organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Oxoisoindoline-2-carboxamide

aUniversity of the Punjab, Institute of Chemistry, Lahore 54590, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 15 February 2008; accepted 20 February 2008; online 27 February 2008)

The title mol­ecule, C9H8N2O2, is essentially planar. The crystal structure is stabilized by hydrogen bonding. An intra­molecular N—H⋯O hydrogen bond results in a six-membered ring. Each mol­ecule inter­acts with two others through N—H⋯O and C—H⋯O hydrogen bonding, resulting in the formation of nine-membered rings. These hydrogen bonds generate a two-dimensional polymeric network. There are also ππ inter­actions between the aromatic and heterocyclic rings [centroid–centroid distance 3.638 (2) Å].

Related literature

For related literature, see: Berger et al. (1999[Berger, D., Citarella, R., Dutia, M., Grenberger, L., Hallett, W., Paul, R. & Poweel, D. (1999). J. Med. Chem. 42, 2145-2161.]); Cignarella et al. (1981[Cignarella, G., Sanna, P., Miele, E., Anania, V. & Desole, M. S. (1981). J. Med. Chem. 24, 1003-1010.]); Goddard (1977[Goddard, S. J. (1977). US Patent. No. 4 032 326.]); Goddard & Levitt (1979[Goddard, S. J. & Levitt, G. (1979). US Patent. No. 4 175 948.]); Maliha et al. (2007[Maliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4728.]); Mancilla et al. (2007[Mancilla, T., Correa-Basurto, J. C., Carbajal, K. S. A., Escalante, E. T. J. S. & Ferrara, J. T. (2007). J. Mex. Chem. Soc. 51, 96-102.]); Momose (1980[Momose, T. (1980). Talanta, 27, 605-607.]); Zuman (2004[Zuman, P. (2004). Chem. Rev. 104, 3217-3238.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8N2O2

  • Mr = 176.17

  • Orthorhombic, P 21 21 21

  • a = 3.9839 (3) Å

  • b = 7.8732 (8) Å

  • c = 25.651 (2) Å

  • V = 804.58 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 (2) K

  • 0.25 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.]) Tmin = 0.975, Tmax = 0.990

  • 5461 measured reflections

  • 1254 independent reflections

  • 860 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.138

  • S = 1.07

  • 1254 reflections

  • 124 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.95 (3) 1.91 (3) 2.710 (3) 140 (2)
N2—H2B⋯O2i 0.88 (3) 2.08 (3) 2.943 (3) 167 (3)
C8—H8A⋯O2ii 0.97 2.57 3.447 (4) 151
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

A number of isoindole type compounds are known due to their wide importance in pharmaceutical industry (Berger et al., 1999; Cignarella et al., 1981). Several isoindoles have exhibited anti-inflammatory and analgesic activity (Mancilla et al., 2007). Certain substituted isoindoles have wide applications as herbicides (Goddard, 1977; Goddard et al., 1979). In continuation to our studies of ortho-phthaldehyde with various types of ureas (Maliha et al., 2007), the present compound is isolated when simple urea is reacted as given in preparation. The estimation of urea present in the biological fluids is determined with the help of color development (Momose, 1980; Zuman, 2004) when it is reacted with ortho-phthaldehyde. This fact was utilized for the formation of the title compond (I).

For comparison the best molecule is of 1-oxo-N-phenylisoindoline-2- carboxamide (Maliha et al., 2007). The bond distances in the aromatic ring (A) containing C3 are in the range of 1.379 (4) Å to 1.392 (4) Å. The formation of heterocyclic ring (B: C1/N1/C8/C7/C2) containing carbonyl group (C1?O1) and attached to ring (A), affects the bond angles in the aromatic ring. These bond angles vary in the range [118.1 (3)°-121.2 (3)°]. In this range there are three values which are compareable for diagonal atoms. The range of the bond angles in the heterocyclic ring is [1.396 (3) Å - 1.500 (4) Å], in comparison to [1.3865 (17) Å - 1.5016 (18) Å] as reported in 1-oxo-N-phenylisoindoline-2-carboxamide. The molecule is essentially planar with a maximum deviation of -0.028 (3) Å for N2. There exists an intramolecular H-bond [N2—H2A···O1], thus forming a six membered ring as shown in Fig 1. The O1-atom is not involved in intermolecular H-bonding. There exist intermolecular H-bond of N—H···O and C—H···O type as given in the Table 1. This kind of H-bond links each asymmetric unit at two places as shown in Fig 2. The distance between ring centroids of aromatic and heterocyclic is 3.638 (2) Å along the a axis, which is indication of π-π interaction.

Related literature top

For related literature, see: Berger et al. (1999); Cignarella et al. (1981); Goddard (1977); Goddard & Levitt (1979); Maliha et al. (2007); Mancilla et al. (2007); Momose (1980); Zuman (2004).

Experimental top

A mixture of o-phthaldehyde (0.67 g, 200 mmol) and urea (0.30 g, 200 mmol) in 100 ml of ethanol was refluxed for 6 h. A blue color developed. The flask contents were allowed to stand for 24 h at room temperature. A white solid was separated from the solution and was washed with ethanol,ether and hexane respectively, and dried in open air. The crystals suitable for X-ray diffraction were grown in a mixture of acetone-ethanol (1:1) by slow evaporation at room temperature. The compound is soluble in DMSO, DMF, acetone, ethyl acetate, and partially soluble in ethanol and chloroform [m.p.: 493 K, yield: 55%].

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 Å for aromatic and methylene C-atoms and constrained to ride on their parent atoms. The H-atoms attached to N2 were taken from fourier synthesis and their coordinates were refined. The thermal parameter of all H-atoms was taken 1.2 times Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The ORTEP diagram of the title compound (I) with displacement ellipsoids at 50% probability level; intramolecular interaction has been indicated by broken line. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The packing figure (PLATON: Spek, 2003) which shows the H-bonding and the π-π interaction.
1-Oxoisoindoline-2-carboxamide top
Crystal data top
C9H8N2O2F(000) = 368
Mr = 176.17Dx = 1.454 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1295 reflections
a = 3.9839 (3) Åθ = 1.6–28.6°
b = 7.8732 (8) ŵ = 0.11 mm1
c = 25.651 (2) ÅT = 296 K
V = 804.58 (13) Å3Needle, colourless
Z = 40.25 × 0.12 × 0.10 mm
Data collection top
Bruker KappaAPEXII CCD
diffractometer
1254 independent reflections
Radiation source: fine-focus sealed tube860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 7.40 pixels mm-1θmax = 28.6°, θmin = 1.6°
ω scansh = 35
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 910
Tmin = 0.975, Tmax = 0.990l = 3422
5461 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0804P)2]
where P = (Fo2 + 2Fc2)/3
1254 reflections(Δ/σ)max < 0.001
124 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H8N2O2V = 804.58 (13) Å3
Mr = 176.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.9839 (3) ŵ = 0.11 mm1
b = 7.8732 (8) ÅT = 296 K
c = 25.651 (2) Å0.25 × 0.12 × 0.10 mm
Data collection top
Bruker KappaAPEXII CCD
diffractometer
1254 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
860 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.990Rint = 0.037
5461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.23 e Å3
1254 reflectionsΔρmin = 0.22 e Å3
124 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1443 (8)0.5881 (3)0.09333 (8)0.0599 (8)
O20.3962 (6)0.7070 (2)0.24721 (7)0.0479 (7)
N10.1909 (7)0.7618 (2)0.16626 (8)0.0335 (6)
N20.3940 (9)0.4951 (3)0.18736 (10)0.0512 (8)
H2A0.346 (10)0.476 (4)0.1514 (13)0.061*
H2B0.478 (10)0.421 (4)0.2092 (14)0.061*
C10.1002 (9)0.7240 (3)0.11498 (10)0.0380 (7)
C20.0491 (8)0.8806 (3)0.09388 (10)0.0351 (7)
C30.1770 (10)0.9115 (4)0.04430 (11)0.0450 (8)
H30.17800.82690.01900.054*
C40.3025 (9)1.0715 (4)0.03378 (12)0.0491 (8)
H40.39031.09520.00100.059*
C50.2985 (9)1.1968 (4)0.07165 (12)0.0489 (9)
H50.38371.30380.06390.059*
C60.1693 (9)1.1655 (4)0.12114 (11)0.0427 (7)
H60.16521.25040.14630.051*
C70.0474 (8)1.0053 (3)0.13185 (10)0.0343 (7)
C80.1037 (9)0.9367 (3)0.18109 (9)0.0335 (7)
H8A0.30141.00060.19120.040*
H8B0.05690.93840.20950.040*
C90.3350 (8)0.6532 (3)0.20346 (10)0.0350 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.102 (2)0.0398 (11)0.0383 (10)0.0154 (14)0.0116 (14)0.0118 (9)
O20.0734 (18)0.0362 (11)0.0340 (10)0.0018 (12)0.0113 (11)0.0002 (8)
N10.0453 (16)0.0263 (10)0.0289 (10)0.0045 (11)0.0024 (10)0.0006 (8)
N20.081 (2)0.0327 (13)0.0404 (13)0.0173 (15)0.0087 (15)0.0015 (10)
C10.050 (2)0.0358 (14)0.0286 (12)0.0004 (15)0.0013 (13)0.0047 (11)
C20.0382 (18)0.0348 (14)0.0323 (12)0.0001 (13)0.0018 (13)0.0021 (11)
C30.050 (2)0.0502 (17)0.0345 (13)0.0036 (18)0.0019 (14)0.0011 (13)
C40.047 (2)0.064 (2)0.0366 (13)0.0042 (19)0.0034 (14)0.0140 (14)
C50.047 (2)0.0477 (18)0.0518 (17)0.0100 (17)0.0017 (16)0.0159 (15)
C60.0473 (19)0.0352 (14)0.0455 (15)0.0051 (16)0.0040 (15)0.0022 (12)
C70.0365 (18)0.0344 (14)0.0321 (12)0.0019 (13)0.0018 (12)0.0016 (11)
C80.0437 (19)0.0274 (12)0.0293 (11)0.0002 (14)0.0001 (12)0.0027 (10)
C90.0408 (18)0.0314 (13)0.0326 (12)0.0014 (15)0.0028 (13)0.0020 (11)
Geometric parameters (Å, º) top
O1—C11.218 (3)C3—C41.382 (4)
O2—C91.224 (3)C3—H30.9300
N1—C11.396 (3)C4—C51.385 (5)
N1—C91.404 (3)C4—H40.9300
N1—C81.470 (3)C5—C61.392 (4)
N2—C91.332 (3)C5—H50.9300
N2—H2A0.95 (3)C6—C71.379 (4)
N2—H2B0.87 (3)C6—H60.9300
C1—C21.472 (4)C7—C81.500 (4)
C2—C71.383 (4)C8—H8A0.9700
C2—C31.392 (4)C8—H8B0.9700
C1—N1—C9128.0 (2)C4—C5—C6121.2 (3)
C1—N1—C8112.5 (2)C4—C5—H5119.4
C9—N1—C8119.4 (2)C6—C5—H5119.4
C9—N2—H2A114 (2)C7—C6—C5118.3 (3)
C9—N2—H2B120 (2)C7—C6—H6120.8
H2A—N2—H2B126 (3)C5—C6—H6120.8
O1—C1—N1125.4 (3)C6—C7—C2120.5 (2)
O1—C1—C2128.8 (2)C6—C7—C8129.7 (2)
N1—C1—C2105.8 (2)C2—C7—C8109.8 (2)
C7—C2—C3121.4 (3)N1—C8—C7102.36 (19)
C7—C2—C1109.5 (2)N1—C8—H8A111.3
C3—C2—C1129.1 (2)C7—C8—H8A111.3
C4—C3—C2118.1 (3)N1—C8—H8B111.3
C4—C3—H3121.0C7—C8—H8B111.3
C2—C3—H3121.0H8A—C8—H8B109.2
C3—C4—C5120.6 (3)O2—C9—N2124.9 (3)
C3—C4—H4119.7O2—C9—N1119.6 (2)
C5—C4—H4119.7N2—C9—N1115.5 (2)
C9—N1—C1—O12.8 (5)C5—C6—C7—C8179.9 (3)
C8—N1—C1—O1179.9 (3)C3—C2—C7—C60.9 (5)
C9—N1—C1—C2178.1 (3)C1—C2—C7—C6178.8 (3)
C8—N1—C1—C21.0 (3)C3—C2—C7—C8179.9 (3)
O1—C1—C2—C7179.5 (3)C1—C2—C7—C80.4 (4)
N1—C1—C2—C70.4 (4)C1—N1—C8—C71.2 (3)
O1—C1—C2—C30.2 (6)C9—N1—C8—C7178.5 (2)
N1—C1—C2—C3179.3 (3)C6—C7—C8—N1178.1 (3)
C7—C2—C3—C40.2 (5)C2—C7—C8—N10.9 (3)
C1—C2—C3—C4179.5 (3)C1—N1—C9—O2179.3 (3)
C2—C3—C4—C50.3 (5)C8—N1—C9—O22.4 (4)
C3—C4—C5—C60.1 (5)C1—N1—C9—N20.6 (5)
C4—C5—C6—C70.6 (5)C8—N1—C9—N2177.5 (3)
C5—C6—C7—C21.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.95 (3)1.91 (3)2.710 (3)140 (2)
N2—H2B···O2i0.88 (3)2.08 (3)2.943 (3)167 (3)
C8—H8A···O2ii0.972.573.447 (4)151
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H8N2O2
Mr176.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)3.9839 (3), 7.8732 (8), 25.651 (2)
V3)804.58 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.25 × 0.12 × 0.10
Data collection
DiffractometerBruker KappaAPEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
5461, 1254, 860
Rint0.037
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.138, 1.07
No. of reflections1254
No. of parameters124
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.95 (3)1.91 (3)2.710 (3)140 (2)
N2—H2B···O2i0.88 (3)2.08 (3)2.943 (3)167 (3)
C8—H8A···O2ii0.972.573.447 (4)151
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the Higher Education Commision, Islamabad, Pakistan, for the purchase of the diffractometer.

References

First citationBerger, D., Citarella, R., Dutia, M., Grenberger, L., Hallett, W., Paul, R. & Poweel, D. (1999). J. Med. Chem. 42, 2145–2161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsion, USA.  Google Scholar
First citationCignarella, G., Sanna, P., Miele, E., Anania, V. & Desole, M. S. (1981). J. Med. Chem. 24, 1003–1010.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoddard, S. J. (1977). US Patent. No. 4 032 326.  Google Scholar
First citationGoddard, S. J. & Levitt, G. (1979). US Patent. No. 4 175 948.  Google Scholar
First citationMaliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, o4728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMancilla, T., Correa-Basurto, J. C., Carbajal, K. S. A., Escalante, E. T. J. S. & Ferrara, J. T. (2007). J. Mex. Chem. Soc. 51, 96–102.  CAS Google Scholar
First citationMomose, T. (1980). Talanta, 27, 605–607.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuman, P. (2004). Chem. Rev. 104, 3217–3238.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds