340 (6)0.5120 (4)0.0728 (15)
H9A0.04300.52290.54930.109*
H9B0.11000.39050.54590.109*
H9C0.06890.45610.44660.109*
C100.0322 (7)0.1801 (6)0.4606 (5)0.0737 (17)
H10A0.11770.14760.49680.111*
H10B0.03340.11300.46670.111*
H10C0.07700.18330.39150.111*
C111.2950 (8)1.1217 (6)0.7721 (4)0.0415 (13)
H111.39851.11040.77970.050*
C121.1276 (7)1.2440 (6)0.8114 (4)0.0425 (13)
H121.10941.32140.84680.051*
C130.9983 (7)1.1477 (6)0.7511 (4)0.0434 (13)
H130.89601.16120.74490.052*
C141.1768 (7)1.0244 (7)0.7116 (5)0.0421 (14)
H141.19970.94960.67620.051*
C151.0217 (7)1.0321 (6)0.7004 (4)0.0307 (12)
C160.8883 (6)0.9223 (5)0.6389 (4)0.0273 (11)
C170.7350 (7)0.9183 (6)0.6421 (4)0.0414 (13)
H170.71280.98550.68460.050*
C180.6127 (7)0.8150 (6)0.5825 (4)0.0401 (13)
H180.50730.80940.58810.048*
C190.7872 (7)0.7270 (6)0.5165 (4)0.0403 (12)
H190.80720.66050.47240.048*
C200.9111 (7)0.8201 (6)0.5748 (4)0.0356 (11)
H201.01500.81610.57220.043*
C211.3459 (8)1.2699 (6)1.1170 (4)0.0429 (14)
H211.38161.37181.12890.052*
C221.2974 (8)1.1905 (6)1.1902 (4)0.0420 (14)
H221.29951.23771.25130.050*
C231.2924 (8)1.0656 (6)1.0143 (4)0.0463 (15)
H231.28681.02100.95160.056*
C241.2458 (9)0.9790 (6)1.0871 (4)0.0473 (17)
H241.21470.87711.07520.057*
C251.2447 (7)1.0414 (6)1.1769 (4)0.0363 (13)
C261.1970 (8)0.9493 (7)1.2579 (4)0.0400 (14)
C271.2756 (10)0.9897 (8)1.3550 (5)0.0521 (18)
H271.35741.07701.37190.063*
C281.2299 (10)0.8980 (9)1.4252 (5)0.0626 (19)
H281.28510.92421.49080.075*
C291.0786 (9)0.8260 (7)1.2401 (5)0.0475 (14)
H291.02220.79691.17510.057*
C301.0384 (10)0.7417 (7)1.3147 (6)0.068 (2)
H300.95370.65621.29970.082*
C310.5625 (8)0.6763 (6)0.2275 (4)0.0416 (14)
H310.53200.57410.21790.050*
C320.5987 (8)0.8792 (6)0.3249 (4)0.0427 (14)
H320.59250.92360.38510.051*
C330.6518 (8)0.9662 (6)0.2545 (4)0.0429 (15)
H330.68471.06800.26720.051*
C340.6119 (8)0.7547 (6)0.1514 (4)0.0429 (14)
H340.61470.70690.09150.052*
C350.6568 (7)0.9031 (6)0.1641 (4)0.0369 (13)
C360.7132 (8)0.9905 (6)0.0870 (4)0.0379 (13)
C370.8484 (8)1.1117 (7)0.1097 (5)0.0497 (15)
H370.90431.13970.17500.060*
C380.8942 (10)1.1870 (7)0.0314 (6)0.0642 (18)
H380.98551.26690.04560.077*
C390.6370 (9)0.9583 (7)0.0092 (5)0.0487 (16)
H390.54520.87930.02660.058*
C400.6957 (10)1.0424 (8)0.0802 (5)0.065 (2)
H400.64331.01700.14640.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0314 (4)0.0371 (3)0.0274 (3)0.0003 (3)0.0008 (3)0.0029 (3)
Cu20.0285 (3)0.0338 (3)0.0265 (3)0.0000 (3)0.0015 (3)0.0010 (2)
O10.034 (2)0.049 (2)0.030 (2)0.0082 (19)0.0049 (18)0.0027 (18)
O20.0313 (19)0.076 (3)0.0424 (19)0.0012 (18)0.0050 (16)0.0032 (17)
O30.065 (3)0.048 (2)0.039 (2)0.023 (2)0.012 (2)0.0023 (18)
O40.033 (2)0.050 (2)0.030 (2)0.005 (2)0.0026 (18)0.0045 (18)
O50.035 (2)0.067 (2)0.050 (2)0.0029 (18)0.0056 (17)0.0101 (17)
O60.063 (3)0.055 (3)0.043 (2)0.026 (2)0.015 (2)0.0064 (19)
O70.076 (4)0.070 (3)0.037 (2)0.040 (3)0.010 (2)0.009 (2)
O80.188 (8)0.127 (5)0.092 (4)0.110 (6)0.018 (4)0.012 (4)
O90.157 (8)0.111 (5)0.051 (3)0.043 (5)0.024 (4)0.004 (3)
O100.141 (7)0.109 (5)0.055 (4)0.029 (5)0.018 (4)0.013 (3)
O110.077 (4)0.085 (4)0.079 (4)0.043 (3)0.020 (3)0.029 (3)
O120.197 (9)0.129 (5)0.096 (4)0.119 (6)0.026 (5)0.005 (4)
O130.049 (3)0.093 (3)0.048 (2)0.026 (3)0.010 (2)0.010 (2)
O140.050 (3)0.101 (3)0.036 (2)0.033 (3)0.014 (2)0.008 (2)
N10.036 (2)0.044 (3)0.028 (2)0.001 (2)0.0062 (18)0.0043 (18)
N20.033 (2)0.043 (3)0.030 (2)0.001 (2)0.0005 (18)0.0070 (19)
N30.032 (2)0.031 (2)0.028 (2)0.0012 (19)0.0028 (19)0.0043 (18)
N40.028 (2)0.035 (2)0.030 (2)0.0024 (19)0.0011 (19)0.0015 (19)
N50.035 (3)0.035 (3)0.034 (2)0.003 (2)0.004 (2)0.004 (2)
N60.111 (5)0.066 (4)0.057 (3)0.033 (4)0.044 (3)0.018 (3)
N70.036 (3)0.035 (3)0.029 (2)0.000 (2)0.005 (2)0.001 (2)
N80.097 (4)0.055 (3)0.075 (4)0.035 (3)0.049 (3)0.034 (3)
N90.060 (4)0.069 (4)0.045 (3)0.030 (3)0.006 (3)0.011 (3)
N100.057 (4)0.054 (3)0.049 (3)0.013 (3)0.007 (3)0.005 (3)
C10.032 (2)0.042 (3)0.028 (2)0.010 (2)0.0005 (18)0.0002 (17)
C20.035 (2)0.0362 (19)0.0352 (18)0.0093 (16)0.0049 (16)0.0037 (15)
C30.034 (3)0.052 (3)0.044 (3)0.005 (2)0.010 (2)0.007 (2)
C40.098 (5)0.038 (3)0.079 (4)0.006 (3)0.015 (4)0.012 (2)
C50.074 (3)0.064 (3)0.044 (2)0.015 (3)0.027 (2)0.015 (2)
C60.026 (2)0.036 (3)0.039 (2)0.0029 (19)0.0010 (19)0.0030 (18)
C70.0327 (19)0.0370 (19)0.0382 (19)0.0045 (16)0.0049 (16)0.0011 (15)
C80.042 (3)0.049 (3)0.056 (3)0.006 (2)0.015 (2)0.006 (2)
C90.052 (3)0.082 (4)0.086 (4)0.010 (3)0.031 (3)0.001 (3)
C100.072 (4)0.053 (3)0.078 (4)0.013 (3)0.013 (3)0.008 (3)
C110.030 (3)0.050 (3)0.040 (3)0.012 (3)0.004 (2)0.013 (2)
C120.037 (3)0.033 (2)0.050 (3)0.008 (2)0.003 (2)0.018 (2)
C130.026 (2)0.048 (3)0.048 (3)0.008 (2)0.006 (2)0.014 (2)
C140.022 (3)0.048 (3)0.053 (3)0.010 (2)0.000 (2)0.011 (2)
C150.035 (3)0.035 (3)0.021 (2)0.010 (2)0.004 (2)0.001 (2)
C160.026 (3)0.023 (2)0.029 (3)0.002 (2)0.003 (2)0.001 (2)
C170.036 (3)0.048 (3)0.037 (3)0.011 (3)0.006 (2)0.022 (2)
C180.029 (3)0.046 (3)0.043 (3)0.005 (2)0.008 (2)0.003 (2)
C190.031 (3)0.044 (3)0.041 (2)0.004 (2)0.007 (2)0.009 (2)
C200.030 (2)0.036 (2)0.040 (2)0.008 (2)0.010 (2)0.0094 (19)
C210.048 (4)0.033 (3)0.039 (3)0.003 (3)0.009 (3)0.008 (2)
C220.053 (4)0.036 (3)0.033 (3)0.010 (3)0.003 (3)0.007 (2)
C230.061 (4)0.028 (3)0.040 (3)0.001 (3)0.006 (3)0.010 (2)
C240.072 (5)0.030 (3)0.040 (3)0.009 (3)0.019 (3)0.000 (3)
C250.029 (3)0.030 (3)0.048 (3)0.002 (2)0.010 (3)0.005 (2)
C260.042 (3)0.045 (3)0.039 (3)0.016 (3)0.018 (3)0.005 (2)
C270.055 (4)0.061 (4)0.042 (4)0.020 (4)0.006 (3)0.002 (3)
C280.084 (5)0.084 (5)0.036 (3)0.043 (4)0.021 (3)0.012 (3)
C290.053 (3)0.046 (3)0.044 (3)0.010 (3)0.015 (3)0.004 (2)
C300.093 (5)0.042 (3)0.077 (4)0.009 (3)0.049 (4)0.008 (3)
C310.052 (4)0.031 (3)0.037 (3)0.006 (3)0.005 (3)0.000 (2)
C320.056 (4)0.046 (3)0.030 (3)0.014 (3)0.018 (3)0.002 (2)
C330.052 (4)0.030 (3)0.041 (3)0.002 (3)0.010 (3)0.003 (3)
C340.055 (4)0.035 (3)0.036 (3)0.001 (3)0.020 (3)0.007 (2)
C350.037 (3)0.046 (3)0.024 (2)0.009 (3)0.000 (2)0.001 (2)
C360.048 (4)0.027 (3)0.038 (3)0.011 (2)0.006 (3)0.003 (2)
C370.046 (3)0.043 (3)0.060 (4)0.010 (3)0.015 (3)0.010 (3)
C380.078 (4)0.047 (3)0.074 (4)0.014 (3)0.033 (4)0.019 (3)
C390.060 (5)0.050 (4)0.038 (3)0.014 (3)0.015 (3)0.004 (3)
C400.107 (6)0.063 (4)0.042 (3)0.044 (4)0.023 (4)0.014 (3)
Geometric parameters (Å, º) top
Cu1—O11.937 (5)C8—C91.471 (7)
Cu1—N41.993 (5)C8—C101.548 (8)
Cu1—N12.011 (5)C8—H81.0000
Cu1—N52.031 (5)C9—H9A0.9800
Cu1—O32.275 (4)C9—H9B0.9800
Cu2—O41.944 (5)C9—H9C0.9800
Cu2—N21.967 (5)C10—H10A0.9800
Cu2—N32.001 (5)C10—H10B0.9800
Cu2—N72.028 (5)C10—H10C0.9800
Cu2—O62.308 (4)C11—C141.351 (9)
O1—C11.276 (7)C11—H110.9500
O2—C11.223 (7)C12—C131.396 (8)
O3—H3A0.8807C12—H120.9500
O3—H3B0.8719C13—C151.388 (7)
O4—C61.300 (7)C13—H130.9500
O5—C61.221 (7)C14—C151.393 (8)
O6—H6A0.8522C14—H140.9500
O6—H6B0.8556C15—C161.483 (4)
O7—N91.252 (6)C16—C171.374 (8)
O8—N91.230 (7)C16—C201.393 (7)
O9—N91.220 (7)C17—C181.391 (9)
O10—N101.198 (7)C17—H170.9500
O11—N101.224 (7)C18—H180.9500
O12—N101.224 (7)C19—C201.344 (8)
O13—H13A0.8487C19—H190.9500
O13—H13B0.8665C20—H200.9500
O14—H14B0.8663C21—C221.357 (8)
O14—H14A0.8976C21—H210.9500
N1—C21.475 (6)C22—C251.387 (8)
N1—H1A0.9200C22—H220.9500
N1—H1B0.9200C23—C241.384 (8)
N2—C71.481 (6)C23—H230.9500
N2—H2A0.9200C24—C251.377 (8)
N2—H2B0.9200C24—H240.9500
N3—C191.335 (8)C25—C261.508 (7)
N3—C181.340 (7)C26—C291.351 (9)
N4—C121.322 (8)C26—C271.401 (9)
N4—C111.347 (7)C27—C281.382 (10)
N5—C211.344 (7)C27—H270.9500
N5—C231.353 (7)C28—H280.9500
N6—C281.323 (10)C29—C301.378 (9)
N6—C301.346 (10)C29—H290.9500
N7—C311.325 (7)C30—H300.9500
N7—C321.330 (7)C31—C341.389 (8)
N8—C381.323 (10)C31—H310.9500
N8—C401.333 (10)C32—C331.377 (8)
C1—C21.529 (6)C32—H320.9500
C2—C31.529 (6)C33—C351.398 (8)
C2—H21.0000C33—H330.9500
C3—C51.533 (7)C34—C351.379 (8)
C3—C41.547 (7)C34—H340.9500
C3—H31.0000C35—C361.463 (7)
C4—H4A0.9800C36—C391.376 (8)
C4—H4B0.9800C36—C371.424 (9)
C4—H4C0.9800C37—C381.391 (9)
C5—H5A0.9800C37—H370.9500
C5—H5B0.9800C38—H380.9500
C5—H5C0.9800C39—C401.386 (9)
C6—C71.533 (6)C39—H390.9500
C7—C81.539 (6)C40—H400.9500
C7—H71.0000
O1—Cu1—N4172.71 (19)C10—C8—H8106.0
O1—Cu1—N183.15 (19)C8—C9—H9A109.5
N4—Cu1—N195.7 (2)C8—C9—H9B109.5
O1—Cu1—N588.54 (19)H9A—C9—H9B109.5
N4—Cu1—N590.7 (2)C8—C9—H9C109.5
N1—Cu1—N5162.53 (18)H9A—C9—H9C109.5
O1—Cu1—O392.32 (18)H9B—C9—H9C109.5
N4—Cu1—O394.97 (18)C8—C10—H10A109.5
N1—Cu1—O398.71 (17)C8—C10—H10B109.5
N5—Cu1—O396.94 (17)H10A—C10—H10B109.5
O4—Cu2—N284.0 (2)C8—C10—H10C109.5
O4—Cu2—N3171.74 (19)H10A—C10—H10C109.5
N2—Cu2—N395.2 (2)H10B—C10—H10C109.5
O4—Cu2—N789.66 (19)N4—C11—C14123.3 (6)
N2—Cu2—N7165.8 (2)N4—C11—H11118.3
N3—Cu2—N789.2 (2)C14—C11—H11118.3
O4—Cu2—O692.17 (18)N4—C12—C13123.9 (5)
N2—Cu2—O695.07 (18)N4—C12—H12118.1
N3—Cu2—O696.10 (18)C13—C12—H12118.1
N7—Cu2—O697.82 (17)C15—C13—C12119.0 (5)
C1—O1—Cu1117.2 (4)C15—C13—H13120.5
Cu1—O3—H3A117.6C12—C13—H13120.5
Cu1—O3—H3B135.4C11—C14—C15120.9 (5)
H3A—O3—H3B106.8C11—C14—H14119.5
C6—O4—Cu2114.9 (3)C15—C14—H14119.5
Cu2—O6—H6A116.5C13—C15—C14116.2 (5)
Cu2—O6—H6B128.1C13—C15—C16121.6 (4)
H6A—O6—H6B115.4C14—C15—C16122.2 (4)
H13A—O13—H13B108.7C17—C16—C20116.8 (5)
H14B—O14—H14A97.6C17—C16—C15120.9 (4)
C2—N1—Cu1108.7 (3)C20—C16—C15122.3 (4)
C2—N1—H1A109.9C16—C17—C18119.4 (5)
Cu1—N1—H1A109.9C16—C17—H17120.3
C2—N1—H1B109.9C18—C17—H17120.3
Cu1—N1—H1B109.9N3—C18—C17122.7 (6)
H1A—N1—H1B108.3N3—C18—H18118.7
C7—N2—Cu2108.5 (3)C17—C18—H18118.7
C7—N2—H2A110.0N3—C19—C20123.5 (5)
Cu2—N2—H2A110.0N3—C19—H19118.2
C7—N2—H2B110.0C20—C19—H19118.2
Cu2—N2—H2B110.0C19—C20—C16120.5 (5)
H2A—N2—H2B108.4C19—C20—H20119.7
C19—N3—C18116.9 (5)C16—C20—H20119.7
C19—N3—Cu2121.5 (4)N5—C21—C22123.0 (5)
C18—N3—Cu2120.8 (4)N5—C21—H21118.5
C12—N4—C11116.6 (5)C22—C21—H21118.5
C12—N4—Cu1122.1 (4)C21—C22—C25120.8 (5)
C11—N4—Cu1119.3 (4)C21—C22—H22119.6
C21—N5—C23116.7 (5)C25—C22—H22119.6
C21—N5—Cu1118.3 (4)N5—C23—C24122.8 (5)
C23—N5—Cu1124.7 (4)N5—C23—H23118.6
C28—N6—C30116.4 (6)C24—C23—H23118.6
C31—N7—C32117.4 (5)C25—C24—C23119.7 (5)
C31—N7—Cu2119.6 (4)C25—C24—H24120.2
C32—N7—Cu2122.6 (4)C23—C24—H24120.2
C38—N8—C40116.7 (6)C24—C25—C22117.0 (5)
O9—N9—O8118.8 (6)C24—C25—C26120.7 (5)
O9—N9—O7123.0 (5)C22—C25—C26122.3 (5)
O8—N9—O7117.8 (6)C29—C26—C27117.7 (6)
O10—N10—O12121.0 (6)C29—C26—C25121.8 (6)
O10—N10—O11123.4 (6)C27—C26—C25120.5 (6)
O12—N10—O11115.6 (6)C28—C27—C26117.6 (7)
O2—C1—O1123.3 (5)C28—C27—H27121.2
O2—C1—C2120.9 (5)C26—C27—H27121.2
O1—C1—C2115.8 (5)N6—C28—C27125.0 (7)
N1—C2—C1109.2 (4)N6—C28—H28117.5
N1—C2—C3116.2 (3)C27—C28—H28117.5
C1—C2—C3113.1 (4)C26—C29—C30121.1 (7)
N1—C2—H2105.8C26—C29—H29119.5
C1—C2—H2105.8C30—C29—H29119.5
C3—C2—H2105.8N6—C30—C29122.2 (7)
C2—C3—C5110.2 (4)N6—C30—H30118.9
C2—C3—C4111.7 (4)C29—C30—H30118.9
C5—C3—C4111.0 (4)N7—C31—C34123.7 (5)
C2—C3—H3107.9N7—C31—H31118.2
C5—C3—H3107.9C34—C31—H31118.2
C4—C3—H3107.9N7—C32—C33123.2 (5)
C3—C4—H4A109.5N7—C32—H32118.4
C3—C4—H4B109.5C33—C32—H32118.4
H4A—C4—H4B109.5C32—C33—C35119.3 (5)
C3—C4—H4C109.5C32—C33—H33120.4
H4A—C4—H4C109.5C35—C33—H33120.4
H4B—C4—H4C109.5C35—C34—C31118.9 (5)
C3—C5—H5A109.5C35—C34—H34120.5
C3—C5—H5B109.5C31—C34—H34120.5
H5A—C5—H5B109.5C34—C35—C33117.4 (5)
C3—C5—H5C109.5C34—C35—C36121.0 (5)
H5A—C5—H5C109.5C33—C35—C36121.5 (5)
H5B—C5—H5C109.5C39—C36—C37118.3 (5)
O5—C6—O4121.9 (5)C39—C36—C35121.1 (6)
O5—C6—C7122.3 (5)C37—C36—C35120.7 (5)
O4—C6—C7115.7 (5)C38—C37—C36116.5 (7)
N2—C7—C6107.5 (4)C38—C37—H37121.7
N2—C7—C8112.4 (4)C36—C37—H37121.7
C6—C7—C8117.7 (4)N8—C38—C37125.5 (7)
N2—C7—H7106.1N8—C38—H38117.3
C6—C7—H7106.1C37—C38—H38117.3
C8—C7—H7106.1C36—C39—C40119.3 (7)
C9—C8—C7114.0 (4)C36—C39—H39120.4
C9—C8—C10112.8 (5)C40—C39—H39120.4
C7—C8—C10111.5 (4)N8—C40—C39123.8 (7)
C9—C8—H8106.0N8—C40—H40118.1
C7—C8—H8106.0C39—C40—H40118.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O120.922.072.936 (7)156
O6—H6A···O100.852.142.983 (7)170
O6—H6B···O130.861.932.782 (6)171
O14—H14A···O40.902.222.941 (6)137
O14—H14B···O2i0.871.892.745 (7)168
O13—H13A···O5ii0.851.972.816 (7)173
O13—H13B···O1iii0.872.142.997 (6)172
N1—H1B···O8iv0.922.122.892 (7)141
O3—H3A···O9iv0.882.062.930 (7)170
O3—H3B···O14v0.871.892.752 (6)169
Symmetry codes: (i) x2, y1, z1; (ii) x+1, y, z; (iii) x1, y1, z1; (iv) x+1, y+1, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C5H10NO2)2(C10H8N2)3(H2O)2](NO3)2·2H2O
Mr1024.00
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9675 (14), 9.6545 (16), 13.9421 (15)
α, β, γ (°)91.533 (5), 100.384 (4), 105.393 (8)
V3)1141.2 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.20 × 0.15 × 0.13
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2000)
Tmin, Tmax0.824, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
8898, 6761, 5710
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.02
No. of reflections6761
No. of parameters599
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.34
Absolute structureFlack (1983), 1599 Friedel pairs
Absolute structure parameter0.006 (12)

Computer programs: CrystalClear (Rigaku, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001).

Selected geometric parameters (Å, º) top
Cu1—O11.937 (5)Cu2—O41.944 (5)
Cu1—N41.993 (5)Cu2—N21.967 (5)
Cu1—N12.011 (5)Cu2—N32.001 (5)
Cu1—N52.031 (5)Cu2—N72.028 (5)
Cu1—O32.275 (4)Cu2—O62.308 (4)
O1—Cu1—N4172.71 (19)O4—Cu2—N284.0 (2)
O1—Cu1—N183.15 (19)O4—Cu2—N3171.74 (19)
N4—Cu1—N195.7 (2)N2—Cu2—N395.2 (2)
O1—Cu1—N588.54 (19)O4—Cu2—N789.66 (19)
N4—Cu1—N590.7 (2)N2—Cu2—N7165.8 (2)
N1—Cu1—N5162.53 (18)N3—Cu2—N789.2 (2)
O1—Cu1—O392.32 (18)O4—Cu2—O692.17 (18)
N4—Cu1—O394.97 (18)N2—Cu2—O695.07 (18)
N1—Cu1—O398.71 (17)N3—Cu2—O696.10 (18)
N5—Cu1—O396.94 (17)N7—Cu2—O697.82 (17)
 

Acknowledgements

B-YL acknowledges grants from the Project of the Natural Science Foundation of Fujian Province, China (E0610024) and the Research Project of the Education Bureau of Fujian Province, China (JA06052).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamauchi, O., Odani, A. & Takani, M. (2002). J. Chem. Soc. Dalton Trans. pp. 3411–3421.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds