metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m367-m368

μ-1,2-Bis(di­ethyl­phosphino)ethane-κ2P:P′-bis­­{[1,2-bis­­(di­ethyl­phosphino)ethane-κ2P,P′]tri­chlorido­nitrosyl­tungsten(II)}

aAnorganisch-Chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Correspondence e-mail: oblacque@aci.uzh.ch

(Received 10 January 2008; accepted 11 January 2008; online 16 January 2008)

The title binuclear compound, [W2Cl6(NO)2(C10H22P2)3], contains two W atoms which are bridged by a bis­(diethyl­phosphino)­ethane (depe) ligand. The seven-coord­inated tungsten(II) centres display distorted penta­gonal–bipyramidal geometries with trans nitrosyl and chloride ligands. The title mol­ecule lies on a crystallographic inversion centre. The ethane group of the non-bridging depe ligand is positionally disordered, with site-occupancy factors of 0.63 and 0.37. In the crystal structure, the binuclear mol­ecules are linked by weak inter­molecular C—H⋯O and C—H⋯Cl inter­actions. In addition, weak intra­molecular C—H⋯Cl inter­actions are also present.

Related literature

For related literature, see: Avramović et al. (2008[Avramović, N., Blacque, O., Schmalle, H. W. & Berke, H. (2008). Acta Cryst. E64, m245.]); Bencze & Kohàn (1982[Bencze, L. & Kohàn, J. (1982). Inorg. Chim. Acta, 65, L17-L19.]); Campbell et al. (1985[Campbell, F. L. III, Cotton, F. A. & Powell, G. L. (1985). Inorg. Chem. 24, 4384-4389.]); Carmona et al. (1989[Carmona, E., Gutiérrez-Puebla, E., Monge, A., Pérez, P. J. & Sanchez, L. J. (1989). Inorg. Chem. 28, 2120-2127.]); Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 215-221. Oxford University Press.]); Han & Coucouvanis (2002[Han, J. & Coucouvanis, D. (2002). Inorg. Chem. 41, 2738-2746.]); Hunter & Legzdins (1984[Hunter, A. D. & Legzdins, P. (1984). Inorg. Chem. 23, 4198-4204.]); Landau et al. (1999[Landau, S. E., Morris, R. H. & Lough, A. J. (1999). Inorg. Chem. 38, 6060-6068.]); Zeng et al. (1994[Zeng, D., Hampden-Smith, M. J. & Larson, E. M. (1994). Acta Cryst. C50, 1000-1002.]).

[Scheme 1]

Experimental

Crystal data
  • [W2Cl6(NO)2(C10H22P2)3]

  • Mr = 1259.10

  • Orthorhombic, P b c a

  • a = 12.6406 (14) Å

  • b = 17.6485 (14) Å

  • c = 20.5243 (17) Å

  • V = 4578.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.61 mm−1

  • T = 183 (2) K

  • 0.26 × 0.20 × 0.15 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: numerical (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.329, Tmax = 0.499

  • 52250 measured reflections

  • 3982 independent reflections

  • 3026 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.056

  • S = 0.84

  • 3982 reflections

  • 224 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

W1—P1 2.5598 (13)
W1—P2 2.5675 (14)
W1—P3 2.6051 (12)
W1—Cl1 2.4750 (12)
W1—Cl2 2.4703 (11)
W1—Cl3 2.4905 (11)
W1—N1 1.783 (4)
N1—W1—Cl1 98.06 (14)
N1—W1—Cl2 99.08 (13)
N1—W1—Cl3 177.72 (13)
Cl1—W1—Cl2 141.66 (4)
Cl2—W1—Cl3 82.27 (4)
Cl1—W1—Cl3 81.87 (4)
Cl1—W1—P2 71.30 (5)
Cl1—W1—P3 73.09 (4)
Cl2—W1—P1 70.77 (4)
Cl2—W1—P3 73.54 (4)
Cl3—W1—P1 90.21 (4)
P1—W1—P2 72.90 (5)
Symmetry code: (i) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯Cl2 0.97 2.81 3.196 (7) 105
C11—H11A⋯Cl1 0.97 2.71 3.129 (7) 107
C13—H13B⋯Cl1 0.97 2.75 3.132 (5) 104
C14—H14A⋯Cl2 0.97 2.76 3.150 (5) 105
C13—H13A⋯Cl1i 0.97 2.80 3.425 (5) 123
C10—H10A⋯Cl3ii 0.96 2.81 3.726 (7) 161
C2—H2A⋯O1iii 0.97 2.65 3.579 (10) 161
C4—H4B⋯O1iii 0.97 2.56 3.470 (15) 156
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: IPDS Software (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS Software and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS Software; data reduction: X-RED (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS Software and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The mononuclear compound [W(Cl)2(NO)(dmpe)2](Cl) was previously obtained by the reaction of [W(Cl)3(NO)(NCCH3)2] with 2.5 equivalents of dmpe [1,2-bis(dimethylphosphino)ethane] at room temperature in tetrahydrofuran (Avramović et al., 2008). The synthesis of the analogous compound [W(Cl)2(NO)(depe)2](Cl) was also attempted by the same procedure using the bidentate ligand depe [1,2-bis(diethylphosphino)ethane]. Presumably because of steric factors, only the binuclear compound [W(Cl)3(NO)(depe)]2-depe) was formed instead of the expected mononuclear compound.

The title compound consists of two metal units bridged by a depe ligand (see: Campbell et al., 1985; Han & Coucouvanis, 2002; Zeng et al., 1994; Landau et al., 1999). Both tungsten centers are crystallographically equivalent since the molecule lies on a crystallographic inversion center (Fig. 1). The geometry at tungsten(II) is very similar to that in [W(Cl)2(NO)(dmpe)2](Cl) with a distorted pentagonal bipyramidal coordination. A second chloride ligand takes the place of one phosphorus in [W(Cl)2(NO)(dmpe)2](Cl) to complete the equatorial plane of the polyhedron (P1, P2, P3, Cl1 and Cl2). The five equatorial bond angles, in the range 70.8 - 73.5°, are close to the theoretically average angle of 72°. It is worth noting that the five equatorial atoms are not completely coplanar. Atoms Cl1 and Cl2 deviate from the P1—P2—P3 plane, toward the third chloride atom Cl3, by 0.303 (2) and 0.543 (2) Å, respectively. Nevertheless, this geometry is clearly different to that observed for the related compound Mo(Cl)3(NO)(PMe3)3, for which the coordination polyhedron is described as a capped-octahedron (Carmona et al., 1989).

All the chloride ligands are engaged in hydrogen bonding, with atoms Cl1 and Cl2 involved in ten intramolecular interactions with CH2 hydrogen atoms within the dimer, and atom Cl3 (trans to the nitrosyl group) in one weak intermolecular interaction with the methyl hydrogen atom H10A (Fig. 2, Table 1). The C10···Cl3 donor-acceptor distance of 3.726 (7) Å represents a rather weak interaction of this type (Desiraju & Steiner, 1999). In addition, the binuclear complexes are linked by two weak intermolecular C—H···O hydrogen bonds between the nitrosyl oxygen atom and the hydrogen atoms of the disordered ethane bridge.

Related literature top

For related literature, see: Avramović et al. (2008); Bencze & Kohàn (1982); Campbell et al. (1985); Carmona et al. (1989); Desiraju & Steiner (1999); Han & Coucouvanis (2002); Hunter & Legzdins (1984); Landau et al. (1999); Zeng et al. (1994).

Experimental top

[W(Cl)3(NO)(depe)]2-depe) was prepared from the complex [W(Cl)3(NO)(CH3CN)2]. The latter is easily synthesized by the reaction of W(Cl)6 with NO gas in dichloromethane in the presence of acetonitrile at room temperature, according to a literature procedure (Bencze & Kohàn, 1982; Hunter & Legzdins, 1984). 5.00 g (12.6 mmol) of WCl6 and 1.32 ml (25.2 mmol) of acetonitrile were dissolved in 180 ml of dichloromethane in a 500 ml three-necked flask. Nitric oxide was passed through the solution, which was stirred at room temperature until the dark purple colour of the solution turned to the light green precipitate after ca 1 h. The volume of the final mixture was reduced to 50 ml in vacuo and the mixture was then cooled to 0°C for 15 min. The precipitate was isolated by filtration and the collected solid was then washed first with cold dichloromethane (2 x 10 ml at 0°C) and then with hexane (4 x 20 ml) at room temperature. Final drying of the solid under vacuum for 18 h afforded the yellow-green [W(Cl)3(NO)(CH3CN)2] compound. 0.200 g (0.497 mmol) of [W(Cl)3(NO)(NCCH3)2] was dissolved in 20 ml of tetrahydrofurane in a Young tap Schlenk and the depe ligand (0.29 ml, 1.243 mmol) was syringed into the solution. The solution was stirred at room temperature for 24 h, then filtered and the solvent removed under vacuum. The resulting solid was crystallized from dichloromethane at room temperature and gave light-green crystals of the title compound.

Yield: 0.266 g (85%).

IR (cm-1, CH2Cl2): 1520 (NO).

1H NMR (200.0 MHz, CD2Cl2, 25°C): 2.69 (m, 4H, P(CH2)2P); 2.39 (m, 8H, PCH2CH3); 2.19 (16H, PCH2CH3), 2.06 (m, 8H, P(CH2)2P), 1.25 (m, 24H, PCH2CH3), 1.19 (m,12H, PCH2CH3).

31P{1H} NMR (80.9 MHz, CD2Cl2, 25°C): 46.8 (m, P(CH2)2P), 45.8 (m, P(CH2)2P) and 21.4 (m, P(CH2)2P), 2JPN = 15.6 Hz; 1JPW = 203 Hz.

13C{1H} NMR (50.3 MHz, CD2Cl2, 25°C): 8.8 (m, PCH2CH3), 9.2 (s, PCH2CH3), 15.7 (m, PCH2CH3), 18.5 (m, PCH2CH3), 20.0 (m, P(CH2)2P).

Anal. Calcd for C30H72Cl6N2O2P6W2: C, 28.60; H, 5.72; N, 2.22. Found: C, 28.87; H, 6.01; N, 1.98.

Refinement top

The H atom were included in calculated positions and treated as riding atoms: C—H distances 0.96–0.99 Å and Uiso(H) = 1.2 or 1.5Ueq(C). The ethyl group of one depe ligand is positionally disordered; refined site occupancy factors 0.631 (8):0.369 (8).

Computing details top

Data collection: IPDS Software (Stoe & Cie, 1999); cell refinement: IPDS Software (Stoe & Cie, 1999); data reduction: X-RED (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, showing the atom-labeling scheme and displacement ellipsoids drawn at the 30% probability level. The disordered atoms, C3 and C4, and the hydrogen atoms have been omitted for clarity. Symmetry transformation: -x + 2, -y + 1, -z + 1.
[Figure 2] Fig. 2. A view, along the b axis, of the crystal structure of the title compound. The intermolecular C—H···Cl and C—H···O hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
µ-1,2-Bis(diethylphosphino)ethane-κ2P:P'-bis{[1,2-bis(diethylphosphino)ethane-κ2P,P']trichloridonitrosyltungsten(II)} top
Crystal data top
[W2Cl6(NO)2(C10H22P2)3]F(000) = 2488
Mr = 1259.10Dx = 1.827 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7997 reflections
a = 12.6406 (14) Åθ = 2.8–30.4°
b = 17.6485 (14) ŵ = 5.61 mm1
c = 20.5243 (17) ÅT = 183 K
V = 4578.7 (7) Å3Block, yellow
Z = 40.26 × 0.20 × 0.15 mm
Data collection top
Stoe IPDS
diffractometer
3982 independent reflections
Radiation source: fine-focus sealed tube3026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ϕ oscillation scanθmax = 25.0°, θmin = 2.8°
Absorption correction: numerical
(Coppens et al., 1965)
h = 1515
Tmin = 0.329, Tmax = 0.499k = 2020
52250 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 0.85 w = 1/[σ^2^(Fo^2^) + (0.0357P)^2^]
where P = (Fo^2^ + 2Fc^2^)/3
3982 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 1.04 e Å3
1 restraintΔρmin = 1.27 e Å3
Crystal data top
[W2Cl6(NO)2(C10H22P2)3]V = 4578.7 (7) Å3
Mr = 1259.10Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 12.6406 (14) ŵ = 5.61 mm1
b = 17.6485 (14) ÅT = 183 K
c = 20.5243 (17) Å0.26 × 0.20 × 0.15 mm
Data collection top
Stoe IPDS
diffractometer
3982 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
3026 reflections with I > 2σ(I)
Tmin = 0.329, Tmax = 0.499Rint = 0.079
52250 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0241 restraint
wR(F2) = 0.056H-atom parameters constrained
S = 0.85Δρmax = 1.04 e Å3
3982 reflectionsΔρmin = 1.27 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.826046 (13)0.388044 (11)0.379416 (7)0.01301 (6)
Cl10.77419 (9)0.50925 (7)0.43099 (5)0.0229 (3)
Cl20.95733 (9)0.33344 (8)0.30362 (5)0.0232 (3)
Cl30.76818 (10)0.45607 (8)0.27925 (5)0.0261 (3)
P10.75410 (11)0.26356 (8)0.33323 (6)0.0221 (3)
P20.62919 (11)0.38137 (9)0.40971 (8)0.0319 (3)
P30.99811 (9)0.46776 (7)0.39288 (5)0.0141 (3)
N10.8622 (3)0.3381 (2)0.45154 (17)0.0180 (9)
O10.8860 (3)0.3047 (2)0.50083 (16)0.0282 (9)
C10.6454 (7)0.2268 (5)0.3833 (5)0.0341 (16)0.631 (8)
H1A0.61410.18270.36270.041*0.631 (8)
H1B0.67160.21200.42590.041*0.631 (8)
C20.5642 (6)0.2887 (5)0.3901 (5)0.0341 (16)0.631 (8)
H2A0.51470.27560.42440.041*0.631 (8)
H2B0.52480.29340.34970.041*0.631 (8)
C30.6069 (13)0.2531 (10)0.3577 (7)0.0341 (16)0.369 (8)
H3A0.56190.28400.33010.041*0.369 (8)
H3B0.58420.20070.35470.041*0.369 (8)
C40.6042 (13)0.2805 (9)0.4274 (7)0.0341 (16)0.369 (8)
H4A0.65970.25800.45380.041*0.369 (8)
H4B0.53600.27230.44780.041*0.369 (8)
C50.8399 (6)0.1786 (4)0.3396 (3)0.0505 (18)
H5A0.79630.13450.33130.061*
H5B0.89170.18130.30480.061*
C60.8966 (6)0.1655 (4)0.4000 (4)0.072 (3)
H6A0.95300.20160.40400.107*
H6B0.92550.11520.39990.107*
H6C0.84890.17090.43610.107*
C70.7194 (6)0.2647 (3)0.2484 (3)0.0408 (15)
H7A0.67490.30850.24050.049*
H7B0.78370.27140.22320.049*
C80.6617 (5)0.1942 (4)0.2226 (3)0.0484 (18)
H8A0.70190.14970.23320.073*
H8B0.65420.19800.17620.073*
H8C0.59300.19090.24230.073*
C90.5410 (4)0.4353 (5)0.3574 (3)0.051 (2)
H9A0.55840.48860.36130.062*
H9B0.55350.42050.31260.062*
C100.4233 (5)0.4248 (7)0.3728 (3)0.099 (4)
H10A0.38170.44550.33800.148*
H10B0.40650.45040.41270.148*
H10C0.40800.37180.37730.148*
C110.5917 (5)0.4121 (4)0.4913 (3)0.0462 (19)
H11A0.59400.46700.49270.055*
H11B0.51920.39680.49920.055*
C120.6603 (6)0.3814 (6)0.5455 (3)0.082 (3)
H12A0.66580.32730.54150.123*
H12B0.62910.39380.58680.123*
H12C0.72950.40350.54280.123*
C131.0135 (4)0.5223 (3)0.46896 (19)0.0157 (10)
H13A1.08600.53980.47200.019*
H13B0.96820.56660.46680.019*
C141.1275 (4)0.4204 (3)0.3871 (2)0.0207 (10)
H14A1.13970.40680.34190.025*
H14B1.18180.45650.39940.025*
C151.1407 (4)0.3499 (3)0.4285 (3)0.0306 (13)
H15A1.13360.36300.47370.046*
H15B1.20940.32850.42110.046*
H15C1.08740.31350.41700.046*
C161.0053 (4)0.5396 (3)0.3298 (2)0.0239 (12)
H16A1.01120.51430.28800.029*
H16B0.93900.56740.32970.029*
C171.0947 (4)0.5963 (3)0.3352 (3)0.0340 (14)
H17A1.08750.62460.37490.051*
H17B1.09230.63050.29880.051*
H17C1.16120.57000.33520.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.01297 (9)0.01534 (10)0.01072 (9)0.00073 (8)0.00014 (7)0.00121 (8)
Cl10.0221 (6)0.0214 (7)0.0251 (6)0.0079 (5)0.0026 (5)0.0062 (5)
Cl20.0198 (6)0.0291 (7)0.0206 (6)0.0006 (5)0.0059 (5)0.0074 (5)
Cl30.0311 (7)0.0298 (8)0.0174 (5)0.0003 (6)0.0063 (5)0.0073 (5)
P10.0230 (7)0.0242 (8)0.0190 (6)0.0073 (6)0.0008 (5)0.0066 (5)
P20.0183 (6)0.0265 (8)0.0510 (9)0.0004 (7)0.0133 (6)0.0013 (7)
P30.0145 (6)0.0166 (6)0.0113 (5)0.0011 (5)0.0025 (4)0.0009 (4)
N10.0156 (19)0.025 (2)0.0137 (18)0.0019 (18)0.0001 (15)0.0010 (18)
O10.033 (2)0.028 (2)0.0232 (18)0.0046 (17)0.0024 (16)0.0112 (16)
C10.022 (4)0.026 (4)0.055 (5)0.006 (3)0.011 (3)0.000 (3)
C20.022 (4)0.026 (4)0.055 (5)0.006 (3)0.011 (3)0.000 (3)
C30.022 (4)0.026 (4)0.055 (5)0.006 (3)0.011 (3)0.000 (3)
C40.022 (4)0.026 (4)0.055 (5)0.006 (3)0.011 (3)0.000 (3)
C50.073 (5)0.026 (4)0.052 (4)0.012 (3)0.027 (4)0.003 (3)
C60.068 (5)0.020 (4)0.127 (7)0.004 (4)0.052 (5)0.004 (4)
C70.065 (4)0.026 (3)0.032 (3)0.002 (3)0.029 (3)0.005 (3)
C80.063 (4)0.035 (4)0.047 (3)0.010 (3)0.036 (3)0.019 (3)
C90.023 (3)0.089 (6)0.042 (3)0.013 (3)0.013 (3)0.030 (4)
C100.015 (3)0.233 (13)0.049 (4)0.007 (5)0.004 (3)0.047 (6)
C110.026 (3)0.076 (6)0.037 (3)0.017 (3)0.017 (3)0.019 (3)
C120.045 (4)0.143 (9)0.058 (4)0.040 (5)0.025 (4)0.062 (5)
C130.019 (2)0.017 (3)0.011 (2)0.006 (2)0.0019 (18)0.0006 (19)
C140.016 (2)0.022 (3)0.024 (2)0.002 (2)0.004 (2)0.002 (2)
C150.028 (3)0.030 (3)0.034 (3)0.013 (2)0.001 (2)0.000 (3)
C160.032 (3)0.024 (3)0.017 (2)0.004 (2)0.004 (2)0.006 (2)
C170.034 (3)0.032 (4)0.036 (3)0.008 (3)0.003 (2)0.017 (3)
Geometric parameters (Å, º) top
W1—P12.5598 (13)C6—H6C0.9600
W1—P22.5675 (14)C7—C81.536 (8)
W1—P32.6051 (12)C7—H7A0.9700
W1—Cl12.4750 (12)C7—H7B0.9700
W1—Cl22.4703 (11)C8—H8A0.9600
W1—Cl32.4905 (11)C8—H8B0.9600
W1—N11.783 (4)C8—H8C0.9600
P1—C71.796 (5)C9—C101.531 (8)
P1—C11.834 (8)C9—H9A0.9700
P1—C51.855 (7)C9—H9B0.9700
P1—C31.936 (15)C10—H10A0.9600
P2—C91.817 (7)C10—H10B0.9600
P2—C111.822 (6)C10—H10C0.9600
P2—C41.844 (16)C11—C121.512 (8)
P2—C21.874 (9)C11—H11A0.9700
P3—C161.815 (5)C11—H11B0.9700
P3—C141.840 (5)C12—H12A0.9600
P3—C131.844 (4)C12—H12B0.9600
N1—O11.208 (5)C12—H12C0.9600
C1—C21.506 (10)C13—C13i1.535 (8)
C1—H1A0.9700C13—H13A0.9700
C1—H1B0.9700C13—H13B0.9700
C2—H2A0.9700C14—C151.516 (7)
C2—H2B0.9700C14—H14A0.9700
C3—C41.511 (10)C14—H14B0.9700
C3—H3A0.9700C15—H15A0.9600
C3—H3B0.9700C15—H15B0.9600
C4—H4A0.9700C15—H15C0.9600
C4—H4B0.9700C16—C171.514 (7)
C5—C61.450 (9)C16—H16A0.9700
C5—H5A0.9700C16—H16B0.9700
C5—H5B0.9700C17—H17A0.9600
C6—H6A0.9600C17—H17B0.9600
C6—H6B0.9600C17—H17C0.9600
N1—W1—Cl198.06 (14)P1—C5—H5B107.7
N1—W1—Cl299.08 (13)H5A—C5—H5B107.1
N1—W1—Cl3177.72 (13)C5—C6—H6A109.5
Cl1—W1—Cl2141.66 (4)C5—C6—H6B109.5
Cl2—W1—Cl382.27 (4)H6A—C6—H6B109.5
Cl1—W1—Cl381.87 (4)C5—C6—H6C109.5
N1—W1—P188.51 (14)H6A—C6—H6C109.5
Cl1—W1—P1143.71 (4)H6B—C6—H6C109.5
Cl1—W1—P271.30 (5)C8—C7—P1116.2 (4)
Cl1—W1—P373.09 (4)C8—C7—H7A108.2
Cl2—W1—P170.77 (4)P1—C7—H7A108.2
Cl2—W1—P373.54 (4)C8—C7—H7B108.2
Cl3—W1—P190.21 (4)P1—C7—H7B108.2
N1—W1—P291.41 (13)H7A—C7—H7B107.4
Cl2—W1—P2141.78 (5)C7—C8—H8A109.5
Cl3—W1—P286.41 (5)C7—C8—H8B109.5
P1—W1—P272.90 (5)H8A—C8—H8B109.5
N1—W1—P388.00 (13)C7—C8—H8C109.5
Cl3—W1—P394.16 (4)H8A—C8—H8C109.5
P1—W1—P3143.07 (4)H8B—C8—H8C109.5
P2—W1—P3143.92 (4)C10—C9—P2114.3 (6)
C7—P1—C1111.4 (4)C10—C9—H9A108.7
C7—P1—C5102.7 (3)P2—C9—H9A108.7
C1—P1—C596.5 (4)C10—C9—H9B108.7
C7—P1—C391.0 (5)P2—C9—H9B108.7
C5—P1—C3117.8 (6)H9A—C9—H9B107.6
C7—P1—W1115.9 (2)C9—C10—H10A109.5
C1—P1—W1111.2 (3)C9—C10—H10B109.5
C5—P1—W1117.3 (2)H10A—C10—H10B109.5
C3—P1—W1109.1 (5)C9—C10—H10C109.5
C9—P2—C11103.1 (3)H10A—C10—H10C109.5
C9—P2—C4121.1 (6)H10B—C10—H10C109.5
C11—P2—C493.5 (5)C12—C11—P2114.9 (5)
C9—P2—C293.5 (4)C12—C11—H11A108.5
C11—P2—C2110.1 (4)P2—C11—H11A108.5
C9—P2—W1115.3 (2)C12—C11—H11B108.5
C11—P2—W1117.4 (2)P2—C11—H11B108.5
C4—P2—W1104.9 (5)H11A—C11—H11B107.5
C2—P2—W1114.4 (3)C11—C12—H12A109.5
C16—P3—C14103.1 (2)C11—C12—H12B109.5
C16—P3—C13103.6 (2)H12A—C12—H12B109.5
C14—P3—C13101.4 (2)C11—C12—H12C109.5
C16—P3—W1110.08 (17)H12A—C12—H12C109.5
C14—P3—W1119.35 (17)H12B—C12—H12C109.5
C13—P3—W1117.34 (15)C13i—C13—P3114.4 (4)
O1—N1—W1179.3 (4)C13i—C13—H13A108.7
C2—C1—P1107.8 (7)P3—C13—H13A108.7
C2—C1—H1A110.1C13i—C13—H13B108.7
P1—C1—H1A110.1P3—C13—H13B108.7
C2—C1—H1B110.1H13A—C13—H13B107.6
P1—C1—H1B110.1C15—C14—P3115.7 (3)
H1A—C1—H1B108.5C15—C14—H14A108.3
C1—C2—P2110.7 (6)P3—C14—H14A108.3
C1—C2—H2A109.5C15—C14—H14B108.3
P2—C2—H2A109.5P3—C14—H14B108.3
C1—C2—H2B109.5H14A—C14—H14B107.4
P2—C2—H2B109.5C14—C15—H15A109.5
H2A—C2—H2B108.1C14—C15—H15B109.5
C4—C3—P1103.7 (10)H15A—C15—H15B109.5
C4—C3—H3A111.0C14—C15—H15C109.5
P1—C3—H3A111.0H15A—C15—H15C109.5
C4—C3—H3B111.0H15B—C15—H15C109.5
P1—C3—H3B111.0C17—C16—P3116.6 (4)
H3A—C3—H3B109.0C17—C16—H16A108.2
C3—C4—P296.8 (11)P3—C16—H16A108.2
C3—C4—H4A112.4C17—C16—H16B108.2
P2—C4—H4A112.4P3—C16—H16B108.2
C3—C4—H4B112.4H16A—C16—H16B107.3
P2—C4—H4B112.4C16—C17—H17A109.5
H4A—C4—H4B110.0C16—C17—H17B109.5
C6—C5—P1118.6 (5)H17A—C17—H17B109.5
C6—C5—H5A107.7C16—C17—H17C109.5
P1—C5—H5A107.7H17A—C17—H17C109.5
C6—C5—H5B107.7H17B—C17—H17C109.5
N1—W1—P1—C7169.6 (3)Cl2—W1—P3—C1436.06 (18)
Cl2—W1—P1—C769.4 (3)Cl1—W1—P3—C14163.07 (18)
Cl1—W1—P1—C788.8 (3)Cl3—W1—P3—C14116.74 (18)
Cl3—W1—P1—C712.3 (3)P1—W1—P3—C1420.84 (19)
P2—W1—P1—C798.5 (3)P2—W1—P3—C14153.66 (18)
P3—W1—P1—C784.9 (3)N1—W1—P3—C1359.1 (2)
N1—W1—P1—C161.9 (4)Cl2—W1—P3—C13159.16 (18)
Cl2—W1—P1—C1162.1 (4)Cl1—W1—P3—C1339.97 (17)
Cl1—W1—P1—C139.7 (4)Cl3—W1—P3—C13120.16 (18)
Cl3—W1—P1—C1116.2 (4)P1—W1—P3—C13143.94 (18)
P2—W1—P1—C130.0 (4)P2—W1—P3—C1330.6 (2)
P3—W1—P1—C1146.6 (4)C7—P1—C1—C277.2 (8)
N1—W1—P1—C547.8 (3)C5—P1—C1—C2176.4 (7)
Cl2—W1—P1—C552.4 (3)C3—P1—C1—C236.6 (10)
Cl1—W1—P1—C5149.4 (3)W1—P1—C1—C253.7 (8)
Cl3—W1—P1—C5134.1 (3)P1—C1—C2—P245.4 (9)
P2—W1—P1—C5139.7 (3)C9—P2—C2—C1140.7 (8)
P3—W1—P1—C536.9 (3)C11—P2—C2—C1113.9 (7)
N1—W1—P1—C389.5 (5)C4—P2—C2—C155.6 (10)
Cl2—W1—P1—C3170.3 (5)W1—P2—C2—C120.8 (9)
Cl1—W1—P1—C312.1 (5)C7—P1—C3—C4158.7 (11)
Cl3—W1—P1—C388.6 (5)C1—P1—C3—C458.6 (11)
P2—W1—P1—C32.4 (5)C5—P1—C3—C496.3 (12)
P3—W1—P1—C3174.2 (5)W1—P1—C3—C440.8 (13)
N1—W1—P2—C9172.8 (3)P1—C3—C4—P269.6 (11)
Cl2—W1—P2—C980.6 (3)C9—P2—C4—C358.9 (12)
Cl1—W1—P2—C974.7 (3)C11—P2—C4—C3166.5 (10)
Cl3—W1—P2—C97.9 (3)C2—P2—C4—C339.8 (8)
P1—W1—P2—C999.2 (3)W1—P2—C4—C373.8 (11)
P3—W1—P2—C984.2 (3)C7—P1—C5—C6170.9 (6)
N1—W1—P2—C1150.8 (3)C1—P1—C5—C675.4 (7)
Cl2—W1—P2—C11157.5 (3)C3—P1—C5—C691.1 (8)
Cl1—W1—P2—C1147.2 (3)W1—P1—C5—C642.5 (7)
Cl3—W1—P2—C11129.8 (3)C1—P1—C7—C843.2 (6)
P1—W1—P2—C11138.8 (3)C5—P1—C7—C859.1 (6)
P3—W1—P2—C1137.7 (3)C3—P1—C7—C859.7 (7)
N1—W1—P2—C451.3 (5)W1—P1—C7—C8171.6 (4)
Cl2—W1—P2—C455.3 (5)C11—P2—C9—C1055.8 (6)
Cl1—W1—P2—C4149.4 (5)C4—P2—C9—C1046.6 (8)
Cl3—W1—P2—C4128.0 (5)C2—P2—C9—C1055.7 (6)
P1—W1—P2—C436.7 (5)W1—P2—C9—C10174.8 (5)
P3—W1—P2—C4139.9 (5)C9—P2—C11—C12174.5 (6)
N1—W1—P2—C280.5 (4)C4—P2—C11—C1262.4 (8)
Cl2—W1—P2—C226.2 (4)C2—P2—C11—C1286.8 (7)
Cl1—W1—P2—C2178.5 (4)W1—P2—C11—C1246.4 (7)
Cl3—W1—P2—C298.9 (4)C16—P3—C13—C13i167.4 (5)
P1—W1—P2—C27.5 (4)C14—P3—C13—C13i85.9 (5)
P3—W1—P2—C2169.0 (4)W1—P3—C13—C13i45.9 (5)
N1—W1—P3—C16177.1 (2)C16—P3—C14—C15172.3 (4)
Cl2—W1—P3—C1682.81 (18)C13—P3—C14—C1580.6 (4)
Cl1—W1—P3—C1678.06 (18)W1—P3—C14—C1550.0 (4)
Cl3—W1—P3—C162.13 (18)C14—P3—C16—C1758.1 (5)
P1—W1—P3—C1698.03 (19)C13—P3—C16—C1747.3 (5)
P2—W1—P3—C1687.5 (2)W1—P3—C16—C17173.5 (4)
N1—W1—P3—C1464.0 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···Cl20.972.813.196 (7)105
C11—H11A···Cl10.972.713.129 (7)107
C13—H13B···Cl10.972.753.132 (5)104
C14—H14A···Cl20.972.763.150 (5)105
C13—H13A···Cl1i0.972.803.425 (5)123
C10—H10A···Cl3ii0.962.813.726 (7)161
C2—H2A···O1iii0.972.653.579 (10)161
C4—H4B···O1iii0.972.563.470 (15)156
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1/2, y, z+1/2; (iii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[W2Cl6(NO)2(C10H22P2)3]
Mr1259.10
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)183
a, b, c (Å)12.6406 (14), 17.6485 (14), 20.5243 (17)
V3)4578.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.61
Crystal size (mm)0.26 × 0.20 × 0.15
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionNumerical
(Coppens et al., 1965)
Tmin, Tmax0.329, 0.499
No. of measured, independent and
observed [I > 2σ(I)] reflections
52250, 3982, 3026
Rint0.079
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 0.85
No. of reflections3982
No. of parameters224
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 1.27

Computer programs: IPDS Software (Stoe & Cie, 1999), X-RED (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
W1—P12.5598 (13)W1—Cl32.4905 (11)
W1—P22.5675 (14)W1—N11.783 (4)
W1—P32.6051 (12)N1—O11.208 (5)
W1—Cl12.4750 (12)C13—C13i1.535 (8)
W1—Cl22.4703 (11)
N1—W1—Cl198.06 (14)Cl1—W1—P373.09 (4)
N1—W1—Cl299.08 (13)Cl2—W1—P170.77 (4)
N1—W1—Cl3177.72 (13)Cl2—W1—P373.54 (4)
Cl1—W1—Cl2141.66 (4)Cl3—W1—P190.21 (4)
Cl2—W1—Cl382.27 (4)P1—W1—P272.90 (5)
Cl1—W1—Cl381.87 (4)O1—N1—W1179.3 (4)
Cl1—W1—P271.30 (5)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···Cl20.972.813.196 (7)104.6
C11—H11A···Cl10.972.713.129 (7)106.6
C13—H13B···Cl10.972.753.132 (5)103.9
C14—H14A···Cl20.972.763.150 (5)104.8
C13—H13A···Cl1i0.972.803.425 (5)122.9
C10—H10A···Cl3ii0.962.813.726 (7)160.6
C2—H2A···O1iii0.972.653.579 (10)160.8
C4—H4B···O1iii0.972.563.470 (15)156.3
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1/2, y, z+1/2; (iii) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the University of Zürich and the Swiss National Science Foundation for financial support.

References

First citationAvramović, N., Blacque, O., Schmalle, H. W. & Berke, H. (2008). Acta Cryst. E64, m245.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBencze, L. & Kohàn, J. (1982). Inorg. Chim. Acta, 65, L17–L19.  CrossRef CAS Web of Science Google Scholar
First citationCampbell, F. L. III, Cotton, F. A. & Powell, G. L. (1985). Inorg. Chem. 24, 4384–4389.  CSD CrossRef CAS Web of Science Google Scholar
First citationCarmona, E., Gutiérrez-Puebla, E., Monge, A., Pérez, P. J. & Sanchez, L. J. (1989). Inorg. Chem. 28, 2120–2127.  CSD CrossRef CAS Web of Science Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond, pp. 215–221. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHan, J. & Coucouvanis, D. (2002). Inorg. Chem. 41, 2738–2746.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHunter, A. D. & Legzdins, P. (1984). Inorg. Chem. 23, 4198–4204.  CrossRef CAS Web of Science Google Scholar
First citationLandau, S. E., Morris, R. H. & Lough, A. J. (1999). Inorg. Chem. 38, 6060–6068.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). IPDS Software and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZeng, D., Hampden-Smith, M. J. & Larson, E. M. (1994). Acta Cryst. C50, 1000–1002.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 2| February 2008| Pages m367-m368
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds