organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Bis(di­phenyl­phosphino)-1,2-di­methyl­propyl­amine

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa, and bR&D Division, Sasol Technology (Pty) Ltd, 1 Klasie Havenga Road, Sasolburg 1947, South Africa
*Correspondence e-mail: cloeten.sci@ufs.ac.za

(Received 30 November 2007; accepted 17 January 2008; online 23 January 2008)

The diphenyl­phosphine groups in the title compound, C29H31NP2, are staggered relative to the PNP backbone. The N atom adopts an almost planar geometry with the two P atoms and the C atom attached to it, in order to accommodate the steric bulk of the phenyl groups and the alkyl group. Three C atoms of the 1,2-dimethylpropylamine group are disordered over two positions in a 9:1 ratio. The mol­ecules pack diagonally in the unit cell across the ac plane in a head-to-tail fashion.

Related literature

For similar structures, see: Keat et al. (1981[Keat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192-2198.]); Cotton et al. (1996[Cotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251-256.]); Fei et al. (2003[Fei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772-2779.]). For ethyl­ene tetra­merization, see: Bollmann et al. (2004[Bollmann, A., Blann, K., Dixon, J. T., Hess, F. M., Killian, E., Maumela, H., McGuinness, D. S., Morgan, D. H., Neveling, A., Otto, S., Overett, M., Slawin, A. M. Z., Wasserscheid, P. & Kuhlmann, S. (2004). J. Am. Chem. Soc. 126, 14712-14713.]).

[Scheme 1]

Experimental

Crystal data
  • C29H31NP2

  • Mr = 455.49

  • Triclinic, [P \overline 1]

  • a = 9.242 (5) Å

  • b = 10.454 (5) Å

  • c = 12.899 (5) Å

  • α = 91.031 (5)°

  • β = 98.188 (5)°

  • γ = 102.775 (5)°

  • V = 1201.4 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 101 (2) K

  • 0.47 × 0.29 × 0.14 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus (Version 7.12, including XPREP) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.974

  • 24124 measured reflections

  • 5947 independent reflections

  • 5313 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.09

  • 5947 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus (Version 7.12, including XPREP) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Release 3.0c. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Diphosphinoamine (PNP) ligands with various substituents on both the P and N atoms have proven to be very effective in ethylene tetramerization catalyst systems and have been shown to produce 1-octene in good selectivity (Bollmann et al., 2004). It seems that the substituents on the N atom profoundly affected the catalyst productivity. This paper forms part of a structural and kinetic investigation into the mechanism of the catalytic cycle.

The crystals of the title compound, (I), crystallize in the triclinic space group. All bond distances and angles in (I) (Figure 1a) are considered to be normal and fall within the range reported for similar complexes (Keat et al., 1981; Cotton et al., 1996; Fei et al., 2003). A slight disorder of 12% is observed in the 1,2-dimethylpropylamine substituent (Figure 1 b). The distance of N1 from the P1—P2—C1 plane was calculated as 0.216 (2) Å. The geometry around the phosphorous ligands is distorted from tetrahedral geometry with C—P—C angles being the most distorted (varying from 99.56 (7)° to 99.78 (7)°). The P1—N1—P2 angle is 117.83 (7)°.

Related literature top

For similar structures, see: Keat et al. (1981); Cotton et al. (1996); Fei et al. (2003). For ethylene tetramerization, see: Bollmann et al. (2004).

Experimental top

1,2-Dimethylpropylamine (0.01 mole, 0.811 g) was dissolved in dichloromethane (30 ml) and placed in an ice bath. Triethylamine (0.03 mol, 4.22 ml) was added to the solution while it was being stirred. Chlorodiphenylphosphine (0.02 mol, 3.62 ml) was slowly added to the reaction mixture. The ice bath was removed after 30 minutes and the reaction mixture was allowed to stir at room temperature for a further 12 hrs.

The dichloromethane was removed under reduced pressure. A mixture of hexane (20 ml) and toluene (2 ml) was added to the remaining white powder and was passed through a column containing neutral activated alumina (35 g). The solvent of the eluent was removed under reduced pressure and the white precipitate was collected. The product was recrystallized from methanol, single colourless crystals were obtained (yield 2.551 g, 56.1%) the next day which were suitable for X-ray crystallography.

Refinement top

The methyl, methine and aromatic H atoms were placed in geometrically idealized positions at C—H = 0.98, 1.00, 0.95 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the rest of the H-atoms. The 1,2-dimethylpropylamine substituent was disordered over two sites with site occupancy factors for atoms C1, C2 and C3 being 0.880 (3) and 0.120 (3) for the unprimed and primed atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of (I) shown with 50% probability displacement ellipsoids. Atoms C1', C2' and C3' and the H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of (I) illustrating the disordered part of the molecule.
[Figure 3] Fig. 3. A perspective view of the unit cell of (I) along the b axis.
N,N-Bis(diphenylphosphino)-1,2-dimethylpropylamine top
Crystal data top
C29H31NP2Z = 2
Mr = 455.49F(000) = 484
Triclinic, P1Dx = 1.259 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 9.242 (5) ÅCell parameters from 5808 reflections
b = 10.454 (5) Åθ = 2.5–28.3°
c = 12.899 (5) ŵ = 0.20 mm1
α = 91.031 (5)°T = 101 K
β = 98.188 (5)°Needle, colourless
γ = 102.775 (5)°0.47 × 0.29 × 0.14 mm
V = 1201.4 (10) Å3
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5313 reflections with I > 2σ(I)
ω and ϕ scansRint = 0.031
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 28.3°, θmin = 1.6°
Tmin = 0.913, Tmax = 0.974h = 1212
24124 measured reflectionsk = 1313
5947 independent reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.8476P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.56 e Å3
5947 reflectionsΔρmin = 0.52 e Å3
299 parameters
Crystal data top
C29H31NP2γ = 102.775 (5)°
Mr = 455.49V = 1201.4 (10) Å3
Triclinic, P1Z = 2
a = 9.242 (5) ÅMo Kα radiation
b = 10.454 (5) ŵ = 0.20 mm1
c = 12.899 (5) ÅT = 101 K
α = 91.031 (5)°0.47 × 0.29 × 0.14 mm
β = 98.188 (5)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5947 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5313 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.974Rint = 0.031
24124 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.09Δρmax = 0.56 e Å3
5947 reflectionsΔρmin = 0.52 e Å3
299 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 20 s/frame. A total of 1264 frames were collected with a frame width of 0.5° covering up to θ = 28.27° with 99.7% completeness accomplished.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.70056 (4)0.12612 (3)0.21511 (3)0.01317 (9)
P20.67790 (4)0.37407 (4)0.31828 (3)0.01449 (9)
N10.78800 (13)0.27976 (12)0.27060 (10)0.0140 (2)
C10.93360 (17)0.35565 (16)0.23925 (13)0.0135 (3)0.880 (3)
H10.99150.29020.22130.016*0.880 (3)
C21.03165 (18)0.44779 (17)0.33011 (13)0.0161 (3)0.880 (3)
H20.97650.51640.34550.019*0.880 (3)
C31.1814 (3)0.5179 (2)0.29853 (17)0.0221 (5)0.880 (3)
H3A1.16270.56350.2340.033*0.880 (3)
H3B1.24050.45340.28670.033*0.880 (3)
H3C1.2370.58180.35470.033*0.880 (3)
C41.0608 (2)0.37797 (18)0.42997 (13)0.0276 (4)
H4A0.96490.33310.45030.041*0.880 (3)
H4B1.11630.44220.4860.041*0.880 (3)
H4C1.11990.31340.41830.041*0.880 (3)
C50.90750 (18)0.43599 (16)0.14037 (13)0.0222 (3)
H5A0.84560.37730.08290.033*0.880 (3)
H5B1.00440.47640.11930.033*0.880 (3)
H5C0.85620.50470.15680.033*0.880 (3)
C1'0.9525 (13)0.3419 (12)0.3000 (11)0.0135 (3)0.120 (3)
H1'1.00410.28250.26480.016*0.120 (3)
C2'0.9878 (13)0.4706 (12)0.2442 (10)0.0161 (3)0.120 (3)
H2'0.93850.53360.27730.019*0.120 (3)
C3'1.164 (2)0.530 (2)0.2663 (15)0.0221 (5)0.120 (3)
H3'11.19610.54620.3420.033*0.120 (3)
H3'21.18690.61340.23150.033*0.120 (3)
H3'31.21610.46830.2390.033*0.120 (3)
H4'11.0440.29920.47060.041*0.120 (3)
H4'21.02920.44870.46530.041*0.120 (3)
H4'31.16770.40560.42420.041*0.120 (3)
H5'10.92240.51320.09780.033*0.120 (3)
H5'20.80030.40470.14380.033*0.120 (3)
H5'30.9450.36630.10850.033*0.120 (3)
C110.72299 (16)0.13544 (14)0.07574 (11)0.0160 (3)
C120.84843 (17)0.11312 (15)0.03598 (12)0.0193 (3)
H12A0.92570.08690.08150.023*
C130.86207 (19)0.12861 (16)0.06911 (13)0.0229 (3)
H130.94810.11280.0950.027*
C140.7501 (2)0.16710 (17)0.13625 (13)0.0259 (3)
H140.75960.17840.20810.031*
C150.6245 (2)0.18891 (19)0.09798 (13)0.0273 (4)
H15A0.54790.21550.14380.033*
C160.60969 (18)0.17224 (17)0.00689 (13)0.0221 (3)
H160.52220.18590.0320.027*
C210.82593 (16)0.01717 (14)0.25649 (12)0.0160 (3)
C220.78897 (18)0.10914 (15)0.20857 (14)0.0219 (3)
H220.71060.13040.15060.026*
C230.8651 (2)0.20396 (16)0.24445 (15)0.0280 (4)
H23A0.83680.290.21210.034*
C240.9823 (2)0.17373 (18)0.32730 (14)0.0301 (4)
H24A1.03540.23820.35150.036*
C251.0208 (2)0.0491 (2)0.37406 (14)0.0335 (4)
H25A1.10180.02720.43030.04*
C260.9421 (2)0.04519 (17)0.33964 (13)0.0251 (3)
H260.96870.13010.37390.03*
C310.50526 (16)0.34906 (15)0.22286 (11)0.0160 (3)
C320.49159 (18)0.44964 (17)0.15521 (13)0.0223 (3)
H320.56880.52750.16130.027*
C330.3657 (2)0.4373 (2)0.07870 (13)0.0296 (4)
H330.35750.50640.0330.035*
C340.2534 (2)0.3248 (2)0.06951 (14)0.0312 (4)
H340.16840.31570.01670.037*
C350.26411 (18)0.22487 (18)0.13728 (15)0.0283 (4)
H350.1860.14770.13110.034*
C360.38839 (17)0.23698 (16)0.21414 (13)0.0208 (3)
H360.39410.16870.26110.025*
C410.60386 (16)0.28426 (15)0.42658 (12)0.0172 (3)
C420.48788 (18)0.32576 (18)0.46699 (13)0.0245 (3)
H420.44690.39320.43430.029*
C430.43217 (19)0.2696 (2)0.55412 (14)0.0293 (4)
H430.35310.29830.58040.035*
C440.49202 (19)0.17178 (18)0.60269 (13)0.0272 (4)
H440.45420.13320.66230.033*
C450.60676 (19)0.13068 (17)0.56409 (13)0.0245 (3)
H450.64770.06360.59750.029*
C460.66313 (17)0.18625 (15)0.47688 (12)0.0195 (3)
H460.74260.15720.45140.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01201 (17)0.01326 (17)0.01526 (18)0.00541 (13)0.00153 (13)0.00045 (13)
P20.01198 (17)0.01493 (18)0.01806 (19)0.00708 (13)0.00105 (13)0.00021 (14)
N10.0110 (5)0.0127 (5)0.0190 (6)0.0053 (4)0.0011 (4)0.0007 (4)
C10.0109 (7)0.0155 (7)0.0148 (8)0.0050 (5)0.0015 (6)0.0005 (6)
C20.0141 (7)0.0184 (8)0.0165 (7)0.0057 (6)0.0015 (6)0.0021 (6)
C30.0164 (9)0.0249 (10)0.0232 (12)0.0010 (7)0.0034 (9)0.0015 (9)
C40.0360 (9)0.0294 (9)0.0188 (8)0.0104 (7)0.0042 (7)0.0024 (7)
C50.0250 (8)0.0243 (8)0.0195 (7)0.0126 (6)0.0003 (6)0.0008 (6)
N1'0.0110 (5)0.0127 (5)0.0190 (6)0.0053 (4)0.0011 (4)0.0007 (4)
C1'0.0109 (7)0.0155 (7)0.0148 (8)0.0050 (5)0.0015 (6)0.0005 (6)
C2'0.0141 (7)0.0184 (8)0.0165 (7)0.0057 (6)0.0015 (6)0.0021 (6)
C3'0.0164 (9)0.0249 (10)0.0232 (12)0.0010 (7)0.0034 (9)0.0015 (9)
C4'0.0360 (9)0.0294 (9)0.0188 (8)0.0104 (7)0.0042 (7)0.0024 (7)
C5'0.0250 (8)0.0243 (8)0.0195 (7)0.0126 (6)0.0003 (6)0.0008 (6)
C110.0162 (6)0.0164 (7)0.0159 (7)0.0055 (5)0.0015 (5)0.0002 (5)
C120.0185 (7)0.0209 (7)0.0211 (7)0.0091 (6)0.0041 (6)0.0022 (6)
C130.0257 (8)0.0245 (8)0.0226 (8)0.0104 (6)0.0095 (6)0.0020 (6)
C140.0325 (9)0.0303 (9)0.0172 (7)0.0104 (7)0.0061 (6)0.0011 (6)
C150.0271 (8)0.0380 (10)0.0187 (8)0.0144 (7)0.0012 (6)0.0025 (7)
C160.0191 (7)0.0303 (8)0.0194 (7)0.0118 (6)0.0016 (6)0.0006 (6)
C210.0174 (7)0.0163 (7)0.0173 (7)0.0083 (5)0.0054 (5)0.0031 (5)
C220.0210 (7)0.0176 (7)0.0292 (8)0.0071 (6)0.0057 (6)0.0004 (6)
C230.0345 (9)0.0163 (7)0.0393 (10)0.0120 (7)0.0151 (8)0.0033 (7)
C240.0442 (10)0.0321 (9)0.0264 (9)0.0288 (8)0.0142 (8)0.0127 (7)
C250.0425 (10)0.0436 (11)0.0218 (8)0.0308 (9)0.0036 (7)0.0015 (8)
C260.0323 (9)0.0265 (8)0.0197 (8)0.0184 (7)0.0038 (6)0.0028 (6)
C310.0135 (6)0.0217 (7)0.0159 (7)0.0102 (5)0.0027 (5)0.0001 (5)
C320.0197 (7)0.0300 (8)0.0217 (8)0.0126 (6)0.0063 (6)0.0076 (6)
C330.0283 (9)0.0485 (11)0.0194 (8)0.0233 (8)0.0044 (7)0.0101 (7)
C340.0235 (8)0.0522 (11)0.0216 (8)0.0226 (8)0.0056 (6)0.0080 (8)
C350.0164 (7)0.0313 (9)0.0365 (10)0.0100 (6)0.0037 (7)0.0117 (7)
C360.0166 (7)0.0211 (7)0.0267 (8)0.0099 (6)0.0017 (6)0.0015 (6)
C410.0163 (7)0.0205 (7)0.0149 (7)0.0062 (5)0.0004 (5)0.0009 (5)
C420.0221 (8)0.0346 (9)0.0207 (8)0.0148 (7)0.0033 (6)0.0016 (7)
C430.0228 (8)0.0457 (11)0.0222 (8)0.0122 (7)0.0062 (6)0.0001 (7)
C440.0273 (8)0.0352 (9)0.0162 (7)0.0009 (7)0.0038 (6)0.0009 (7)
C450.0299 (8)0.0243 (8)0.0178 (7)0.0059 (6)0.0010 (6)0.0018 (6)
C460.0210 (7)0.0208 (7)0.0173 (7)0.0077 (6)0.0000 (6)0.0009 (6)
Geometric parameters (Å, º) top
P1—N11.7219 (14)C15—C161.389 (2)
P1—C211.8314 (16)C15—H15A0.95
P1—C111.8406 (17)C16—H160.95
P2—N11.7279 (13)C21—C261.382 (2)
P2—C411.8267 (17)C21—C221.398 (2)
P2—C311.8367 (16)C22—C231.387 (2)
N1—C11.516 (2)C22—H220.95
C1—C21.547 (2)C23—C241.386 (3)
C1—C51.559 (2)C23—H23A0.95
C1—H11.00C24—C251.376 (3)
C2—C41.512 (2)C24—H24A0.95
C2—C31.531 (3)C25—C261.392 (2)
C2—H21.00C25—H25A0.95
C3—H3A0.98C26—H260.95
C3—H3B0.98C31—C321.394 (2)
C3—H3C0.98C31—C361.398 (2)
C4—H4A0.98C32—C331.395 (2)
C4—H4B0.98C32—H320.95
C4—H4C0.98C33—C341.376 (3)
C5—H5A0.98C33—H330.95
C5—H5B0.98C34—C351.385 (3)
C5—H5C0.98C34—H340.95
C1'—C2'1.531 (18)C35—C361.387 (2)
C1'—H1'1.00C35—H350.95
C2'—C3'1.59 (2)C36—H360.95
C2'—H2'1.00C41—C461.393 (2)
C3'—H3'10.98C41—C421.402 (2)
C3'—H3'20.98C42—C431.388 (2)
C3'—H3'30.98C42—H420.95
C11—C121.395 (2)C43—C441.386 (3)
C11—C161.400 (2)C43—H430.95
C12—C131.388 (2)C44—C451.379 (3)
C12—H12A0.95C44—H440.95
C13—C141.387 (2)C45—C461.390 (2)
C13—H130.95C45—H450.95
C14—C151.386 (2)C46—H460.95
C14—H140.95
N1—P1—C21106.57 (7)C14—C15—C16120.55 (15)
N1—P1—C11104.94 (7)C14—C15—H15A119.7
C21—P1—C1199.56 (7)C16—C15—H15A119.7
N1—P2—C41104.98 (7)C15—C16—C11120.32 (15)
N1—P2—C31106.17 (7)C15—C16—H16119.8
C41—P2—C3199.78 (7)C11—C16—H16119.8
C1—N1—P1121.49 (10)C26—C21—C22117.95 (14)
C1—N1—P2115.52 (10)C26—C21—P1124.64 (12)
P1—N1—P2117.83 (7)C22—C21—P1116.91 (12)
N1—C1—C2112.09 (13)C23—C22—C21120.96 (16)
N1—C1—C5112.51 (12)C23—C22—H22119.5
C2—C1—C5109.68 (13)C21—C22—H22119.5
N1—C1—H1107.4C24—C23—C22120.29 (16)
C2—C1—H1107.4C24—C23—H23A119.9
C5—C1—H1107.4C22—C23—H23A119.9
C4—C2—C3109.39 (15)C25—C24—C23119.14 (15)
C4—C2—C1113.19 (14)C25—C24—H24A120.4
C3—C2—C1111.16 (15)C23—C24—H24A120.4
C4—C2—H2107.6C24—C25—C26120.57 (17)
C3—C2—H2107.6C24—C25—H25A119.7
C1—C2—H2107.6C26—C25—H25A119.7
C2—C3—H3A109.5C21—C26—C25121.07 (16)
C2—C3—H3B109.5C21—C26—H26119.5
H3A—C3—H3B109.5C25—C26—H26119.5
C2—C3—H3C109.5C32—C31—C36118.56 (14)
H3A—C3—H3C109.5C32—C31—P2117.02 (12)
H3B—C3—H3C109.5C36—C31—P2124.42 (12)
C2—C4—H4A109.5C31—C32—C33120.72 (16)
C2—C4—H4B109.5C31—C32—H32119.6
H4A—C4—H4B109.5C33—C32—H32119.6
C2—C4—H4C109.5C34—C33—C32119.92 (17)
H4A—C4—H4C109.5C34—C33—H33120
H4B—C4—H4C109.5C32—C33—H33120
C1—C5—H5A109.5C33—C34—C35120.06 (16)
C1—C5—H5B109.5C33—C34—H34120
H5A—C5—H5B109.5C35—C34—H34120
C1—C5—H5C109.5C34—C35—C36120.32 (17)
H5A—C5—H5C109.5C34—C35—H35119.8
H5B—C5—H5C109.5C36—C35—H35119.8
C2'—C1'—H1'104.3C35—C36—C31120.38 (16)
C1'—C2'—C3'109.0 (11)C35—C36—H36119.8
C1'—C2'—H2'107.2C31—C36—H36119.8
C3'—C2'—H2'107.2C46—C41—C42118.29 (15)
C2'—C3'—H3'1109.5C46—C41—P2124.54 (12)
C2'—C3'—H3'2109.5C42—C41—P2116.92 (12)
H3'1—C3'—H3'2109.5C43—C42—C41120.92 (16)
C2'—C3'—H3'3109.5C43—C42—H42119.5
H3'1—C3'—H3'3109.5C41—C42—H42119.5
H3'2—C3'—H3'3109.5C44—C43—C42119.92 (16)
C12—C11—C16118.48 (14)C44—C43—H43120
C12—C11—P1123.86 (11)C42—C43—H43120
C16—C11—P1117.61 (11)C45—C44—C43119.71 (16)
C13—C12—C11121.00 (14)C45—C44—H44120.1
C13—C12—H12A119.5C43—C44—H44120.1
C11—C12—H12A119.5C44—C45—C46120.75 (16)
C14—C13—C12120.00 (15)C44—C45—H45119.6
C14—C13—H13120C46—C45—H45119.6
C12—C13—H13120C45—C46—C41120.40 (15)
C15—C14—C13119.63 (15)C45—C46—H46119.8
C15—C14—H14120.2C41—C46—H46119.8
C13—C14—H14120.2

Experimental details

Crystal data
Chemical formulaC29H31NP2
Mr455.49
Crystal system, space groupTriclinic, P1
Temperature (K)101
a, b, c (Å)9.242 (5), 10.454 (5), 12.899 (5)
α, β, γ (°)91.031 (5), 98.188 (5), 102.775 (5)
V3)1201.4 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.47 × 0.29 × 0.14
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.913, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
24124, 5947, 5313
Rint0.031
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.09
No. of reflections5947
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.52

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

 

Acknowledgements

Financial assistance from the South African National Research Foundation (NRF), the Research Fund of the University of the Free State and Sasol is gratefully acknowledged. Part of this material is based on work supported by the South African National Research Foundation (GUN 2038915). Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NRF.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBollmann, A., Blann, K., Dixon, J. T., Hess, F. M., Killian, E., Maumela, H., McGuinness, D. S., Morgan, D. H., Neveling, A., Otto, S., Overett, M., Slawin, A. M. Z., Wasserscheid, P. & Kuhlmann, S. (2004). J. Am. Chem. Soc. 126, 14712–14713.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Release 3.0c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). SAINT-Plus (Version 7.12, including XPREP) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A., Kuhn, F. E. & Yokochi, A. (1996). Inorg. Chim. Acta, 252, 251–256.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFei, Z., Scopeleti, R. & Dyson, P. J. (2003). Dalton Trans. pp. 2772–2779.  Web of Science CSD CrossRef Google Scholar
First citationKeat, R., Manojlovic-Muir, L., Muir, K. W. & Rycroft, D. S. (1981). J. Chem. Soc. Dalton Trans. pp. 2192–2198.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds