organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1,2-Bis(3-bromo-4-methyl­phen­yl)ethene

aDepartment of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada T1K 3M4
*Correspondence e-mail: boere@uleth.ca

(Received 15 December 2007; accepted 19 December 2007; online 4 January 2008)

In the structure of the title compound, C16H14Br2, the central C=C bond length is 1.329 (4) Å and the two benzene rings are approximately coplanar with the double bond, with twist angles of 7.5 (2) and 13.6 (2)°.

Related literature

For related literature, see: Daik et al. (1998[Daik, R., Feast, W. J., Batsanov, A. S. & Howard, J. A. K. (1998). New J. Chem. (Nouv. J. Chim.) 22, 1047-1049.]); Harada & Ogawa et al. (2004[Harada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539-3544.]); Ogawa et al. (1992[Ogawa, K., Sano, T., Yoshimura, S., Takeuchi, Y. & Toriumi, K. (1992). J. Am. Chem. Soc. 114, 1041-1051.]); Mallory et al. (2001[Mallory, F. B., Butler, K. E., Bérubé, A., Luzik, E. D. Jr, Mallory, C. W., Brondyke, E. J., Hiremath, R., Ngo, P. & Carrol, P. J. (2001). Tetrahedron, 57, 3715-3724.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14Br2

  • Mr = 366.09

  • Monoclinic, P 21 /c

  • a = 6.3301 (4) Å

  • b = 7.6499 (5) Å

  • c = 28.164 (2) Å

  • β = 91.208 (1)°

  • V = 1363.55 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.92 mm−1

  • T = 173 (2) K

  • 0.27 × 0.19 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.303, Tmax = 0.578

  • 14025 measured reflections

  • 2793 independent reflections

  • 2393 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.054

  • S = 1.08

  • 2793 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2006[Bruker (2006). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2003[Sheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. J. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The title compound, (I) (Fig. 1), was prepared by a Ti catalyzed McMurray coupling (Mallory et al., 2001) with 99% E selectivity. The almost-planar molecules pack (Fig. 2) in slipped stacks with T-contacts typical for aromatic molecules. The only other isomeric stilbene for which a structure has been reported is Z-1,2-bis-(4-bromophenyl)-1,2-dimethylethene (Daik et al., 1998) for which C=C is 1.330 (10) and 1.344 (10)Å (for two independent molecules in an asymmetric unit). Unlike in I, the phenyl rings in this compound are twisted almost orthogonal to the double bond, perhaps because of steric interactions between methyl and phenyl groups. More structurally comparable alkenes include E-1,2-bis-(2,4-dimethylphenyl)ethene and E-1,2-bis-(2,4,5-trimethylphenyl)ethene (Ogawa et al., 1992) for which C=C are 1.320 (4) and 1.327 (3) Å, respectively. A detailed study of geometric distortions in trans-stilbene has recently been published (Harada & Ogawa, 2004).

Related literature top

For related literature, see: Daik et al. (1998); Harada & Ogawa et al. (2004); Ogawa et al. (1992); Mallory et al. (2001).

Experimental top

At 273 K under N2, 0.18 ml (1.6 mmol) of TiCl4 was stirred with 0.18 g (2.8 mmol) Zn dust in 25 ml of dry THF. To this mixture was added 0.25 g (1.3 mmol) of 3-bromo-4-methylbenzaldehyde and refluxed for 4 h before being quenched with 25 ml of 1.0 M HCl. After extracting with hexanes the organic phase was washed with brine solution and dried over MgSO4. Removal of solvent resulted in a white powder that was recrystallized from ethyl acetate to give 0.11 g (yield = 58%) of the desired product as colorless crystals.

Refinement top

The H-atoms were included in the refinements at geometrically idealized positions with C—H distances 0.95 and 0.98 Å for non-methyl and methyl type H-atoms, respectively; Uiso values were 1.2Ueq of the carrier atom or 1.5Ueq for the non-methyl and methyl groups, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXTL (Sheldrick, 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) plotted with displacement ellipsoids at 50% probability level.
[Figure 2] Fig. 2. Unit-cell contents of (I) showing the herringbone arrangement of slipped-stacks with T-contacts between registers.
(E)-1,2-Bis(3-bromo-4-methylphenyl)ethene top
Crystal data top
C16H14Br2Z = 4
Mr = 366.09F(000) = 720
Monoclinic, P21/cDx = 1.783 Mg m3
Hall symbol: -P2ybcMelting point: 424.75 K
a = 6.3301 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6499 (5) ŵ = 5.92 mm1
c = 28.164 (2) ÅT = 173 K
β = 91.208 (1)°Prism, colourless
V = 1363.55 (16) Å30.27 × 0.19 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2793 independent reflections
Radiation source: fine-focus sealed tube, Bruker D82393 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 26.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 77
Tmin = 0.303, Tmax = 0.578k = 99
14025 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0179P)2 + 1.6865P]
where P = (Fo2 + 2Fc2)/3
2793 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C16H14Br2V = 1363.55 (16) Å3
Mr = 366.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.3301 (4) ŵ = 5.92 mm1
b = 7.6499 (5) ÅT = 173 K
c = 28.164 (2) Å0.27 × 0.19 × 0.10 mm
β = 91.208 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2793 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2393 reflections with I > 2σ(I)
Tmin = 0.303, Tmax = 0.578Rint = 0.027
14025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.09Δρmax = 0.43 e Å3
2793 reflectionsΔρmin = 0.32 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.08255 (4)0.93057 (4)0.562520 (9)0.02689 (8)
C10.0145 (4)0.8529 (3)0.62456 (8)0.0197 (5)
C20.1806 (4)0.7739 (3)0.63183 (9)0.0217 (5)
C30.2158 (4)0.7151 (3)0.67779 (10)0.0241 (6)
H30.34760.66200.68440.029*
C40.0673 (4)0.7309 (3)0.71400 (9)0.0237 (6)
H40.09720.68670.74460.028*
C50.1280 (4)0.8119 (3)0.70600 (9)0.0213 (6)
C60.1650 (4)0.8749 (3)0.66049 (9)0.0212 (5)
H60.29390.93320.65410.025*
C70.2912 (4)0.8315 (4)0.74343 (9)0.0241 (6)
H70.41010.90150.73610.029*
C80.3452 (4)0.7506 (4)0.59307 (10)0.0282 (6)
H8A0.28720.67920.56760.034*
H8B0.38650.86530.58040.034*
H8C0.46930.69220.60600.034*
Br20.44176 (4)0.73105 (4)0.971236 (9)0.02871 (8)
C110.5297 (4)0.7870 (3)0.90906 (9)0.0205 (5)
C120.7254 (4)0.8675 (3)0.90274 (9)0.0218 (5)
C130.7768 (4)0.9044 (3)0.85612 (10)0.0243 (6)
H130.91020.95580.85010.029*
C140.6420 (4)0.8695 (4)0.81816 (9)0.0253 (6)
H140.68340.89910.78690.030*
C150.4454 (4)0.7913 (3)0.82503 (9)0.0218 (6)
C160.3931 (4)0.7476 (3)0.87155 (9)0.0224 (6)
H160.26290.69060.87740.027*
C170.2894 (4)0.7613 (4)0.78658 (9)0.0250 (6)
H170.17610.68420.79320.030*
C180.8708 (4)0.9153 (4)0.94351 (10)0.0279 (6)
H18A0.80141.00110.96380.033*
H18B1.00110.96560.93130.033*
H18C0.90470.81040.96210.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02994 (15)0.03138 (16)0.01930 (14)0.00196 (12)0.00088 (10)0.00574 (11)
C10.0243 (14)0.0192 (13)0.0157 (12)0.0034 (11)0.0018 (10)0.0006 (10)
C20.0207 (13)0.0217 (14)0.0226 (13)0.0025 (11)0.0021 (10)0.0016 (11)
C30.0214 (13)0.0219 (14)0.0291 (15)0.0000 (11)0.0031 (11)0.0012 (11)
C40.0295 (15)0.0221 (14)0.0196 (13)0.0031 (11)0.0033 (11)0.0001 (11)
C50.0252 (14)0.0196 (13)0.0190 (13)0.0025 (11)0.0001 (11)0.0042 (10)
C60.0193 (13)0.0224 (14)0.0218 (13)0.0019 (11)0.0014 (10)0.0017 (11)
C70.0253 (14)0.0256 (15)0.0213 (14)0.0010 (11)0.0001 (11)0.0028 (11)
C80.0247 (14)0.0314 (16)0.0283 (15)0.0022 (12)0.0052 (11)0.0001 (12)
Br20.03120 (16)0.03709 (17)0.01781 (14)0.00261 (12)0.00030 (11)0.00279 (12)
C110.0259 (14)0.0184 (13)0.0172 (13)0.0044 (11)0.0003 (10)0.0014 (10)
C120.0221 (13)0.0169 (13)0.0262 (14)0.0042 (10)0.0029 (11)0.0014 (11)
C130.0192 (13)0.0218 (14)0.0321 (15)0.0008 (11)0.0027 (11)0.0016 (11)
C140.0298 (15)0.0249 (14)0.0213 (14)0.0026 (12)0.0030 (11)0.0018 (11)
C150.0251 (14)0.0185 (13)0.0217 (13)0.0028 (11)0.0017 (11)0.0011 (10)
C160.0216 (13)0.0216 (14)0.0240 (14)0.0008 (11)0.0008 (10)0.0009 (11)
C170.0287 (15)0.0243 (14)0.0218 (14)0.0022 (12)0.0013 (11)0.0023 (11)
C180.0272 (15)0.0248 (15)0.0314 (15)0.0020 (12)0.0052 (12)0.0019 (12)
Geometric parameters (Å, º) top
Br1—C11.904 (2)Br2—C111.898 (3)
C1—C61.386 (3)C11—C161.385 (4)
C1—C21.393 (4)C11—C121.398 (4)
C2—C31.393 (4)C12—C131.389 (4)
C2—C81.504 (4)C12—C181.502 (4)
C3—C41.378 (4)C13—C141.380 (4)
C3—H30.9500C13—H130.9500
C4—C51.405 (4)C14—C151.398 (4)
C4—H40.9500C14—H140.9500
C5—C61.394 (4)C15—C161.399 (4)
C5—C71.468 (4)C15—C171.468 (4)
C6—H60.9500C16—H160.9500
C7—C171.329 (4)C17—H170.9500
C7—H70.9500C18—H18A0.9800
C8—H8A0.9800C18—H18B0.9800
C8—H8B0.9800C18—H18C0.9800
C8—H8C0.9800
C6—C1—C2122.9 (2)C16—C11—C12122.7 (2)
C6—C1—Br1117.82 (19)C16—C11—Br2117.7 (2)
C2—C1—Br1119.25 (19)C12—C11—Br2119.67 (19)
C3—C2—C1115.9 (2)C13—C12—C11115.9 (2)
C3—C2—C8120.9 (2)C13—C12—C18121.4 (2)
C1—C2—C8123.2 (2)C11—C12—C18122.7 (2)
C4—C3—C2122.6 (3)C14—C13—C12122.7 (3)
C4—C3—H3118.7C14—C13—H13118.7
C2—C3—H3118.7C12—C13—H13118.7
C3—C4—C5120.6 (2)C13—C14—C15120.9 (2)
C3—C4—H4119.7C13—C14—H14119.6
C5—C4—H4119.7C15—C14—H14119.6
C6—C5—C4117.7 (2)C14—C15—C16117.5 (2)
C6—C5—C7119.7 (2)C14—C15—C17123.5 (2)
C4—C5—C7122.6 (2)C16—C15—C17119.0 (2)
C1—C6—C5120.2 (2)C11—C16—C15120.4 (2)
C1—C6—H6119.9C11—C16—H16119.8
C5—C6—H6119.9C15—C16—H16119.8
C17—C7—C5126.6 (3)C7—C17—C15126.4 (3)
C17—C7—H7116.7C7—C17—H17116.8
C5—C7—H7116.7C15—C17—H17116.8
C2—C8—H8A109.5C12—C18—H18A109.5
C2—C8—H8B109.5C12—C18—H18B109.5
H8A—C8—H8B109.5H18A—C18—H18B109.5
C2—C8—H8C109.5C12—C18—H18C109.5
H8A—C8—H8C109.5H18A—C18—H18C109.5
H8B—C8—H8C109.5H18B—C18—H18C109.5
Br2—C11—C12—C181.0 (3)C6—C5—C7—C17171.7 (3)
Br1—C1—C2—C81.7 (4)C16—C15—C17—C7162.7 (3)
C4—C5—C7—C178.2 (4)C5—C7—C17—C15175.4 (2)
C14—C15—C17—C714.1 (4)

Experimental details

Crystal data
Chemical formulaC16H14Br2
Mr366.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.3301 (4), 7.6499 (5), 28.164 (2)
β (°) 91.208 (1)
V3)1363.55 (16)
Z4
Radiation typeMo Kα
µ (mm1)5.92
Crystal size (mm)0.27 × 0.19 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.303, 0.578
No. of measured, independent and
observed [I > 2σ(I)] reflections
14025, 2793, 2393
Rint0.027
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.054, 1.09
No. of reflections2793
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.32

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2006), SHELXS97 (Sheldrick, 1990), SHELXTL (Sheldrick, 2003), Mercury (Macrae et al., 2006), publCIF (Westrip, 2008).

 

Acknowledgements

Support provided by Dr Peter Dibble and the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged. The diffractometer was purchased with the help of NSERC and the University of Lethbridge.

References

First citationBruker (2006). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDaik, R., Feast, W. J., Batsanov, A. S. & Howard, J. A. K. (1998). New J. Chem. (Nouv. J. Chim.) 22, 1047–1049.  CrossRef CAS Google Scholar
First citationHarada, J. & Ogawa, K. (2004). J. Am. Chem. Soc. 126, 3539–3544.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMallory, F. B., Butler, K. E., Bérubé, A., Luzik, E. D. Jr, Mallory, C. W., Brondyke, E. J., Hiremath, R., Ngo, P. & Carrol, P. J. (2001). Tetrahedron, 57, 3715–3724.  Web of Science CSD CrossRef CAS Google Scholar
First citationOgawa, K., Sano, T., Yoshimura, S., Takeuchi, Y. & Toriumi, K. (1992). J. Am. Chem. Soc. 114, 1041–1051.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationWestrip, S. J. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds