metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido[(S)-(1-phenyl­ethyl)(2-pyridyl­meth­yl)amine-κ2N,N′]zinc(II)

aDepartment of Chemistry, Kyungpook National University, Taegu 702-701, Republic of Korea
*Correspondence e-mail: jeongjh@knu.ac.kr

(Received 6 January 2008; accepted 1 February 2008; online 6 February 2008)

In the title compound, [ZnCl2(C14H16N2)], the ZnII atom is coordinated by two N atoms and two Cl atoms in an approximately tetra­hedral arrangement. The dihedral angle between the N—Zn—N and Cl—Zn—Cl planes is 88.06 (8)°. The H atoms on the chiral C atom and the adjacent N atom have an anti conformation.

Related literature

For the synthesis of (S)-2-pyridinal-1-phenyl­ethyl­imine, see: Kang et al. (2006[Kang, B., Kim, M., Lee, J., Do, Y. & Chang, S. (2006). J. Org. Chem. 71, 6721-6727.]). For related structures, see: Moreau et al. (1999[Moreau, C., Frost, C. G. & Murrer, B. (1999). Tetrahedron Lett. 40, 5617-5620.]); Mizushima et al. (1999[Mizushima, E., Ohi, H., Yamaguchi, M. & Yamagishi, T. J. (1999). J. Mol. Catal. A: Chem. 149, 43-49.]); Himeda et al. (2003[Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H., Arakawa, H. & Kasuga, K. (2003). J. Mol. Catal. A: Chem. 195, 95-100.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C14H16N2)]

  • Mr = 348.56

  • Orthorhombic, P 21 21 21

  • a = 9.2342 (6) Å

  • b = 12.5782 (10) Å

  • c = 13.4032 (8) Å

  • V = 1556.78 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.91 mm−1

  • T = 293 (2) K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (ABSCALC; McArdle & Daly, 1999[McArdle, P. & Daly, P. (1999). ABSCALC. National University of Ireland, Galway, Ireland.]) Tmin = 0.485, Tmax = 0.564

  • 1705 measured reflections

  • 1659 independent reflections

  • 1530 reflections with I > 2σ(I)

  • Rint = 0.009

  • 3 standard reflections frequency: 60 min intensity decay: 0.2%

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.080

  • S = 1.07

  • 1659 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2 Friedel pairs

  • Flack parameter: 0.018 (19)

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD (McArdle, 1999[McArdle, P. (1999). XCAD. National University of Ireland, Galway, Ireland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEXIII (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The ligand, (S)-(1-Phenylethyl)(2-pyridylmethyl)amine, was obtained from reduction of (S)-2-pyridinal-1-phenylethylimine (Kang et al., 2006) with NaBH4 in methanol solution. The ligand was used as co-ligand with another chiral ligand in Ru or Rh complexes as the catalyst for hydrogenation of ketones (Moreau et al., 1999; Mizushima et al., 1999; Himeda et al., 2003). In the crystal structure, the geometry around the ZnII ion is approximately tetrahedral with bonds being formed by two chloride ions and the pyridyl and amine nitrogen atoms of the ligand (Fig. 1). The dihedral angle between the N—Zn—N and Cl—Zn—Cl planes is 88.06 (8)°. The H atoms on the chiral carbon atom and the adjacent nitrogen atom have an anti conformation.

Related literature top

For the synthesis of (S)-2-pyridinal-1-phenylethylimine, see: Kang et al. (2006). For related structures, see: Moreau et al. (1999); Mizushima et al. (1999); Himeda et al. (2003).

Experimental top

NaBH4 (0.33 g, 8.8 mmol) was added slowly to a solution of (S)-2- pyridinal-1-phenylethylimine (1.79 g, 8.5 mmol) in methanol (15 ml). The mixture was stirred overnight, and the solvent was removed by evaporation. The residue obtained was dissolved in 20 ml distilled water and the organic product was extracted with CH2Cl2 (3 x 20 ml) and dried over anhydrous MgSO4. The solvent was evaporated to give a pale yellow oil; 1.41 g (78% yield). 1H-NMR (400 MHz, CDCl3) δ 7.39 (t, 1H, ArH), 7.26 (m, 4H, ArH), 7.17 (m,1H, ArH), 6.90 (t, 2H, ArH), 3.74 (q, J=6.56 Hz, 1H, CH), 3.59 (s, 2H, CH2), 2.45 (s, 3H, PyCH3), 2.19 (br, s, 1H, NH), 1.30 (d, J=6.56 Hz, 3H, CH3). A solution of the ligand (0.96 g, 4.5 mmol) in ethanol (5 ml) was added dropwise to a solution of ZnCl2 (0.61 g, 4.5 mmol) in ethanol (10 ml). The mixture was stirred overnight at room temperature. The solvent was removed to yield a white solid product. Colorless crystals were obtained by slowly diffusing diethyl ether into a saturated solution in acetonitrile (1.36 g, 87%). Anal. Calcd. for C14H16Cl2N2Zn: C, 48.23; H, 4.63; N, 8.04. Found: C, 48.19; H, 4.70, N, 8.01%. 1H-NMR (400 MHz, CD3CN) δ 7.89 (m, 1H, ArH), 7.44 (m, 6H, ArH), 7,16 (d, J=7.79 Hz, 1H, ArH), 4.15 (m, 2H, NH & CH), 3.77 (m, 2H, CH2), 2.78 (s, 3H, PyCH3), 1.70 (d, J=3.24 Hz, CH3).

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for C(sp2)H, C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3, and N—H = 0.91 Å, Uiso(H) = 1.2Ueq(N) for NH atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD (McArdle, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEXIII (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure. Displacement ellipsoids are drawn at the 40% probability level.
Dichlorido[(S)-(1-phenylethyl)(2-pyridylmethyl)amine- κ2N,N']zinc(II) top
Crystal data top
[ZnCl2(C14H16N2)]F(000) = 712
Mr = 348.56Dx = 1.487 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 9.2342 (6) Åθ = 9.9–13.0°
b = 12.5782 (10) ŵ = 1.91 mm1
c = 13.4032 (8) ÅT = 293 K
V = 1556.78 (18) Å3Block, colorless
Z = 40.40 × 0.40 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1530 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.009
Graphite monochromatorθmax = 25.5°, θmin = 2.2°
ω/2θ scansh = 011
Absorption correction: ψ scan
(ABSCALC; McArdle & Daly, 1999)
k = 140
Tmin = 0.485, Tmax = 0.564l = 015
1705 measured reflections3 standard reflections every 60 min
1659 independent reflections intensity decay: 0.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.2097P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1659 reflectionsΔρmax = 0.56 e Å3
173 parametersΔρmin = 0.57 e Å3
0 restraintsAbsolute structure: Flack (1983), 2 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.018 (19)
Crystal data top
[ZnCl2(C14H16N2)]V = 1556.78 (18) Å3
Mr = 348.56Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.2342 (6) ŵ = 1.91 mm1
b = 12.5782 (10) ÅT = 293 K
c = 13.4032 (8) Å0.40 × 0.40 × 0.30 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1530 reflections with I > 2σ(I)
Absorption correction: ψ scan
(ABSCALC; McArdle & Daly, 1999)
Rint = 0.009
Tmin = 0.485, Tmax = 0.5643 standard reflections every 60 min
1705 measured reflections intensity decay: 0.2%
1659 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.56 e Å3
S = 1.07Δρmin = 0.57 e Å3
1659 reflectionsAbsolute structure: Flack (1983), 2 Friedel pairs
173 parametersAbsolute structure parameter: 0.018 (19)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.04578 (5)0.93541 (3)0.73653 (3)0.04068 (15)
Cl10.15959 (12)0.94695 (8)0.65366 (7)0.0527 (3)
Cl20.14716 (13)1.08625 (8)0.78507 (9)0.0584 (3)
N10.1861 (4)0.8349 (3)0.6668 (2)0.0464 (8)
N20.0324 (3)0.8129 (2)0.8414 (2)0.0339 (6)
H2N0.04960.77550.82790.041*
C10.2413 (6)0.8436 (4)0.5749 (3)0.0640 (13)
H10.22700.90680.54020.077*
C20.3170 (7)0.7649 (4)0.5300 (4)0.0749 (15)
H20.35250.77360.46560.090*
C30.3405 (6)0.6719 (4)0.5811 (4)0.0653 (13)
H30.39120.61620.55170.078*
C40.2874 (5)0.6627 (3)0.6769 (3)0.0465 (9)
H40.30380.60130.71370.056*
C50.2098 (4)0.7455 (3)0.7174 (3)0.0359 (8)
C60.1564 (4)0.7408 (3)0.8239 (3)0.0378 (8)
H6A0.12760.66850.83940.045*
H6B0.23490.76010.86850.045*
C70.0213 (4)0.8512 (3)0.9465 (3)0.0371 (8)
H70.10600.89600.95940.045*
C80.1117 (5)0.9209 (4)0.9566 (3)0.0579 (11)
H8A0.10470.97950.91100.087*
H8B0.11800.94741.02360.087*
H8C0.19670.87990.94150.087*
C90.0207 (4)0.7636 (3)1.0248 (3)0.0367 (8)
C100.0433 (4)0.6656 (3)1.0102 (3)0.0439 (8)
H100.08360.64940.94850.053*
C110.0482 (5)0.5911 (4)1.0863 (3)0.0546 (10)
H110.09180.52551.07530.065*
C120.0112 (5)0.6139 (4)1.1780 (3)0.0608 (13)
H120.00740.56411.22930.073*
C130.0767 (5)0.7114 (4)1.1932 (3)0.0581 (12)
H130.11830.72701.25470.070*
C140.0804 (5)0.7855 (4)1.1175 (3)0.0492 (10)
H140.12370.85111.12870.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0526 (3)0.0350 (2)0.0345 (2)0.00634 (18)0.00028 (19)0.00188 (16)
Cl10.0638 (6)0.0493 (5)0.0448 (5)0.0054 (5)0.0134 (5)0.0018 (4)
Cl20.0673 (6)0.0459 (5)0.0621 (6)0.0077 (5)0.0033 (5)0.0040 (5)
N10.056 (2)0.0442 (17)0.0388 (16)0.0054 (16)0.0066 (15)0.0006 (14)
N20.0335 (14)0.0380 (16)0.0300 (14)0.0003 (12)0.0007 (12)0.0015 (11)
C10.090 (3)0.062 (3)0.040 (2)0.018 (3)0.018 (2)0.015 (2)
C20.107 (4)0.076 (3)0.042 (2)0.022 (3)0.023 (3)0.008 (2)
C30.083 (3)0.061 (3)0.051 (3)0.018 (3)0.016 (3)0.009 (2)
C40.062 (2)0.042 (2)0.0356 (19)0.0057 (19)0.0047 (18)0.0014 (16)
C50.0412 (18)0.0338 (16)0.0327 (17)0.0011 (14)0.0002 (15)0.0014 (14)
C60.0420 (19)0.0367 (18)0.0347 (18)0.0029 (16)0.0051 (16)0.0003 (15)
C70.0389 (18)0.0400 (18)0.0324 (17)0.0009 (15)0.0027 (15)0.0043 (14)
C80.068 (3)0.058 (3)0.048 (2)0.025 (2)0.011 (2)0.006 (2)
C90.0335 (17)0.046 (2)0.0304 (17)0.0053 (15)0.0034 (15)0.0004 (15)
C100.0431 (19)0.047 (2)0.0415 (19)0.0011 (18)0.0057 (18)0.0013 (16)
C110.060 (2)0.048 (2)0.056 (2)0.006 (2)0.011 (2)0.0083 (19)
C120.065 (3)0.071 (3)0.047 (2)0.027 (2)0.012 (2)0.017 (2)
C130.063 (3)0.079 (3)0.0326 (19)0.015 (3)0.0036 (19)0.000 (2)
C140.046 (2)0.061 (2)0.040 (2)0.0008 (19)0.0015 (18)0.0048 (19)
Geometric parameters (Å, º) top
Zn—N12.037 (3)C6—H6B0.970
Zn—N22.089 (3)C7—C81.516 (5)
Zn—Cl12.2025 (12)C7—C91.522 (5)
Zn—Cl22.2134 (11)C7—H70.980
N1—C51.332 (5)C8—H8A0.960
N1—C11.338 (5)C8—H8B0.960
N2—C61.479 (4)C8—H8C0.960
N2—C71.492 (4)C9—C101.380 (5)
N2—H2N0.910C9—C141.387 (5)
C1—C21.354 (7)C10—C111.386 (6)
C1—H10.930C10—H100.930
C2—C31.373 (7)C11—C121.377 (7)
C2—H20.930C11—H110.930
C3—C41.379 (6)C12—C131.382 (8)
C3—H30.930C12—H120.930
C4—C51.375 (5)C13—C141.378 (6)
C4—H40.930C13—H130.930
C5—C61.511 (5)C14—H140.930
C6—H6A0.970
N1—Zn—N283.58 (12)N2—C6—H6B109.2
N1—Zn—Cl1110.92 (11)C5—C6—H6B109.2
N2—Zn—Cl1109.70 (9)H6A—C6—H6B107.9
N1—Zn—Cl2113.45 (11)N2—C7—C8109.1 (3)
N2—Zn—Cl2117.35 (9)N2—C7—C9114.7 (3)
Cl1—Zn—Cl2117.13 (4)C8—C7—C9110.8 (3)
C5—N1—C1118.4 (4)N2—C7—H7107.3
C5—N1—Zn113.3 (2)C8—C7—H7107.3
C1—N1—Zn127.9 (3)C9—C7—H7107.3
C6—N2—C7113.6 (3)C7—C8—H8A109.5
C6—N2—Zn107.5 (2)C7—C8—H8B109.5
C7—N2—Zn113.7 (2)H8A—C8—H8B109.5
C6—N2—H2N107.3C7—C8—H8C109.5
C7—N2—H2N107.3H8A—C8—H8C109.5
Zn—N2—H2N107.3H8B—C8—H8C109.5
N1—C1—C2123.1 (4)C10—C9—C14118.3 (4)
N1—C1—H1118.4C10—C9—C7123.4 (3)
C2—C1—H1118.4C14—C9—C7118.2 (4)
C1—C2—C3118.9 (4)C9—C10—C11120.9 (4)
C1—C2—H2120.5C9—C10—H10119.5
C3—C2—H2120.5C11—C10—H10119.5
C2—C3—C4118.6 (4)C12—C11—C10120.2 (4)
C2—C3—H3120.7C12—C11—H11119.9
C4—C3—H3120.7C10—C11—H11119.9
C3—C4—C5119.4 (4)C11—C12—C13119.4 (4)
C3—C4—H4120.3C11—C12—H12120.3
C5—C4—H4120.3C13—C12—H12120.3
N1—C5—C4121.6 (3)C14—C13—C12120.2 (4)
N1—C5—C6117.4 (3)C14—C13—H13119.9
C4—C5—C6120.9 (3)C12—C13—H13119.9
N2—C6—C5112.2 (3)C13—C14—C9121.0 (4)
N2—C6—H6A109.2C13—C14—H14119.5
C5—C6—H6A109.2C9—C14—H14119.5
N2—Zn—N1—C52.7 (3)C3—C4—C5—C6176.8 (4)
Cl1—Zn—N1—C5111.4 (3)C7—N2—C6—C5152.2 (3)
Cl2—Zn—N1—C5114.3 (3)Zn—N2—C6—C525.6 (3)
N2—Zn—N1—C1169.4 (5)N1—C5—C6—N226.0 (4)
Cl1—Zn—N1—C160.7 (5)C4—C5—C6—N2157.8 (3)
Cl2—Zn—N1—C173.5 (5)C6—N2—C7—C8178.0 (3)
N1—Zn—N2—C615.9 (2)Zn—N2—C7—C858.7 (4)
Cl1—Zn—N2—C6125.8 (2)C6—N2—C7—C953.2 (4)
Cl2—Zn—N2—C697.2 (2)Zn—N2—C7—C9176.4 (2)
N1—Zn—N2—C7142.5 (3)N2—C7—C9—C1034.9 (5)
Cl1—Zn—N2—C7107.6 (2)C8—C7—C9—C1089.0 (4)
Cl2—Zn—N2—C729.3 (3)N2—C7—C9—C14148.8 (4)
C5—N1—C1—C21.7 (8)C8—C7—C9—C1487.2 (4)
Zn—N1—C1—C2170.0 (4)C14—C9—C10—C110.2 (6)
N1—C1—C2—C30.9 (10)C7—C9—C10—C11176.1 (4)
C1—C2—C3—C40.8 (9)C9—C10—C11—C120.1 (6)
C2—C3—C4—C51.6 (8)C10—C11—C12—C130.5 (7)
C1—N1—C5—C40.8 (6)C11—C12—C13—C140.9 (7)
Zn—N1—C5—C4172.1 (3)C12—C13—C14—C90.8 (7)
C1—N1—C5—C6175.4 (4)C10—C9—C14—C130.2 (6)
Zn—N1—C5—C611.7 (4)C7—C9—C14—C13176.7 (4)
C3—C4—C5—N10.8 (6)

Experimental details

Crystal data
Chemical formula[ZnCl2(C14H16N2)]
Mr348.56
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.2342 (6), 12.5782 (10), 13.4032 (8)
V3)1556.78 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(ABSCALC; McArdle & Daly, 1999)
Tmin, Tmax0.485, 0.564
No. of measured, independent and
observed [I > 2σ(I)] reflections
1705, 1659, 1530
Rint0.009
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.07
No. of reflections1659
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.57
Absolute structureFlack (1983), 2 Friedel pairs
Absolute structure parameter0.018 (19)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD (McArdle, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEXIII (McArdle, 1995).

 

References

First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHimeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H., Arakawa, H. & Kasuga, K. (2003). J. Mol. Catal. A: Chem. 195, 95–100.  Google Scholar
First citationKang, B., Kim, M., Lee, J., Do, Y. & Chang, S. (2006). J. Org. Chem. 71, 6721–6727.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (1999). XCAD. National University of Ireland, Galway, Ireland.  Google Scholar
First citationMcArdle, P. & Daly, P. (1999). ABSCALC. National University of Ireland, Galway, Ireland.  Google Scholar
First citationMizushima, E., Ohi, H., Yamaguchi, M. & Yamagishi, T. J. (1999). J. Mol. Catal. A: Chem. 149, 43–49.  Google Scholar
First citationMoreau, C., Frost, C. G. & Murrer, B. (1999). Tetrahedron Lett. 40, 5617–5620.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds