metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m317-m318
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: catena-Poly[[(1,10-phenanthroline-κ2N,N′)praseodymium(III)]-di-μ-phen­oxy­acetato-κ4O:O′-[(1,10-phenanthroline-κ2N,N′)praseodymium(III)]-di-μ-phen­oxy­acetato-κ4O:O′-di-μ-phen­oxy­acetato-κ3O,O′:O;κ3O:O,O′]

aCollege of Chemistry and Chemical Engineering, Provincial Key Laboratory of Coordination Chemistry, Jinggangshan University, Jian 343009, People's Republic of China, and bInstitute of Applied Materials, Jiangxi University of Finance and Economics, Nanchang 330032, People's Republic of China
*Correspondence e-mail: huazhong06@126.com

(Received 15 May 2007; accepted 28 December 2007; online 9 January 2008)

The title complex, [Pr2(C8H7O3)6(C12H8N2)2]n, which has an inversion centre midway between the two PrIII atoms of the structural unit, forms a one-dimensional polymer bridged alternately by either two bidentate, or two bidentate and two terdentate, phenoxy­acetate carboxyl­ate groups. Each PrIII atom is thus nine-coordinated by two N atoms of a 1,10-phenanthroline ligand and seven O atoms from six phenoxy­acetate ligands. The coordination geometry at the PrIII atom is distorted tricapped trigonal prismatic. One phenyl ring is disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Daiguebonne et al. (2000[Daiguebonne, C., Guillou, O. & Boubekeur, K. (2000). Inorg. Chim. Acta, 304, 161-169. ]); Farrugia et al. (2000[Farrugia, L. J., Peacock, R. D. & Stewart, B. (2000). Acta Cryst. C56, e435-e436.]); Kay et al. (1972[Kay, J., Moore, J. W. & Glick, M. D. (1972). Inorg. Chem. 11, 2818-2827.]); Ma et al. (1999[Ma, L., Evans, O. R., Foxman, B. M. & Lin, W. B. (1999). Inorg. Chem. 38, 5837-5840.]); Mao et al. (1998[Mao, J. G., Zhang, H. J., Ni, J. Z., Wang, S. B. & Mak, T. C. W. (1998). J. Chem. Crystallogr. 17, 3999-4009.]); Starynowicz (1991[Starynowicz, P. (1991). Acta Cryst. C47, 294-297.], 1993[Starynowicz, P. (1993). Acta Cryst. C49, 1895-1897.]); Tsukube & Shinoda (2002[Tsukube, H. & Shinoda, S. (2002). Chem. Rev. 102, 2389-2404.]); Zhang et al. (2005[Zhang, Z.-H., Shen, Z.-L., Okamura, T.-A., Zhu, H.-F., Sun, W.-Y. & Ueyama, N. (2005). Cryst. Growth Des. 5, 1191-1197.]); Zeng et al. (2000[Zeng, X.-R., Xu, Y., Xiong, R.-G., Zhang, L.-J. & You, X.-Z. (2000). Acta Cryst. C56, e325-e326.]); Zhong et al. (2007[Zhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007). Acta Cryst. E63, m2508-m2509.]).

[Scheme 1]

Experimental

Crystal data
  • [Pr2(C8H7O3)6(C12H8N2)2]

  • Mr = 1549.04

  • Monoclinic, P 21 /n

  • a = 20.204 (4) Å

  • b = 8.499 (4) Å

  • c = 20.799 (3) Å

  • β = 107.198 (6)°

  • V = 3411.8 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.49 mm−1

  • T = 273 (2) K

  • 0.33 × 0.12 × 0.08 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.642, Tmax = 0.890

  • 27763 measured reflections

  • 7712 independent reflections

  • 5037 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.097

  • S = 0.90

  • 7712 reflections

  • 452 parameters

  • 144 restraints

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pr1—O1 2.489 (2)
Pr1—O2i 2.535 (2)
Pr1—O4 2.565 (2)
Pr1—O5 2.817 (3)
Pr1—O5i 2.449 (2)
Pr1—O7 2.409 (3)
Pr1—O8ii 2.545 (3)
Pr1—N1 2.753 (3)
Pr1—N2 2.720 (3)
O1—Pr1—O4 73.62 (8)
O1—Pr1—O5 65.11 (8)
O1—Pr1—O7 145.88 (9)
O4—Pr1—O5 48.17 (8)
O4—Pr1—O7 138.84 (9)
O5—Pr1—O7 139.57 (8)
O1—Pr1—N1 127.55 (9)
O4—Pr1—N1 63.48 (9)
O5—Pr1—N1 102.34 (9)
O7—Pr1—N1 77.09 (9)
O1—Pr1—N2 81.11 (9)
O4—Pr1—N2 74.08 (9)
O5—Pr1—N2 118.22 (8)
O7—Pr1—N2 96.74 (9)
N1—Pr1—N2 59.78 (10)
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+2, -y+1, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.93 2.46 3.147 (5) 130
C10—H10⋯O4iii 0.93 2.34 3.211 (5) 156
C12—H12⋯O8ii 0.93 2.47 3.063 (5) 122
C22—H22B⋯O7iv 0.97 2.41 3.353 (5) 166
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+2, -y+1, -z+2; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y-1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Siemens, 1996[Siemens (1996). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, there has been great interest in the synthesis of metal organic frameworks (MOFs) with organic ligands and rare earth metals because of their novel structures, fascinating properties and important roles in special materials with potential optical, electronic, magnetic and biological applications (Daiguebonne et al., 2000; Farrugia et al., 2000; Tsukube & Shinoda, 2002; Zhang et al., 2005). These compounds are usually prepared by the reaction of rare-earth metal ions with bi- or multidentate ligands (Starynowicz, 1991, 1993; Kay et al., 1972; Ma et al., 1999; Zeng et al., 2000; Mao et al., 1998). We report herein the crystal structure of the title compound, (I).

In the molecular unit of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987). The PrIII metal centres are bridged alternatively either by two bidentate, or by two terdentate and two bidentate, phenoxyacetato carboxylate groups with an inversion centre between them. Each Pr atom is nine-coordinated by two N atoms of the 1,10-phenanthroline ligand and seven O atoms from six phenoxyacetate ligands (Table 1), and the coordination geometry at the Pr atom forms a tricapped trigonal prism. The Pr—O bond lengths are in the range 2.409 (3) to 2.817 (3) Å. The Pr—N bond lengths are in the range 2.720 (3) to 2.753 (3) Å. Hydrogen bonds between C—H groups and O atoms of neighbouring phenoxyacetate ligands, with C···O distances of 3.063 (5) to 3.353 (5) Å, generate a layered hydrogen-bonded network (Table 2).

Related literature top

For related literature, see: Allen et al. (1987); Daiguebonne et al. (2000); Farrugia et al. (2000); Kay et al. (1972); Ma et al. (1999); Mao et al. (1998); Starynowicz (1991, 1993); Tsukube & Shinoda (2002); Zhang et al. (2005); Zeng et al. (2000); Zhong et al. (2007).

Experimental top

The title compound was synthesized using the hydrothermal method in a 23 ml Teflon-lined Parr bomb, which was then sealed. Praseodymium(III) chloride hexahydrate (71.1 mg, 0.2 mmol), 1,10-phenanthroline (39.6 mg, 0.2 mmol), phenoxyacetic acid (91.3 mg, 0.6 mmol), sodium hydroxide (24 mg, 0.6 mmol) and distilled water (4 g) were placed into the bomb and sealed. The bomb was then heated under autogenous pressure for 7 d at 413 K and allowed to cool at room temperature for 24 h. Upon opening the bomb, a clear colorless solution was decanted from small green crystals. These crystals were washed with distilled water followed by ethanol, and allowed to air-dry at room temperature (yield: 72.7 mg, 36%).

Refinement top

H atoms were positioned geometrically, with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The phenyl ring defined by C23–C28 shows and in-plane disorder of ca 0.4:0.6, and the two phenyl fragments (A and B) were refined as restrained rigid groups, allowing the population to vary. The hydrogen atoms on the disordered phenyl ring were not placed, and as a result of the disorder, slightly larger thermal parameters were observed on the periphery of the molecule.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL (Siemens, 1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level [for symmetry codes, see Tabel 1]. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. View along the b axis showing one dimensional polymeric structure, linked by H-bonding.
catena-Poly[[(1,10-phenanthroline-κ2N,N')praseodymium(III)]- di-µ-phenoxyacetato-κ4O:O'-[(1,10-phenanthroline- κ2N,N')praseodymium(III)]-di-µ-phenoxyacetato-κ4O:O'-di-µ- phenoxyacetato-κ3O,O':O;κ3O:O,O'] top
Crystal data top
[Pr2(C8H7O3)6(C12H8N2)2]F(000) = 1560
Mr = 1549.04Dx = 1.508 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9075 reflections
a = 20.204 (4) Åθ = 2.4–26.9°
b = 8.499 (4) ŵ = 1.49 mm1
c = 20.799 (3) ÅT = 273 K
β = 107.198 (6)°Needle, green
V = 3411.8 (17) Å30.33 × 0.12 × 0.08 mm
Z = 2
Data collection top
Bruker APEXII area-detector
diffractometer
7712 independent reflections
Radiation source: fine-focus sealed tube5037 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2625
Tmin = 0.642, Tmax = 0.891k = 1011
27763 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.9707P]
where P = (Fo2 + 2Fc2)/3
7712 reflections(Δ/σ)max = 0.002
452 parametersΔρmax = 1.04 e Å3
144 restraintsΔρmin = 0.64 e Å3
Crystal data top
[Pr2(C8H7O3)6(C12H8N2)2]V = 3411.8 (17) Å3
Mr = 1549.04Z = 2
Monoclinic, P21/nMo Kα radiation
a = 20.204 (4) ŵ = 1.49 mm1
b = 8.499 (4) ÅT = 273 K
c = 20.799 (3) Å0.33 × 0.12 × 0.08 mm
β = 107.198 (6)°
Data collection top
Bruker APEXII area-detector
diffractometer
7712 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5037 reflections with I > 2σ(I)
Tmin = 0.642, Tmax = 0.891Rint = 0.043
27763 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036144 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 0.90Δρmax = 1.04 e Å3
7712 reflectionsΔρmin = 0.64 e Å3
452 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pr10.931206 (10)0.19065 (2)0.964285 (9)0.03966 (8)
O10.97069 (13)0.0604 (3)0.87489 (11)0.0491 (6)
O21.06691 (13)0.0826 (3)0.92159 (12)0.0516 (6)
O31.11827 (15)0.0166 (4)0.82183 (14)0.0691 (8)
O40.84633 (12)0.0358 (3)0.91883 (12)0.0466 (6)
O50.94657 (13)0.1383 (3)0.97718 (12)0.0518 (7)
O60.78462 (16)0.3257 (3)0.89785 (16)0.0648 (8)
O70.94001 (13)0.4205 (3)1.03407 (12)0.0500 (6)
O81.00785 (15)0.6123 (3)1.09093 (12)0.0590 (7)
O90.98717 (16)0.5273 (3)1.20640 (13)0.0645 (8)
N10.79697 (17)0.2344 (4)0.96683 (16)0.0506 (8)
N20.83406 (18)0.3071 (3)0.85447 (15)0.0498 (8)
C10.7781 (2)0.1926 (5)1.0199 (2)0.0643 (12)
H10.81260.17071.05980.077*
C20.7089 (3)0.1797 (6)1.0195 (3)0.0840 (16)
H20.69780.14951.05800.101*
C30.6575 (3)0.2127 (7)0.9606 (4)0.0962 (19)
H30.61120.20430.95910.115*
C40.6746 (2)0.2581 (7)0.9041 (3)0.0772 (14)
C50.7458 (2)0.2679 (5)0.9084 (2)0.0541 (10)
C60.6231 (3)0.2967 (8)0.8409 (4)0.111 (2)
H60.57630.28790.83720.133*
C70.6424 (3)0.3448 (8)0.7880 (3)0.106 (2)
H70.60850.37270.74870.127*
C80.7134 (3)0.3547 (6)0.7899 (2)0.0727 (14)
C90.7660 (2)0.3102 (4)0.8506 (2)0.0536 (10)
C100.7358 (3)0.4037 (6)0.7367 (2)0.0878 (17)
H100.70360.43920.69750.105*
C110.8031 (3)0.4012 (6)0.7405 (2)0.0819 (15)
H110.81750.43310.70400.098*
C120.8524 (3)0.3492 (5)0.8009 (2)0.0644 (12)
H120.89890.34480.80280.077*
C131.0286 (2)0.0032 (4)0.87703 (17)0.0442 (9)
C141.0524 (2)0.0512 (5)0.81759 (19)0.0564 (10)
H14A1.01860.01700.77630.068*
H14B1.05570.16490.81630.068*
C151.1460 (2)0.0142 (6)0.7704 (2)0.0646 (12)
C161.2081 (3)0.0565 (7)0.7766 (3)0.0808 (14)
H161.22890.11790.81410.097*
C171.2403 (3)0.0368 (7)0.7268 (3)0.0955 (18)
H171.28270.08500.73090.115*
C181.2101 (4)0.0526 (7)0.6722 (3)0.104 (2)
H181.23180.06500.63880.124*
C191.1491 (4)0.1238 (8)0.6659 (3)0.109 (2)
H191.12910.18560.62820.130*
C201.1148 (3)0.1059 (7)0.7157 (3)0.0847 (16)
H201.07250.15480.71140.102*
C210.8840 (2)0.1509 (5)0.93913 (18)0.0457 (9)
C220.8576 (2)0.3140 (5)0.9189 (2)0.0573 (10)
H22A0.87500.34900.88250.069*
H22B0.87600.38420.95670.069*
C23A0.75531 (19)0.3041 (3)0.9521 (2)0.079 (6)0.384 (14)
C24A0.79664 (17)0.2697 (2)1.0169 (2)0.076 (5)0.384 (14)
C25A0.7671 (2)0.2571 (3)1.0691 (2)0.101 (6)0.384 (14)
C26A0.6962 (3)0.2790 (4)1.0566 (3)0.110 (6)0.384 (14)
C27A0.65490 (19)0.3133 (3)0.9918 (3)0.126 (7)0.384 (14)
C28A0.68444 (18)0.3259 (3)0.9396 (2)0.120 (6)0.384 (14)
C23B0.7508 (2)0.3175 (3)0.9425 (2)0.077 (4)0.616 (14)
C24B0.77565 (17)0.2805 (2)1.0105 (2)0.112 (4)0.616 (14)
C25B0.7302 (2)0.2706 (3)1.0492 (2)0.120 (4)0.616 (14)
C26B0.6599 (2)0.2977 (4)1.0198 (3)0.133 (5)0.616 (14)
C27B0.63499 (18)0.3347 (3)0.9518 (3)0.115 (4)0.616 (14)
C28B0.6804 (2)0.3446 (3)0.9132 (2)0.086 (3)0.616 (14)
C290.96861 (15)0.4991 (3)1.08649 (13)0.0453 (9)
C300.94968 (19)0.4431 (3)1.14756 (13)0.0583 (11)
H30A0.90040.45741.14020.070*
H30B0.95980.33161.15420.070*
C310.9746 (2)0.4891 (5)1.26544 (19)0.0558 (10)
C321.0143 (3)0.5695 (6)1.3220 (2)0.0749 (13)
H321.04740.64181.31810.090*
C331.0046 (3)0.5419 (7)1.3836 (2)0.0929 (17)
H331.03060.59691.42120.111*
C340.9565 (3)0.4332 (9)1.3897 (3)0.108 (2)
H340.94920.41531.43120.130*
C350.9196 (3)0.3522 (8)1.3342 (3)0.108 (2)
H350.88790.27651.33860.129*
C360.9279 (2)0.3792 (7)1.2721 (2)0.0743 (14)
H360.90190.32301.23480.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.04654 (13)0.03356 (12)0.03391 (11)0.00161 (9)0.00420 (8)0.00057 (9)
O10.0588 (16)0.0479 (16)0.0398 (14)0.0067 (13)0.0132 (12)0.0022 (12)
O20.0634 (16)0.0494 (16)0.0428 (14)0.0069 (14)0.0167 (12)0.0097 (12)
O30.0709 (19)0.085 (2)0.0591 (18)0.0162 (17)0.0304 (15)0.0209 (16)
O40.0480 (14)0.0350 (15)0.0484 (14)0.0008 (12)0.0015 (11)0.0027 (11)
O50.0480 (15)0.0524 (16)0.0462 (15)0.0032 (12)0.0003 (12)0.0071 (12)
O60.0616 (19)0.0474 (18)0.073 (2)0.0128 (14)0.0006 (15)0.0080 (15)
O70.0718 (17)0.0341 (14)0.0424 (14)0.0063 (13)0.0142 (12)0.0043 (11)
O80.087 (2)0.0515 (18)0.0383 (14)0.0250 (16)0.0177 (13)0.0031 (12)
O90.091 (2)0.0617 (19)0.0416 (15)0.0270 (16)0.0210 (14)0.0058 (13)
N10.0508 (19)0.0435 (19)0.0498 (19)0.0053 (15)0.0029 (15)0.0074 (15)
N20.065 (2)0.0375 (18)0.0373 (17)0.0016 (16)0.0006 (14)0.0005 (14)
C10.059 (3)0.075 (3)0.058 (3)0.008 (2)0.015 (2)0.002 (2)
C20.064 (3)0.111 (5)0.084 (4)0.003 (3)0.032 (3)0.011 (3)
C30.049 (3)0.109 (5)0.128 (5)0.002 (3)0.022 (3)0.018 (4)
C40.053 (3)0.088 (4)0.076 (4)0.007 (3)0.004 (2)0.016 (3)
C50.052 (2)0.039 (2)0.061 (3)0.0057 (18)0.0014 (19)0.0115 (18)
C60.060 (3)0.131 (6)0.114 (5)0.018 (3)0.017 (3)0.027 (5)
C70.080 (4)0.113 (5)0.087 (4)0.039 (4)0.034 (3)0.019 (4)
C80.077 (3)0.061 (3)0.056 (3)0.018 (2)0.017 (2)0.011 (2)
C90.060 (2)0.035 (2)0.048 (2)0.0049 (19)0.0111 (18)0.0053 (17)
C100.117 (5)0.071 (4)0.047 (3)0.018 (3)0.020 (3)0.000 (2)
C110.122 (5)0.070 (4)0.040 (2)0.001 (3)0.003 (3)0.009 (2)
C120.084 (3)0.051 (3)0.048 (2)0.003 (2)0.004 (2)0.0067 (19)
C130.058 (2)0.035 (2)0.038 (2)0.0060 (18)0.0116 (17)0.0025 (15)
C140.066 (3)0.056 (3)0.049 (2)0.006 (2)0.0199 (19)0.0123 (19)
C150.075 (3)0.067 (3)0.061 (3)0.006 (2)0.034 (2)0.002 (2)
C160.079 (3)0.098 (4)0.075 (3)0.001 (3)0.038 (3)0.002 (3)
C170.092 (4)0.100 (5)0.113 (5)0.002 (4)0.060 (4)0.006 (4)
C180.135 (5)0.087 (4)0.124 (5)0.015 (4)0.092 (5)0.007 (4)
C190.159 (6)0.101 (5)0.092 (4)0.008 (5)0.077 (4)0.026 (4)
C200.103 (4)0.088 (4)0.080 (3)0.010 (3)0.053 (3)0.024 (3)
C210.051 (2)0.050 (2)0.0325 (18)0.0054 (18)0.0066 (16)0.0032 (16)
C220.062 (3)0.045 (2)0.058 (3)0.002 (2)0.008 (2)0.0060 (19)
C23A0.090 (12)0.047 (10)0.126 (11)0.009 (9)0.071 (9)0.027 (9)
C24A0.116 (10)0.055 (9)0.086 (9)0.011 (7)0.073 (8)0.000 (7)
C25A0.118 (11)0.079 (10)0.127 (11)0.017 (8)0.069 (9)0.021 (9)
C26A0.109 (12)0.111 (11)0.140 (12)0.047 (9)0.082 (10)0.052 (9)
C27A0.103 (11)0.138 (13)0.168 (14)0.041 (10)0.087 (9)0.065 (11)
C28A0.102 (12)0.113 (12)0.167 (13)0.032 (10)0.074 (10)0.046 (10)
C23B0.083 (8)0.033 (6)0.107 (8)0.002 (5)0.016 (6)0.005 (6)
C24B0.145 (9)0.086 (8)0.109 (9)0.021 (7)0.044 (7)0.012 (7)
C25B0.144 (10)0.120 (9)0.117 (9)0.000 (8)0.070 (8)0.028 (7)
C26B0.145 (10)0.128 (10)0.140 (10)0.041 (9)0.063 (9)0.023 (8)
C27B0.123 (8)0.086 (7)0.141 (9)0.033 (6)0.047 (7)0.016 (7)
C28B0.079 (6)0.056 (6)0.133 (8)0.014 (5)0.046 (5)0.012 (5)
C290.061 (2)0.033 (2)0.040 (2)0.0035 (18)0.0133 (17)0.0007 (16)
C300.077 (3)0.055 (3)0.044 (2)0.020 (2)0.0193 (19)0.0057 (19)
C310.072 (3)0.056 (3)0.038 (2)0.003 (2)0.0146 (19)0.0016 (18)
C320.092 (3)0.077 (3)0.054 (3)0.019 (3)0.017 (2)0.009 (2)
C330.122 (5)0.108 (5)0.042 (3)0.021 (4)0.014 (3)0.009 (3)
C340.133 (5)0.146 (6)0.055 (3)0.031 (5)0.043 (3)0.009 (4)
C350.124 (5)0.141 (6)0.066 (4)0.059 (4)0.041 (3)0.003 (4)
C360.081 (3)0.091 (4)0.053 (3)0.033 (3)0.023 (2)0.003 (2)
Geometric parameters (Å, º) top
Pr1—O12.489 (2)C15—C201.370 (6)
Pr1—O2i2.535 (2)C16—C171.387 (7)
Pr1—O42.565 (2)C16—H160.9300
Pr1—O52.817 (3)C17—C181.352 (8)
Pr1—O5i2.449 (2)C17—H170.9300
Pr1—O72.409 (3)C18—C191.345 (8)
Pr1—O8ii2.545 (3)C18—H180.9300
Pr1—N12.753 (3)C19—C201.415 (7)
Pr1—N22.720 (3)C19—H190.9300
O1—C131.255 (4)C20—H200.9300
O2—C131.252 (4)C21—C221.500 (5)
O2—Pr1i2.535 (2)C22—H22A0.9700
O3—C151.372 (5)C22—H22B0.9700
O3—C141.429 (5)C23A—C24B1.1792
O4—C211.235 (4)C23A—C24A1.3900
O5—C211.282 (4)C23A—C28A1.3900
O5—Pr1i2.449 (2)C23A—C28B1.5294
O6—C23B1.309 (5)C24A—C25A1.3900
O6—C221.412 (5)C24A—C23B1.6025
O6—C23A1.433 (5)C24A—C25B1.6693
O7—C291.263 (3)C25A—C25B0.7471
O8—C291.233 (3)C25A—C24B1.2955
O8—Pr1ii2.545 (3)C25A—C26A1.3900
O9—C311.364 (5)C26A—C25B0.7502
O9—C301.427 (4)C26A—C26B0.9047
N1—C11.319 (5)C26A—C27A1.3900
N1—C51.372 (5)C27A—C26B0.5756
N2—C121.323 (5)C27A—C27B0.8310
N2—C91.355 (5)C27A—C28A1.3900
C1—C21.401 (6)C27A—C25B1.6721
C1—H10.9300C28A—C28B0.5549
C2—C31.381 (8)C28A—C27B1.1036
C2—H20.9300C28A—C23B1.3252
C3—C41.373 (8)C23B—C24B1.3900
C3—H30.9300C23B—C28B1.3900
C4—C51.418 (6)C24B—C25B1.3900
C4—C61.452 (8)C25B—C26B1.3900
C5—C91.424 (6)C26B—C27B1.3900
C6—C71.335 (9)C27B—C28B1.3900
C6—H60.9300C29—C301.5078
C7—C81.426 (8)C30—H30A0.9700
C7—H70.9300C30—H30B0.9700
C8—C101.377 (7)C31—C361.364 (6)
C8—C91.440 (5)C31—C321.391 (6)
C10—C111.340 (7)C32—C331.372 (6)
C10—H100.9300C32—H320.9300
C11—C121.423 (6)C33—C341.374 (8)
C11—H110.9300C33—H330.9300
C12—H120.9300C34—C351.361 (8)
C13—C141.509 (5)C34—H340.9300
C14—H14A0.9700C35—C361.371 (6)
C14—H14B0.9700C35—H350.9300
C15—C161.363 (6)C36—H360.9300
O1—Pr1—O473.62 (8)C21—C22—H22A108.8
O1—Pr1—O565.11 (8)O6—C22—H22B108.8
O1—Pr1—O7145.88 (9)C21—C22—H22B108.8
O4—Pr1—O548.17 (8)H22A—C22—H22B107.7
O4—Pr1—O7138.84 (9)C24B—C23A—C28A104.0
O5—Pr1—O7139.57 (8)C24A—C23A—C28A120.0
O1—Pr1—N1127.55 (9)C24B—C23A—O6137.2 (2)
O4—Pr1—N163.48 (9)C24A—C23A—O6121.4 (2)
O5—Pr1—N1102.34 (9)C28A—C23A—O6118.6 (2)
O7—Pr1—N177.09 (9)C24B—C23A—C28B125.0
O1—Pr1—N281.11 (9)C24A—C23A—C28B141.0
O4—Pr1—N274.08 (9)O6—C23A—C28B97.4 (2)
O5—Pr1—N2118.22 (8)C23A—C24A—C25A120.0
O7—Pr1—N296.74 (9)C25A—C24A—C23B121.0
N1—Pr1—N259.78 (10)C23A—C24A—C25B93.7
O7—Pr1—O5i87.92 (9)C23B—C24A—C25B94.7
O5i—Pr1—O177.99 (9)C25B—C25A—C24B81.0
O7—Pr1—O2i75.61 (8)C24B—C25A—C26A102.7
O5i—Pr1—O2i74.63 (8)C25B—C25A—C24A98.2
O1—Pr1—O2i128.25 (9)C26A—C25A—C24A120.0
O7—Pr1—O8ii77.23 (9)C25B—C26A—C26B113.9
O5i—Pr1—O8ii78.03 (9)C26B—C26A—C25A135.7
O1—Pr1—O8ii69.56 (9)C25B—C26A—C27A98.3
O2i—Pr1—O8ii141.78 (8)C25A—C26A—C27A120.0
O5i—Pr1—O4120.85 (9)C26B—C27A—C27B162.1
O2i—Pr1—O484.07 (8)C26B—C27A—C28A145.1
O8ii—Pr1—O4133.42 (8)C27B—C27A—C28A52.6
O5i—Pr1—N2148.71 (10)C27B—C27A—C26A172.5
O2i—Pr1—N2136.51 (10)C28A—C27A—C26A120.0
O8ii—Pr1—N272.96 (10)C26B—C27A—C25B51.6
O5i—Pr1—N1150.33 (9)C27B—C27A—C25B146.2
O2i—Pr1—N176.88 (9)C28A—C27A—C25B93.7
O8ii—Pr1—N1122.05 (10)C26B—C27A—C28B154.6
O5i—Pr1—O572.90 (10)C26A—C27A—C28B129.4
O2i—Pr1—O565.21 (8)C25B—C27A—C28B103.1
O8ii—Pr1—O5129.91 (9)C28B—C28A—C27B109.4
C13—O1—Pr1130.3 (2)C28B—C28A—C23B84.9
C13—O2—Pr1i137.7 (2)C27B—C28A—C23B164.8
C15—O3—C14117.6 (3)C28B—C28A—C27A145.7
C21—O4—Pr1101.0 (2)C23B—C28A—C27A128.5
C21—O5—Pr1i163.1 (3)C28B—C28A—C23A93.7
C21—O5—Pr187.9 (2)C27B—C28A—C23A156.7
Pr1i—O5—Pr1107.10 (9)C27A—C28A—C23A120.0
C23B—O6—C22119.6 (3)C28B—C28A—C26B155.7
C22—O6—C23A112.6 (3)C27B—C28A—C26B46.7
C29—O7—Pr1151.9 (2)C23B—C28A—C26B118.6
C29—O8—Pr1ii150.0 (2)C23A—C28A—C26B110.0
C31—O9—C30117.4 (3)C28B—C28A—C24B127.6
C1—N1—C5118.0 (4)C27B—C28A—C24B122.4
C1—N1—Pr1120.6 (3)C27A—C28A—C24B85.7
C5—N1—Pr1119.9 (3)C26B—C28A—C24B75.7
C12—N2—C9118.5 (3)O6—C23B—C28A134.3 (3)
C12—N2—Pr1119.6 (3)O6—C23B—C24B128.8 (2)
C9—N2—Pr1121.6 (2)C28A—C23B—C24B96.6
N1—C1—C2123.4 (4)O6—C23B—C28B111.1 (3)
N1—C1—H1118.3C24B—C23B—C28B120.0
C2—C1—H1118.3O6—C23B—C24A115.1 (2)
C3—C2—C1118.4 (5)C28A—C23B—C24A110.3
C3—C2—H2120.8C28B—C23B—C24A133.7
C1—C2—H2120.8C23A—C24B—C25A153.2
C4—C3—C2120.3 (5)C25A—C24B—C23B152.0
C4—C3—H3119.9C23A—C24B—C25B121.2
C2—C3—H3119.9C23B—C24B—C25B120.0
C3—C4—C5118.0 (5)C25A—C24B—C28A111.6
C3—C4—C6123.0 (6)C25B—C24B—C28A79.6
C5—C4—C6119.1 (6)C25A—C25B—C26A136.4
N1—C5—C4121.9 (4)C25A—C25B—C24B67.0
N1—C5—C9118.2 (4)C26A—C25B—C24B156.1
C4—C5—C9120.0 (4)C25A—C25B—C26B172.8
C7—C6—C4120.7 (6)C24B—C25B—C26B120.0
C7—C6—H6119.7C25A—C25B—C24A55.5
C4—C6—H6119.7C26A—C25B—C24A167.7
C6—C7—C8122.1 (5)C26B—C25B—C24A131.5
C6—C7—H7118.9C25A—C25B—C27A167.8
C8—C7—H7118.9C26A—C25B—C27A55.3
C10—C8—C7124.2 (5)C24B—C25B—C27A101.1
C10—C8—C9116.9 (5)C24A—C25B—C27A112.6
C7—C8—C9118.9 (5)C27A—C26B—C26A138.7
N2—C9—C5118.9 (3)C26A—C26B—C27B149.3
N2—C9—C8121.9 (4)C27A—C26B—C25B109.4
C5—C9—C8119.1 (4)C27B—C26B—C25B120.0
C11—C10—C8121.1 (4)C26A—C26B—C28A114.2
C11—C10—H10119.5C25B—C26B—C28A84.7
C8—C10—H10119.5C27A—C27B—C28A90.7
C10—C11—C12119.4 (5)C28A—C27B—C26B98.0
C10—C11—H11120.3C27A—C27B—C28B112.7
C12—C11—H11120.3C26B—C27B—C28B120.0
N2—C12—C11122.0 (5)C28A—C28B—C27B48.5
N2—C12—H12119.0C28A—C28B—C23B71.7
C11—C12—H12119.0C27B—C28B—C23B120.0
O2—C13—O1128.2 (3)C28A—C28B—C23A65.1
O2—C13—C14119.1 (4)C27B—C28B—C23A113.5
O1—C13—C14112.7 (3)C23B—C28B—C27A95.9
O3—C14—C13110.9 (3)C23A—C28B—C27A89.4
O3—C14—H14A109.5O8—C29—O7126.7 (3)
C13—C14—H14A109.5O8—C29—C30120.06 (18)
O3—C14—H14B109.5O7—C29—C30113.28 (15)
C13—C14—H14B109.5O9—C30—C29111.20 (18)
H14A—C14—H14B108.0O9—C30—H30A109.4
C16—C15—C20120.9 (4)C29—C30—H30A109.4
C16—C15—O3114.8 (4)O9—C30—H30B109.4
C20—C15—O3124.3 (4)C29—C30—H30B109.4
C15—C16—C17119.9 (5)H30A—C30—H30B108.0
C15—C16—H16120.0C36—C31—O9124.9 (4)
C17—C16—H16120.0C36—C31—C32119.6 (4)
C18—C17—C16120.0 (6)O9—C31—C32115.5 (4)
C18—C17—H17120.0C33—C32—C31120.0 (5)
C16—C17—H17120.0C33—C32—H32120.0
C19—C18—C17120.5 (5)C31—C32—H32120.0
C19—C18—H18119.7C32—C33—C34120.1 (5)
C17—C18—H18119.7C32—C33—H33119.9
C18—C19—C20120.9 (6)C34—C33—H33119.9
C18—C19—H19119.5C35—C34—C33119.1 (5)
C20—C19—H19119.5C35—C34—H34120.5
C15—C20—C19117.7 (5)C33—C34—H34120.5
C15—C20—H20121.2C34—C35—C36121.7 (5)
C19—C20—H20121.2C34—C35—H35119.1
O4—C21—O5122.8 (3)C36—C35—H35119.1
O4—C21—C22120.2 (3)C31—C36—C35119.4 (5)
O5—C21—C22117.0 (4)C31—C36—H36120.3
O6—C22—C21113.9 (3)C35—C36—H36120.3
O6—C22—H22A108.8
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.463.147 (5)130
C10—H10···O4iii0.932.343.211 (5)156
C12—H12···O8ii0.932.473.063 (5)122
C22—H22B···O7iv0.972.413.353 (5)166
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2; (iii) x+3/2, y+1/2, z+3/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula[Pr2(C8H7O3)6(C12H8N2)2]
Mr1549.04
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)20.204 (4), 8.499 (4), 20.799 (3)
β (°) 107.198 (6)
V3)3411.8 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.33 × 0.12 × 0.08
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.642, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
27763, 7712, 5037
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 0.90
No. of reflections7712
No. of parameters452
No. of restraints144
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.64

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens, 1996).

Selected geometric parameters (Å, º) top
Pr1—O12.489 (2)Pr1—O72.409 (3)
Pr1—O2i2.535 (2)Pr1—O8ii2.545 (3)
Pr1—O42.565 (2)Pr1—N12.753 (3)
Pr1—O52.817 (3)Pr1—N22.720 (3)
Pr1—O5i2.449 (2)
O1—Pr1—O473.62 (8)O5—Pr1—N1102.34 (9)
O1—Pr1—O565.11 (8)O7—Pr1—N177.09 (9)
O1—Pr1—O7145.88 (9)O1—Pr1—N281.11 (9)
O4—Pr1—O548.17 (8)O4—Pr1—N274.08 (9)
O4—Pr1—O7138.84 (9)O5—Pr1—N2118.22 (8)
O5—Pr1—O7139.57 (8)O7—Pr1—N296.74 (9)
O1—Pr1—N1127.55 (9)N1—Pr1—N259.78 (10)
O4—Pr1—N163.48 (9)
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.932.463.147 (5)130
C10—H10···O4iii0.932.343.211 (5)156
C12—H12···O8ii0.932.473.063 (5)122
C22—H22B···O7iv0.972.413.353 (5)166
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y+1, z+2; (iii) x+3/2, y+1/2, z+3/2; (iv) x, y1, z.
 

Acknowledgements

This work was supported by the Science and Technology Bureau of Jian, Jiangxi Province, China (grant No. 20052817).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDaiguebonne, C., Guillou, O. & Boubekeur, K. (2000). Inorg. Chim. Acta, 304, 161–169.   Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J., Peacock, R. D. & Stewart, B. (2000). Acta Cryst. C56, e435–e436.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKay, J., Moore, J. W. & Glick, M. D. (1972). Inorg. Chem. 11, 2818–2827.  CSD CrossRef CAS Web of Science Google Scholar
First citationMa, L., Evans, O. R., Foxman, B. M. & Lin, W. B. (1999). Inorg. Chem. 38, 5837–5840.  Web of Science CSD CrossRef CAS Google Scholar
First citationMao, J. G., Zhang, H. J., Ni, J. Z., Wang, S. B. & Mak, T. C. W. (1998). J. Chem. Crystallogr. 17, 3999–4009.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStarynowicz, P. (1991). Acta Cryst. C47, 294–297.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationStarynowicz, P. (1993). Acta Cryst. C49, 1895–1897.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTsukube, H. & Shinoda, S. (2002). Chem. Rev. 102, 2389–2404.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZeng, X.-R., Xu, Y., Xiong, R.-G., Zhang, L.-J. & You, X.-Z. (2000). Acta Cryst. C56, e325–e326.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-H., Shen, Z.-L., Okamura, T.-A., Zhu, H.-F., Sun, W.-Y. & Ueyama, N. (2005). Cryst. Growth Des. 5, 1191–1197.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhong, H., Yang, X.-M., Xie, H.-L. & Luo, C.-J. (2007). Acta Cryst. E63, m2508–m2509.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m317-m318
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds