organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

L-Glutamic acid hydro­chloride at 153 K

aCollege of Materials Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, People's Republic of China, bCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and cCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: zgdlzg@sina.com

(Received 16 November 2007; accepted 27 December 2007; online 16 January 2008)

The title compound [systematic name: (S)-1,3-dicarboxy­propanaminium chloride], C5H10NO4+·Cl, has been investigated previously by Dawson [Acta Cryst. (1953). 6, 81–83], with R = 0.106 and without the location of H atoms, and then by Sequeira, Rajagopal & Chidambaram [Acta Cryst. (1972). B28, 2514–2519] using neutron diffraction with R = 0.043. The present determination at 153 K has R = 0.017 and all the H atoms are located. There are obvious differences in some C—C bond lengths between the present and previous studies. In the present structure, L-glutamic acid is protonated and is linked to the Cl anion by an O—H⋯Cl hydrogen bond. The crystal structure is established by a three-dimensional network of O—H⋯O, N—H⋯O and N—H⋯Cl hydrogen bonds.

Related literature

For related literature, see: Delfino et al. (1978[Delfino, M., Loiacono, G. M. & Nicolosi, J. A. (1978). J. Solid State Chem. 23, 289-296.]); Kirfel & Wallrafen (1985[Kirfel, A. & Wallrafen, F. (1985). Z. Kristallogr. 171, 121-126.]). For previous structure determinations, see: Dawson (1953[Dawson, B. (1953). Acta Cryst. 6, 81-87.]) [Cambridge Structural Database (CSD; Version 5.26; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) refcode LGLUTA01]; Sequeira et al. (1972[Sequeira, A., Rajagopal, H. & Chidambaram, R. (1972). Acta Cryst. B28, 2514-2519.]) (refcode LGLUTA).

[Scheme 1]

Experimental

Crystal data
  • C5H10NO4+·Cl

  • Mr = 183.59

  • Orthorhombic, P 21 21 21

  • a = 5.1016 (1) Å

  • b = 11.6386 (4) Å

  • c = 13.2500 (3) Å

  • V = 786.73 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 153 (2) K

  • 0.49 × 0.48 × 0.35 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (SHELXTL; Bruker, 1998[Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.808, Tmax = 0.858

  • 7742 measured reflections

  • 1798 independent reflections

  • 1775 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.055

  • S = 1.15

  • 1798 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 725 Friedel pairs

  • Flack parameter: 0.02 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.91 2.29 3.1406 (10) 157
N1—H1B⋯Cl1i 0.91 2.34 3.1890 (10) 155
N1—H1C⋯O2ii 0.91 2.04 2.8700 (13) 151
O1—H1⋯O3iii 0.84 1.79 2.6208 (13) 170
O4—H4⋯Cl1iv 0.84 2.21 3.0389 (9) 168
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of the title compound has been investigated by Dawson (1953) using the multiple-film technique for h0l and 0kl intensity data collection, then by Sequeira et al. (1972) using neutron diffraction. Besides, the L-glutamic acid (LGA) halogen acid salts of LGA hydroiodide (Kirfel & Wallrafen, 1985), LGA HBr and LGA HCl HBr (Delfino et al., 1978) have been reported before. Recently we have made a structure determination of the title compound at 153 K and make comparisons with Dawson's and Sequeira's studies, hereby.

The unit-cell parameters and space group of the title compound (see crystal data) and the respective values in Dawson's structure [a = 5.16 (1), b = 11.80 (2), c = 13.30 (2) Å] and Sequeira's structure [a = 5.151 (6), b = 11.789 (19), c = 13.347 (20) Å] demonstrate the high quality of modern X-ray diffractometer and software. The final R value of the present case [0.0171] is much smaller than that of Dawson's [0.106] and Sequeira's [0.043]. The hydrogen atoms were not determined in Dawson's study, due to the incompleteness of the estimated intensity data.

The C4—C5 [1.5066 (15) Å] bond length intermediates Dawson's [1.54 Å] and Sequeira's [1.475 (7) Å] (Table 1). The C2—C3 distance [1.5312 (15) Å] differs from that of Dawson's [1.55 Å], the C1—C2 [1.5156 (16) Å] deviates from that of Sequeira's [1.535 (7) Å]. The C—O, C—N and the other C—C bond lengths of these three cases have little distinctions respectively. Between the present and Dawson's study, the major distinctions of bond angles lie in C1—C2—N1 and C3—C2—N1 [108.02 (9) and 111.94 (9)° for present, 111 and 110° for Dawson's case, respectively]. The torsion angles of the main skeleton are finely coherent with those in Sequeira's study, respectively (Table 1). But, some torsion angles related to H atoms that are involed in hydrogen bonds are deviated greatly from those in Sequeira's study, respectively [H1C—N1—C2—C1 (-60.0, -48.0°), H1B—N1—C2—C1 (60.0, 73.2°) and H1A—N1—C2—C1 (-180.0, -165.1°); H1—O1—C1—C2 (179.8, 168.9°), the former and latter values for the present (Table 1) and Sequeira's study, repectively].

In the title compound, L-glutamic acid is protonated and is linked with the Cl- anion by a O—H···Cl hydrogen bond (Fig. 1, Table 2). The crystal structure is established by a three-dimensional network of O—H···O, N—H···O and N—H···Cl classic hydrogen bonds (Fig. 2, Table 2).

Related literature top

For related literature, see: Delfino et al. (1978); Kirfel & Wallrafen (1985). For previous structure determinations, see: Dawson (1953)[Cambridge Structural Database (CSD; Version ?; Allen, 2002) refcode LGLUTA01]; Sequeira et al. (1972) (refcode LGLUTA).

Experimental top

L-Glutamic acid and hydrochloric acid in equal molar ratio were mixed together with enough water, and heated to a temperatur where clear solution was obtained. The solution were layed in a ventilative place. Colorless single crystals of the title compound were obtained from the solution by slow volatilization of water at room temperature for 7 days.

Refinement top

All hydrogen atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.99 (methylene), 1.00 (methine), 0.91Å (N—H), 0.84Å (O—H), with Uiso(H) values 1.2–1.5 times Ueq of the parent atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing with 40% probability displacement ellipsoids. Hydrogen bonds are indicated by thin lines.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down along the a axis. Hydrogen bonds are indicated by thin lines.
(S)-1,3-dicarboxypropanaminium chloride top
Crystal data top
C5H10NO4+·ClF(000) = 384
Mr = 183.59Dx = 1.550 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7746 reflections
a = 5.1016 (1) Åθ = 3.1–27.5°
b = 11.6386 (4) ŵ = 0.45 mm1
c = 13.2500 (3) ÅT = 153 K
V = 786.73 (4) Å3Block, colorless
Z = 40.49 × 0.48 × 0.35 mm
Data collection top
Siemens P4
diffractometer
1798 independent reflections
Radiation source: fine-focus sealed tube1775 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: ψ scan
(SHELXTL; Bruker, 1998)
h = 66
Tmin = 0.809, Tmax = 0.858k = 1515
7742 measured reflectionsl = 1516
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.1681P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max = 0.001
S = 1.15Δρmax = 0.29 e Å3
1798 reflectionsΔρmin = 0.25 e Å3
101 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.058 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 725 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (4)
Crystal data top
C5H10NO4+·ClV = 786.73 (4) Å3
Mr = 183.59Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1016 (1) ŵ = 0.45 mm1
b = 11.6386 (4) ÅT = 153 K
c = 13.2500 (3) Å0.49 × 0.48 × 0.35 mm
Data collection top
Siemens P4
diffractometer
1798 independent reflections
Absorption correction: ψ scan
(SHELXTL; Bruker, 1998)
1775 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 0.858Rint = 0.016
7742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.055Δρmax = 0.29 e Å3
S = 1.15Δρmin = 0.25 e Å3
1798 reflectionsAbsolute structure: Flack (1983), 725 Friedel pairs
101 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.05471 (5)0.93130 (2)0.26203 (2)0.01395 (9)
O10.4387 (2)0.53632 (7)0.07337 (7)0.0205 (2)
H10.33410.51020.03010.031*
O20.20701 (18)0.69846 (7)0.05162 (7)0.0161 (2)
O30.4214 (2)0.55251 (8)0.45585 (6)0.0204 (2)
O40.70041 (18)0.67059 (8)0.53439 (6)0.0167 (2)
H40.64540.63610.58590.025*
N10.5606 (2)0.82410 (8)0.15658 (7)0.0120 (2)
H1A0.67010.85690.20250.018*
H1B0.39390.84900.16760.018*
H1C0.61170.84420.09320.018*
C10.3864 (2)0.64491 (10)0.08985 (9)0.0116 (2)
C20.5705 (2)0.69659 (9)0.16728 (8)0.0102 (2)
H20.75320.66890.15470.012*
C30.4798 (2)0.65720 (10)0.27187 (8)0.0115 (2)
H3A0.30740.69260.28630.014*
H3B0.45500.57280.27050.014*
C40.6668 (2)0.68690 (10)0.35714 (8)0.0124 (2)
H4A0.84580.66100.33950.015*
H4B0.67120.77130.36660.015*
C50.5815 (3)0.63012 (9)0.45392 (8)0.0119 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01329 (14)0.01559 (13)0.01296 (14)0.00183 (11)0.00097 (10)0.00137 (10)
O10.0232 (4)0.0145 (4)0.0238 (4)0.0019 (4)0.0111 (4)0.0082 (3)
O20.0166 (4)0.0164 (4)0.0153 (4)0.0004 (3)0.0052 (3)0.0000 (3)
O30.0284 (5)0.0194 (5)0.0134 (4)0.0119 (4)0.0021 (4)0.0018 (3)
O40.0214 (5)0.0196 (4)0.0089 (4)0.0053 (4)0.0014 (4)0.0029 (3)
N10.0134 (4)0.0119 (4)0.0105 (4)0.0028 (4)0.0012 (4)0.0014 (3)
C10.0119 (6)0.0148 (5)0.0081 (5)0.0022 (4)0.0004 (4)0.0006 (4)
C20.0107 (5)0.0100 (5)0.0101 (5)0.0009 (5)0.0006 (5)0.0006 (4)
C30.0121 (5)0.0128 (5)0.0096 (5)0.0025 (4)0.0006 (4)0.0016 (4)
C40.0138 (5)0.0146 (5)0.0089 (5)0.0039 (5)0.0011 (4)0.0014 (4)
C50.0139 (6)0.0114 (5)0.0105 (5)0.0002 (4)0.0007 (5)0.0005 (4)
Geometric parameters (Å, º) top
O1—C11.3101 (15)C1—C21.5156 (16)
O1—H10.8400C2—C31.5312 (15)
O2—C11.2176 (15)C2—H21.0000
O3—C51.2183 (15)C3—C41.5184 (16)
O4—C51.3139 (14)C3—H3A0.9900
O4—H40.8400C3—H3B0.9900
N1—C21.4916 (14)C4—C51.5066 (15)
N1—H1A0.9100C4—H4A0.9900
N1—H1B0.9100C4—H4B0.9900
N1—H1C0.9100
C1—O1—H1109.5C3—C2—H2109.7
C5—O4—H4109.5C4—C3—C2114.55 (9)
C2—N1—H1A109.5C4—C3—H3A108.6
C2—N1—H1B109.5C2—C3—H3A108.6
H1A—N1—H1B109.5C4—C3—H3B108.6
C2—N1—H1C109.5C2—C3—H3B108.6
H1A—N1—H1C109.5H3A—C3—H3B107.6
H1B—N1—H1C109.5C5—C4—C3110.63 (10)
O2—C1—O1125.29 (11)C5—C4—H4A109.5
O2—C1—C2122.99 (10)C3—C4—H4A109.5
O1—C1—C2111.67 (10)C5—C4—H4B109.5
N1—C2—C1108.02 (9)C3—C4—H4B109.5
N1—C2—C3111.94 (9)H4A—C4—H4B108.1
C1—C2—C3107.85 (9)O3—C5—O4123.93 (10)
N1—C2—H2109.7O3—C5—C4122.46 (10)
C1—C2—H2109.7O4—C5—C4113.59 (10)
O2—C1—C2—N121.37 (15)C3—C4—C5—O314.84 (16)
O1—C1—C2—N1161.21 (10)C3—C4—C5—O4166.61 (10)
O2—C1—C2—C399.80 (13)H1C—N1—C2—C160.0
O1—C1—C2—C377.62 (12)H1B—N1—C2—C160.0
N1—C2—C3—C469.92 (13)H1A—N1—C2—C1180.0
C1—C2—C3—C4171.39 (9)H1—O1—C1—C2179.8
C2—C3—C4—C5171.71 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.912.293.1406 (10)157
N1—H1B···Cl1i0.912.343.1890 (10)155
N1—H1C···O2ii0.912.042.8700 (13)151
O1—H1···O3iii0.841.792.6208 (13)170
O4—H4···Cl1iv0.842.213.0389 (9)168
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1, z1/2; (iv) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC5H10NO4+·Cl
Mr183.59
Crystal system, space groupOrthorhombic, P212121
Temperature (K)153
a, b, c (Å)5.1016 (1), 11.6386 (4), 13.2500 (3)
V3)786.73 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.49 × 0.48 × 0.35
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(SHELXTL; Bruker, 1998)
Tmin, Tmax0.809, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
7742, 1798, 1775
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.055, 1.15
No. of reflections1798
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.25
Absolute structureFlack (1983), 725 Friedel pairs
Absolute structure parameter0.02 (4)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Selected geometric parameters (Å, º) top
O1—C11.3101 (15)C1—C21.5156 (16)
O2—C11.2176 (15)C2—C31.5312 (15)
O3—C51.2183 (15)C3—C41.5184 (16)
O4—C51.3139 (14)C4—C51.5066 (15)
N1—C21.4916 (14)
O2—C1—O1125.29 (11)C4—C3—C2114.55 (9)
O2—C1—C2122.99 (10)C5—C4—C3110.63 (10)
O1—C1—C2111.67 (10)O3—C5—O4123.93 (10)
N1—C2—C1108.02 (9)O3—C5—C4122.46 (10)
N1—C2—C3111.94 (9)O4—C5—C4113.59 (10)
C1—C2—C3107.85 (9)
O2—C1—C2—N121.37 (15)H1B—N1—C2—C160.0
O1—C1—C2—N1161.21 (10)H1A—N1—C2—C1180.0
H1C—N1—C2—C160.0H1—O1—C1—C2179.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl10.912.293.1406 (10)156.5
N1—H1B···Cl1i0.912.343.1890 (10)155.0
N1—H1C···O2ii0.912.042.8700 (13)150.9
O1—H1···O3iii0.841.792.6208 (13)170.3
O4—H4···Cl1iv0.842.213.0389 (9)168.4
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1, z1/2; (iv) x1/2, y+3/2, z+1.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDawson, B. (1953). Acta Cryst. 6, 81–87.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDelfino, M., Loiacono, G. M. & Nicolosi, J. A. (1978). J. Solid State Chem. 23, 289–296.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKirfel, A. & Wallrafen, F. (1985). Z. Kristallogr. 171, 121–126.  CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSequeira, A., Rajagopal, H. & Chidambaram, R. (1972). Acta Cryst. B28, 2514–2519.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds