organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo(L-tyrosyl-L-tryptophanyl) di­methylformamide solvate

aDepartment of Chemistry, University of Oslo, PO Box 1033 Blindern, N-0315 Oslo, Norway
*Correspondence e-mail: c.h.gorbitz@kjemi.uio.no

(Received 3 December 2007; accepted 8 January 2008; online 11 January 2008)

The structure of the title compound [systematic name: (3S,6S)-3-(4-hydroxy­benz­yl)-6-(1H-indol-3-ylmeth­yl)piperazine-2,5-dione dimethyl­formamide solvate], C20H19N3O3·C3H7NO, contains hydrogen-bonded tapes typical for diketopiperazines. The structure is stabilized by strong inter­molecular inter­actions of the types O—H⋯O and N—H⋯O involving the dipeptide and the solvent mol­ecules. The absolute configuration was known from the starting materials.

Related literature

For related structures, see: Morris et al. (1974[Morris, A. J., Geddes, A. J. & Sheldrick, B. (1974). Cryst. Struct. Commun. 3, 345-349.]); Grant et al. (1999[Grant, G. D., Hunt, A. L., Milne, P. J., Roos, H. M. & Joubert, J. A. (1999). J. Chem. Crystallogr. 29, 435-447.]); Suguna et al. (1984[Suguna, K., Ramakumar, S. & Kopple, K. D. (1984). Acta Cryst. C40, 2053-2056.]); Lin & Webb (1973[Lin, C.-F. & Webb, L. E. (1973). J. Am. Chem. Soc. 95, 6803-6811.]); Razak et al., (2000[Razak, I. A., Shanmuga Sundara Raj, S., Fun, H.-K., Chen, Z.-F., Zhang, J., Xiong, R.-G. & You, X.-Z. (2000). Acta Cryst. C56, e341-e342.]); Luo & Palmore (2002[Luo, T.-J. M. & Palmore, G. T. R. (2002). Cryst. Growth Des. 2, 337-350.]); Görbitz (1987[Görbitz, C. H. (1987). Acta Chem. Scand. B, 41, 83-86.]); Görbitz & Hartviksen (2006[Görbitz, C. H. & Hartviksen, L. M. (2006). Acta Cryst. E62, o2358-o2360.]). Solvent inclusion: Görbitz & Hersleth (2000[Görbitz, C. H. & Hersleth, H.-P. (2000). Acta Cryst. B56, 1094-1102.]). Cambridge Structural Database: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19N3O3·C3H7NO

  • Mr = 422.48

  • Monoclinic, P 21

  • a = 6.1923 (2) Å

  • b = 15.3873 (5) Å

  • c = 11.3780 (3) Å

  • β = 96.661 (1)°

  • V = 1076.81 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 105 (2) K

  • 0.80 × 0.65 × 0.20 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.800, Tmax = 0.982

  • 9514 measured reflections

  • 2786 independent reflections

  • 2454 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 1.15

  • 2786 reflections

  • 297 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.96 (3) 1.94 (3) 2.902 (3) 174 (3)
N2—H2⋯O3ii 0.87 (3) 2.01 (3) 2.884 (3) 178 (3)
N3—H3⋯O1iii 0.81 (4) 2.16 (4) 2.851 (3) 144 (3)
O2—H4⋯O1D 1.04 (5) 1.59 (5) 2.606 (3) 163 (4)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Version 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (3S,6S)-3-(4-hydroxsybenzyl)-6 -(1H-indol-3-yl)methylpiperazine-2,5-dione dimethylformamide solvate, (I), was obtained as the result of an attempt to crystallize the corresponding linear dipeptide Tyr-Trp from a dimethylformamide solution. In our laboratory we have previously observed similar cyclization reactions taking place for several other dipeptides including Asp-Ala (Görbitz, 1987), Ile-Ile (Görbitz & Hartviksen, 2006) and Val-Leu (unpublished results).

The crystal structure of (I) contains straight hydrogen-bonded tapes as seen in Fig. 2. A search in the Cambridge Structural Database (CSD; Version 5.28 of November 2006; Allen 2002) revealed 59 examples of such tapes (unperturbed e.g. by additional cyclic connections between the two Cα-atoms). The periodicity of this pattern, usually corresponding to a unit-cell parameter, shows a quite narrow distribution with 54 out of 59 observations in the range 6.06 to 6.26 Å, with 6.19 Å observed for (I) being close to the 6.16 Å average value. The full range observed in the CSD is from 6.01 to 6.57 Å, with the upper limit being represented by a distinct outlier (piperazine-2,5-dione:2,5-dihydroxyterephatlic acid 1:1, Luo & Palmore, 2002).

The carbonyl O atom of the cocrystallized dimethylformamide (DMF) solvent molecule accepts a H atom from the Tyr hydroxyl group, but the DMF molecule is also involved in a number of weaker hydrogen bonds (Table 2 and Fig. 2). This is in line with previous findings that DMF molecules are often more heavily involved in intermolecular interactions than one traditionally would expect (Görbitz & Hersleth, 2000).

From the 20 naturally occurring amino acids one can construct 210 different cyclic dipeptides (as opposed to 400 linear dipeptides). Single crystal structural studies have been presented for 20 of them, including four structures with Tyr or Trp residues: cyclo(Gly-Trp) (Morris et al., 1974), cyclo(Trp-Trp) DMSO solvate (Grant et al., 1999), cyclo(Leu-Tyr) hydrate (Suguna et al., 1984), and cyclo(Ser-Tyr) hydrate (Lin & Webb, 1973). From a conformational point of view these four peptides resemble (I) as well as each other, and all except cyclo(Trp-Trp) crystallize in the P21 space group. Nevertheless, each cyclic dipeptide has its own unique packing arrangement, also when all other compounds with a diketopiperazine moiety are considered.

Related literature top

For related structures, see: Morris et al. (1974); Grant et al. (1999); Suguna et al. (1984); Lin & Webb (1973); (Razak et al., 2000); Luo & Palmore (2002); Görbitz & Hersleth (2000); Görbitz (1987); Görbitz & Hartviksen (2006); Allen (2002).

Experimental top

The corresponding linear peptide Tyr-Trp was obtained from Bachem. Crystals of the cyclic analogue resulting from ring closure were obtained by slow evaporation of a solution of Tyr-Trp in dimethylformamide.

Refinement top

Positional parameters were refined for H atoms involved in short hydrogen bonds. Other H atoms were positioned with idealized geometry and fixed C—H distances for CH3, CH2, CH and aromatic CH type H-atoms at 0.98, 0.99, 1.00 and 0.95 Å, respectively; Uiso values were 1.2Ueq of the carrier atom or 1.5Ueq for the OH and methyl groups. In the absence of significant anomalous scattering effects, 2334 Friedel pairs were merged. The absolute configuration was known for the purchased material.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. : Crystal packing arrangement viewed approximately along the a axis. Hydrogen bonds and weaker interactions have been indicated by dashed lines; non-essential peptide H atoms have been left out for clarity.
(3S,6S)-3-(4-Hydroxybenzyl)-6-(1H-indol-3-ylmethyl)piperazine-2,5-dione dimethylformamide solvate top
Crystal data top
C20H19N3O3·C3H7NOF(000) = 448
Mr = 422.48Dx = 1.303 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 7819 reflections
a = 6.1923 (2) Åθ = 1.8–28.3°
b = 15.3873 (5) ŵ = 0.09 mm1
c = 11.3780 (3) ÅT = 105 K
β = 96.661 (1)°Block, colourless
V = 1076.81 (6) Å30.80 × 0.65 × 0.20 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
2786 independent reflections
Radiation source: fine-focus sealed tube2454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 8.3 pixels mm-1θmax = 28.3°, θmin = 1.8°
Sets of exposures each taken over 0.3° ω rotation scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2020
Tmin = 0.800, Tmax = 0.982l = 1215
9514 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.2252P]
where P = (Fo2 + 2Fc2)/3
2786 reflections(Δ/σ)max = 0.001
297 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C20H19N3O3·C3H7NOV = 1076.81 (6) Å3
Mr = 422.48Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.1923 (2) ŵ = 0.09 mm1
b = 15.3873 (5) ÅT = 105 K
c = 11.3780 (3) Å0.80 × 0.65 × 0.20 mm
β = 96.661 (1)°
Data collection top
Siemens SMART CCD
diffractometer
2786 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2454 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 0.982Rint = 0.038
9514 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.23 e Å3
2786 reflectionsΔρmin = 0.27 e Å3
297 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Data were collected by measuring three sets of exposures with the detector set at 2θ = 29°, crystal-to-detector distance 5.00 cm. Refinement of F2 against ALL reflections.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1720 (3)0.00215 (12)0.52224 (17)0.0277 (4)
O20.6882 (4)0.38722 (14)0.7195 (2)0.0378 (5)
H40.566 (7)0.409 (3)0.768 (4)0.057*
O30.8442 (3)0.11985 (12)0.31396 (17)0.0269 (4)
N10.7154 (3)0.02668 (14)0.44228 (19)0.0230 (4)
H10.867 (5)0.014 (2)0.465 (3)0.028*
N20.2984 (3)0.09051 (13)0.39160 (19)0.0223 (4)
H20.162 (6)0.101 (2)0.369 (3)0.027*
N30.0323 (4)0.35012 (15)0.3555 (2)0.0268 (4)
H30.123 (6)0.379 (3)0.383 (3)0.032*
C10.5533 (4)0.00266 (16)0.5160 (2)0.0231 (5)
H110.54960.06760.51170.028*
C20.6176 (4)0.02202 (18)0.6471 (2)0.0280 (5)
H210.50860.00240.69510.034*
H220.75960.00500.67470.034*
C30.6339 (4)0.11897 (18)0.6686 (2)0.0269 (5)
C40.4638 (4)0.16582 (19)0.7071 (2)0.0283 (5)
H410.33440.13610.72060.034*
C50.4777 (4)0.2550 (2)0.7265 (2)0.0317 (6)
H510.36010.28540.75430.038*
C60.6650 (5)0.29970 (19)0.7049 (2)0.0305 (6)
C70.8369 (5)0.2541 (2)0.6663 (3)0.0334 (6)
H710.96510.28400.65150.040*
C80.8222 (4)0.1643 (2)0.6491 (2)0.0307 (6)
H810.94170.13360.62390.037*
C90.3262 (4)0.02939 (16)0.4750 (2)0.0214 (4)
C100.4684 (4)0.13210 (15)0.3333 (2)0.0203 (4)
H1010.42830.12590.24600.024*
C110.4861 (4)0.23024 (15)0.3614 (2)0.0245 (5)
H1110.53560.23780.44670.029*
H1120.59760.25610.31640.029*
C120.2766 (4)0.27826 (15)0.3319 (2)0.0219 (5)
C130.1520 (4)0.31262 (17)0.4122 (2)0.0259 (5)
H1310.18820.31080.49560.031*
C140.1618 (4)0.29527 (15)0.2171 (2)0.0236 (5)
C150.2022 (5)0.27731 (19)0.1009 (3)0.0312 (5)
H1510.33360.24990.08570.037*
C160.0465 (6)0.3004 (2)0.0084 (3)0.0397 (7)
H1610.07130.28760.07060.048*
C170.1462 (5)0.3422 (2)0.0292 (3)0.0426 (7)
H1710.25050.35650.03590.051*
C180.1877 (5)0.36285 (19)0.1422 (3)0.0367 (6)
H1810.31780.39190.15610.044*
C190.0318 (4)0.33969 (16)0.2361 (2)0.0270 (5)
C200.6919 (4)0.09162 (16)0.3637 (2)0.0213 (4)
O1D0.4352 (4)0.46196 (17)0.8569 (2)0.0448 (5)
N1D0.1638 (4)0.53136 (19)0.9359 (2)0.0370 (5)
C1D0.2408 (5)0.4758 (2)0.8623 (3)0.0373 (6)
H1D0.119 (6)0.450 (3)0.804 (3)0.045*
C2D0.0661 (6)0.5502 (2)0.9296 (4)0.0509 (9)
H21D0.14680.51090.87260.076*
H22D0.09250.61040.90410.076*
H23D0.11470.54191.00780.076*
C3D0.3101 (7)0.5866 (5)1.0106 (5)0.094 (2)
H31D0.45630.56131.01910.141*
H32D0.25900.59161.08870.141*
H33D0.31420.64440.97470.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0200 (8)0.0271 (9)0.0367 (10)0.0003 (7)0.0066 (7)0.0090 (7)
O20.0475 (12)0.0301 (10)0.0363 (11)0.0044 (9)0.0074 (9)0.0026 (8)
O30.0188 (8)0.0296 (9)0.0328 (9)0.0005 (7)0.0059 (7)0.0044 (8)
N10.0159 (9)0.0234 (9)0.0304 (10)0.0030 (7)0.0053 (7)0.0032 (8)
N20.0160 (9)0.0208 (9)0.0303 (10)0.0003 (7)0.0046 (8)0.0045 (8)
N30.0237 (10)0.0212 (10)0.0363 (12)0.0008 (8)0.0071 (8)0.0046 (9)
C10.0193 (10)0.0197 (10)0.0310 (12)0.0015 (9)0.0051 (9)0.0049 (9)
C20.0252 (11)0.0301 (13)0.0286 (12)0.0026 (10)0.0022 (9)0.0064 (10)
C30.0248 (11)0.0320 (13)0.0237 (11)0.0006 (10)0.0014 (9)0.0008 (10)
C40.0224 (11)0.0345 (14)0.0278 (12)0.0012 (10)0.0024 (9)0.0005 (10)
C50.0277 (12)0.0385 (15)0.0289 (13)0.0020 (11)0.0036 (10)0.0025 (11)
C60.0339 (14)0.0320 (14)0.0251 (12)0.0023 (11)0.0009 (10)0.0020 (10)
C70.0279 (13)0.0412 (15)0.0318 (13)0.0059 (11)0.0072 (10)0.0049 (12)
C80.0213 (11)0.0400 (15)0.0311 (13)0.0001 (10)0.0038 (10)0.0017 (11)
C90.0173 (10)0.0192 (10)0.0276 (11)0.0019 (8)0.0028 (8)0.0001 (9)
C100.0151 (9)0.0192 (10)0.0266 (11)0.0001 (8)0.0022 (8)0.0030 (9)
C110.0204 (10)0.0192 (11)0.0336 (13)0.0017 (8)0.0027 (9)0.0014 (9)
C120.0197 (10)0.0172 (10)0.0292 (12)0.0029 (8)0.0038 (9)0.0011 (8)
C130.0265 (11)0.0215 (11)0.0300 (12)0.0035 (9)0.0049 (9)0.0011 (9)
C140.0243 (11)0.0170 (11)0.0296 (12)0.0009 (8)0.0038 (9)0.0020 (9)
C150.0367 (14)0.0267 (12)0.0312 (13)0.0018 (11)0.0080 (10)0.0028 (10)
C160.0542 (19)0.0377 (16)0.0263 (13)0.0017 (13)0.0012 (12)0.0041 (12)
C170.0484 (17)0.0380 (16)0.0381 (15)0.0011 (14)0.0087 (13)0.0143 (13)
C180.0311 (13)0.0295 (14)0.0477 (17)0.0020 (11)0.0037 (12)0.0063 (12)
C190.0272 (11)0.0194 (11)0.0347 (13)0.0022 (9)0.0046 (10)0.0022 (10)
C200.0191 (10)0.0212 (10)0.0234 (11)0.0023 (8)0.0012 (8)0.0019 (8)
O1D0.0433 (12)0.0462 (13)0.0455 (12)0.0077 (11)0.0076 (10)0.0020 (11)
N1D0.0350 (12)0.0415 (13)0.0339 (12)0.0042 (11)0.0012 (10)0.0027 (11)
C1D0.0428 (16)0.0280 (13)0.0403 (16)0.0007 (11)0.0014 (13)0.0035 (12)
C2D0.0373 (16)0.0400 (18)0.075 (3)0.0035 (13)0.0049 (16)0.0045 (17)
C3D0.046 (2)0.145 (6)0.086 (3)0.009 (3)0.013 (2)0.074 (4)
Geometric parameters (Å, º) top
O1—C91.247 (3)C10—C111.545 (3)
O2—C61.363 (4)C10—H1011.0000
O2—H41.04 (5)C11—C121.497 (3)
O3—C201.234 (3)C11—H1110.9900
N1—C201.337 (3)C11—H1120.9900
N1—C11.453 (3)C12—C131.368 (4)
N1—H10.96 (3)C12—C141.437 (4)
N2—C91.333 (3)C13—H1310.9500
N2—C101.456 (3)C14—C151.401 (4)
N2—H20.87 (3)C14—C191.418 (3)
N3—C191.369 (4)C15—C161.389 (4)
N3—C131.371 (3)C15—H1510.9500
N3—H30.81 (4)C16—C171.399 (5)
C1—C91.512 (3)C16—H1610.9500
C1—C21.546 (4)C17—C181.378 (5)
C1—H111.0000C17—H1710.9500
C2—C31.513 (4)C18—C191.400 (4)
C2—H210.9900C18—H1810.9500
C2—H220.9900O1D—C1D1.231 (4)
C3—C41.389 (4)N1D—C1D1.324 (4)
C3—C81.397 (4)N1D—C3D1.445 (5)
C4—C51.391 (4)N1D—C2D1.446 (4)
C4—H410.9500C1D—H1D1.03 (4)
C5—C61.394 (4)C2D—H21D0.9800
C5—H510.9500C2D—H22D0.9800
C6—C71.388 (4)C2D—H23D0.9800
C7—C81.397 (4)C3D—H31D0.9800
C7—H710.9500C3D—H32D0.9800
C8—H810.9500C3D—H33D0.9800
C10—C201.520 (3)
C6—O2—H4108 (3)C12—C11—H111108.9
C20—N1—C1126.1 (2)C10—C11—H111108.9
C20—N1—H1110 (2)C12—C11—H112108.9
C1—N1—H1120 (2)C10—C11—H112108.9
C9—N2—C10126.4 (2)H111—C11—H112107.7
C9—N2—H2112 (2)C13—C12—C14106.2 (2)
C10—N2—H2121 (2)C13—C12—C11125.6 (2)
C19—N3—C13108.7 (2)C14—C12—C11128.2 (2)
C19—N3—H3122 (3)C12—C13—N3110.6 (2)
C13—N3—H3129 (3)C12—C13—H131124.7
N1—C1—C9113.6 (2)N3—C13—H131124.7
N1—C1—C2111.3 (2)C15—C14—C19119.0 (2)
C9—C1—C2110.1 (2)C15—C14—C12134.3 (2)
N1—C1—H11107.2C19—C14—C12106.7 (2)
C9—C1—H11107.2C16—C15—C14118.7 (3)
C2—C1—H11107.2C16—C15—H151120.6
C3—C2—C1113.7 (2)C14—C15—H151120.6
C3—C2—H21108.8C15—C16—C17121.3 (3)
C1—C2—H21108.8C15—C16—H161119.3
C3—C2—H22108.8C17—C16—H161119.3
C1—C2—H22108.8C18—C17—C16121.2 (3)
H21—C2—H22107.7C18—C17—H171119.4
C4—C3—C8117.9 (3)C16—C17—H171119.4
C4—C3—C2121.6 (2)C17—C18—C19117.8 (3)
C8—C3—C2120.5 (2)C17—C18—H181121.1
C3—C4—C5121.8 (3)C19—C18—H181121.1
C3—C4—H41119.1N3—C19—C18130.3 (3)
C5—C4—H41119.1N3—C19—C14107.9 (2)
C4—C5—C6119.7 (3)C18—C19—C14121.8 (3)
C4—C5—H51120.1O3—C20—N1122.7 (2)
C6—C5—H51120.1O3—C20—C10118.4 (2)
O2—C6—C7117.7 (3)N1—C20—C10118.9 (2)
O2—C6—C5123.0 (3)C1D—N1D—C3D120.3 (3)
C7—C6—C5119.4 (3)C1D—N1D—C2D121.5 (3)
C6—C7—C8120.3 (3)C3D—N1D—C2D117.3 (3)
C6—C7—H71119.9O1D—C1D—N1D124.7 (3)
C8—C7—H71119.9O1D—C1D—H1D123 (2)
C7—C8—C3120.9 (3)N1D—C1D—H1D112 (2)
C7—C8—H81119.6N1D—C2D—H21D109.5
C3—C8—H81119.6N1D—C2D—H22D109.5
O1—C9—N2122.6 (2)H21D—C2D—H22D109.5
O1—C9—C1118.1 (2)N1D—C2D—H23D109.5
N2—C9—C1119.3 (2)H21D—C2D—H23D109.5
N2—C10—C20113.8 (2)H22D—C2D—H23D109.5
N2—C10—C11111.9 (2)N1D—C3D—H31D109.5
C20—C10—C11108.22 (19)N1D—C3D—H32D109.5
N2—C10—H101107.5H31D—C3D—H32D109.5
C20—C10—H101107.5N1D—C3D—H33D109.5
C11—C10—H101107.5H31D—C3D—H33D109.5
C12—C11—C10113.42 (19)H32D—C3D—H33D109.5
N1—C1—C2—C362.3 (3)C14—C12—C13—N30.2 (3)
C1—C2—C3—C497.5 (3)C11—C12—C13—N3178.3 (2)
N2—C10—C11—C1255.4 (3)C19—N3—C13—C120.7 (3)
C10—C11—C12—C13109.8 (3)C13—C12—C14—C15179.9 (3)
C20—N1—C1—C916.1 (4)C11—C12—C14—C152.1 (4)
C20—N1—C1—C2108.9 (3)C13—C12—C14—C190.4 (3)
C9—C1—C2—C364.6 (3)C11—C12—C14—C19177.6 (2)
C1—C2—C3—C882.1 (3)C19—C14—C15—C162.7 (4)
C8—C3—C4—C50.1 (4)C12—C14—C15—C16177.0 (3)
C2—C3—C4—C5179.7 (2)C14—C15—C16—C171.1 (4)
C3—C4—C5—C61.2 (4)C15—C16—C17—C180.8 (5)
C4—C5—C6—O2178.6 (3)C16—C17—C18—C190.8 (5)
C4—C5—C6—C71.2 (4)C13—N3—C19—C18176.7 (3)
O2—C6—C7—C8179.7 (3)C13—N3—C19—C141.0 (3)
C5—C6—C7—C80.1 (4)C17—C18—C19—N3178.3 (3)
C6—C7—C8—C31.0 (4)C17—C18—C19—C140.9 (4)
C4—C3—C8—C71.0 (4)C15—C14—C19—N3179.4 (2)
C2—C3—C8—C7178.6 (3)C12—C14—C19—N30.9 (3)
C10—N2—C9—O1178.7 (2)C15—C14—C19—C182.7 (4)
C10—N2—C9—C10.4 (4)C12—C14—C19—C18177.1 (2)
N1—C1—C9—O1170.0 (2)C1—N1—C20—O3171.3 (2)
C2—C1—C9—O164.4 (3)C1—N1—C20—C109.2 (4)
N1—C1—C9—N210.8 (3)N2—C10—C20—O3176.5 (2)
C2—C1—C9—N2114.7 (2)C11—C10—C20—O358.4 (3)
C9—N2—C10—C207.7 (3)N2—C10—C20—N13.0 (3)
C9—N2—C10—C11115.4 (3)C11—C10—C20—N1122.1 (2)
C20—C10—C11—C12178.4 (2)C3D—N1D—C1D—O1D5.3 (6)
C10—C11—C12—C1467.9 (3)C2D—N1D—C1D—O1D174.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.96 (3)1.94 (3)2.902 (3)174 (3)
N2—H2···O3ii0.87 (3)2.01 (3)2.884 (3)178 (3)
N3—H3···O1iii0.81 (4)2.16 (4)2.851 (3)144 (3)
O2—H4···O1D1.04 (5)1.59 (5)2.606 (3)163 (4)
C1D—H1D···O2ii1.03 (4)2.89 (4)3.862 (4)158
C2D—H21D···O1Dii0.982.683.387 (4)129
C2D—H21D···O2ii0.982.703.671 (4)171
C2D—H22D···C15iii0.982.663.602 (4)163
C3D—H32D···C3iv0.982.803.660 (4)147
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1/2, z+1; (iv) x+1, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC20H19N3O3·C3H7NO
Mr422.48
Crystal system, space groupMonoclinic, P21
Temperature (K)105
a, b, c (Å)6.1923 (2), 15.3873 (5), 11.3780 (3)
β (°) 96.661 (1)
V3)1076.81 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.80 × 0.65 × 0.20
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.800, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
9514, 2786, 2454
Rint0.038
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.15
No. of reflections2786
No. of parameters297
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2001), SHELXS (Sheldrick, 2008), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.96 (3)1.94 (3)2.902 (3)174 (3)
N2—H2···O3ii0.87 (3)2.01 (3)2.884 (3)178 (3)
N3—H3···O1iii0.81 (4)2.16 (4)2.851 (3)144 (3)
O2—H4···O1D1.04 (5)1.59 (5)2.606 (3)163 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y+1/2, z+1.
 

Acknowledgements

The purchase of the diffractometer was made possible through support from the Research Council of Norway (NFR).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Version 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGörbitz, C. H. (1987). Acta Chem. Scand. B, 41, 83–86.  Google Scholar
First citationGörbitz, C. H. & Hartviksen, L. M. (2006). Acta Cryst. E62, o2358–o2360.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGörbitz, C. H. & Hersleth, H.-P. (2000). Acta Cryst. B56, 1094–1102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrant, G. D., Hunt, A. L., Milne, P. J., Roos, H. M. & Joubert, J. A. (1999). J. Chem. Crystallogr. 29, 435–447.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, C.-F. & Webb, L. E. (1973). J. Am. Chem. Soc. 95, 6803–6811.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationLuo, T.-J. M. & Palmore, G. T. R. (2002). Cryst. Growth Des. 2, 337–350.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorris, A. J., Geddes, A. J. & Sheldrick, B. (1974). Cryst. Struct. Commun. 3, 345–349.  CAS Google Scholar
First citationRazak, I. A., Shanmuga Sundara Raj, S., Fun, H.-K., Chen, Z.-F., Zhang, J., Xiong, R.-G. & You, X.-Z. (2000). Acta Cryst. C56, e341–e342.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuguna, K., Ramakumar, S. & Kopple, K. D. (1984). Acta Cryst. C40, 2053–2056.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds