organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Nitro­phen­yl)-3-(phenyl­sulfon­yl)but-3-en-2-one

aCollege of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, People's Republic of China, and bCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: river0301@163.com

(Received 29 November 2007; accepted 26 February 2008; online 29 February 2008)

The C=C double bond in the title mol­ecule, C16H13NO5S, has an E configuration. The crystal structure is stabilized by C—H⋯O hydrogen bonds. There is also a weak C—H⋯π-ring inter­action in the structure.

Related literature

For related literature, see: Pei (1998[Pei, W. (1998). Chem. J. Chin. Univ. 19, 402-404.]). For the chemical preparation, see: Wada et al. (1996[Wada, E., Pei, W., Yasuoka, H., Chin, U. & Kanemasa, S. (1996). Tetrahedron, 52, 1205-1220.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NO5S

  • Mr = 331.34

  • Monoclinic, P 21 /n

  • a = 7.957 (2) Å

  • b = 10.580 (3) Å

  • c = 18.271 (6) Å

  • β = 95.976 (14)°

  • V = 1529.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 298 (1) K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.923, Tmax = 0.954

  • 14836 measured reflections

  • 3507 independent reflections

  • 2890 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.05

  • 3507 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O4i 0.93 2.60 3.104 (2) 114
C8—H8⋯O5ii 0.93 2.53 3.321 (2) 143
C10—H10⋯O3iii 0.93 2.54 3.364 (2) 148
C13—H13⋯O5iii 0.93 2.59 3.433 (2) 152
C12—H12⋯O4 0.93 2.52 2.903 (2) 105
C16—H16⋯O4i 0.93 2.60 3.524 (2) 176
C9—H9⋯Cg1ii 0.93 2.80 3.608 (2) 145
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z. Cg1 is the centroid of the C11–C16 phenyl ring.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Phenylsulfonyl-3-alken-2-ones have been used as asymmetric synthetic reagents (Wada et al., 1996) as well as electron-deficient dienophiles. They have been applied in asymmetric Diels–Alder chemistry (Pei, 1998). The title compound has been prepared and studied in order to get a better understanding about the synthesis of phenylsulfonyl-3-alken-2-ones. The molecular structure, Fig. 1, shows that an E-configuration is present on the C=C double bond between the atoms C1 and C4. There is also present a C—H···π-electron ring interaction in the structure. It involves the phenyl ring C11–C16 with centroid Cg1 (Table 1).

Related literature top

For related literature, see: Pei (1998). For chemical preparation, see:Wada et al. (1996).

Experimental top

The title compound was prepared according to the procedure of Wada et al. (1996). Diffraction quality crystals were obtained by recrystallization from ethanol solution by slow evaporation at room temperature. The average dimension of the block crystals was about 0.2 mm.

Refinement top

All the H atoms were discerned in the difference Fourier map. Nevertheless, the H atoms were positioned into the idealized positions and their parameters were constrained in riding-mode approximation. The constraints: C—Haryl,alkenyl)=0.93 and C—Hmethyl=0.96 Å. Uiso(Haryl,Halkenyl)= 1.2Ueq(Caryl,Calkenyl) and Uiso(Hmetyl)=1.5Ueq(Cmethyl).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004).

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the atom labelling scheme. The displacement ellipsoids are drawn at the 40% probability level.
4-(3-Nitrophenyl)-3-(phenylsulfonyl)but-3-en-2-one top
Crystal data top
C16H13NO5SF(000) = 688.00
Mr = 331.34Dx = 1.439 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 12472 reflections
a = 7.957 (2) Åθ = 3.2–27.5°
b = 10.580 (3) ŵ = 0.24 mm1
c = 18.271 (6) ÅT = 298 K
β = 95.976 (14)°Block, colourless
V = 1529.7 (8) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3507 independent reflections
Graphite monochromator2890 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.027
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 810
Tmin = 0.923, Tmax = 0.954k = 1313
14836 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.4387P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3507 reflectionsΔρmax = 0.34 e Å3
210 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
42 constraintsExtinction coefficient: 0.0097 (17)
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H13NO5SV = 1529.7 (8) Å3
Mr = 331.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.957 (2) ŵ = 0.24 mm1
b = 10.580 (3) ÅT = 298 K
c = 18.271 (6) Å0.25 × 0.20 × 0.20 mm
β = 95.976 (14)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3507 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2890 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.954Rint = 0.027
14836 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
3507 reflectionsΔρmin = 0.40 e Å3
210 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.84122 (5)0.43647 (4)0.25330 (2)0.03894 (14)
O10.99494 (16)0.40871 (14)0.10399 (8)0.0607 (4)
O20.02708 (17)0.12269 (16)0.11304 (9)0.0674 (4)
O30.02286 (17)0.14516 (19)0.00423 (9)0.0806 (5)
O40.89564 (17)0.56378 (11)0.24210 (8)0.0568 (4)
O50.72060 (15)0.41361 (14)0.30472 (7)0.0566 (4)
N10.07214 (18)0.14380 (15)0.05295 (9)0.0508 (4)
C10.75310 (18)0.37984 (14)0.16622 (8)0.0349 (3)
C20.8455 (2)0.42725 (15)0.10363 (9)0.0418 (4)
C30.7499 (3)0.5076 (2)0.04658 (14)0.0770 (7)
H310.81050.51210.00390.116*
H320.73710.59100.06590.116*
H330.64040.47130.03320.116*
C40.61399 (18)0.30895 (15)0.16516 (8)0.0370 (3)
H40.57390.29560.21060.044*
C50.51608 (18)0.24949 (14)0.10202 (8)0.0357 (3)
C60.34611 (19)0.22278 (15)0.10721 (9)0.0376 (3)
H60.29740.24060.15020.045*
C70.25178 (19)0.16961 (15)0.04761 (9)0.0385 (3)
C80.3182 (2)0.13919 (17)0.01672 (9)0.0473 (4)
H80.25070.10520.05650.057*
C90.4884 (2)0.16088 (19)0.02025 (10)0.0526 (4)
H90.53740.13860.06250.063*
C100.5862 (2)0.21504 (17)0.03795 (10)0.0462 (4)
H100.70050.22890.03460.055*
C111.02028 (18)0.34291 (15)0.28003 (8)0.0369 (3)
C121.1754 (2)0.40079 (18)0.29545 (9)0.0453 (4)
H121.18830.48670.28680.054*
C131.3113 (2)0.3282 (2)0.32406 (11)0.0590 (5)
H131.41680.36540.33500.071*
C141.2909 (3)0.2017 (2)0.33632 (12)0.0655 (6)
H141.38240.15380.35630.079*
C151.1369 (3)0.1452 (2)0.31942 (13)0.0658 (6)
H151.12520.05890.32710.079*
C160.9995 (2)0.21509 (17)0.29120 (11)0.0524 (4)
H160.89470.17700.27990.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0325 (2)0.0432 (2)0.0403 (2)0.00241 (15)0.00025 (15)0.00634 (16)
O10.0424 (7)0.0742 (9)0.0676 (9)0.0004 (6)0.0163 (6)0.0104 (7)
O20.0468 (7)0.0850 (11)0.0725 (10)0.0159 (7)0.0157 (7)0.0016 (8)
O30.0393 (7)0.1266 (15)0.0713 (10)0.0022 (8)0.0154 (7)0.0245 (10)
O40.0583 (8)0.0375 (6)0.0717 (9)0.0017 (5)0.0075 (7)0.0083 (6)
O50.0395 (6)0.0887 (10)0.0420 (7)0.0056 (6)0.0062 (5)0.0108 (6)
N10.0348 (7)0.0560 (9)0.0606 (10)0.0022 (6)0.0003 (7)0.0121 (7)
C10.0321 (7)0.0371 (7)0.0346 (7)0.0026 (6)0.0009 (6)0.0016 (6)
C20.0411 (8)0.0418 (8)0.0423 (9)0.0043 (7)0.0038 (7)0.0017 (6)
C30.0709 (14)0.0856 (16)0.0746 (15)0.0032 (12)0.0080 (12)0.0424 (13)
C40.0335 (7)0.0425 (8)0.0344 (7)0.0013 (6)0.0012 (6)0.0035 (6)
C50.0325 (7)0.0384 (7)0.0355 (7)0.0008 (6)0.0004 (6)0.0036 (6)
C60.0345 (7)0.0437 (8)0.0348 (8)0.0007 (6)0.0047 (6)0.0001 (6)
C70.0319 (7)0.0412 (8)0.0413 (8)0.0020 (6)0.0006 (6)0.0001 (6)
C80.0476 (9)0.0549 (10)0.0377 (8)0.0027 (8)0.0039 (7)0.0071 (7)
C90.0516 (10)0.0671 (12)0.0406 (9)0.0026 (9)0.0128 (8)0.0096 (8)
C100.0356 (8)0.0568 (10)0.0472 (9)0.0010 (7)0.0086 (7)0.0031 (8)
C110.0317 (7)0.0447 (8)0.0336 (7)0.0004 (6)0.0004 (6)0.0030 (6)
C120.0347 (8)0.0575 (10)0.0435 (9)0.0072 (7)0.0031 (7)0.0021 (7)
C130.0308 (8)0.0930 (16)0.0526 (11)0.0023 (9)0.0016 (7)0.0053 (10)
C140.0525 (11)0.0838 (15)0.0587 (12)0.0304 (11)0.0011 (9)0.0044 (11)
C150.0724 (14)0.0492 (11)0.0744 (14)0.0161 (10)0.0006 (11)0.0012 (9)
C160.0471 (10)0.0451 (9)0.0633 (11)0.0017 (7)0.0020 (8)0.0047 (8)
Geometric parameters (Å, º) top
S1—O51.4317 (13)C6—H60.9300
S1—O41.4360 (13)C7—C81.376 (2)
S1—C111.7617 (16)C8—C91.382 (3)
S1—C11.7747 (16)C8—H80.9300
O1—C21.204 (2)C9—C101.375 (2)
O2—N11.211 (2)C9—H90.9300
O3—N11.224 (2)C10—H100.9300
N1—C71.468 (2)C11—C161.380 (2)
C1—C41.335 (2)C11—C121.381 (2)
C1—C21.508 (2)C12—C131.384 (3)
C2—C31.491 (3)C12—H120.9300
C3—H310.9600C13—C141.369 (3)
C3—H320.9600C13—H130.9300
C3—H330.9600C14—C151.369 (3)
C4—C51.465 (2)C14—H140.9300
C4—H40.9300C15—C161.375 (3)
C5—C61.394 (2)C15—H150.9300
C5—C101.396 (2)C16—H160.9300
C6—C71.377 (2)
O5—S1—O4118.99 (9)C8—C7—C6123.02 (15)
O5—S1—C11107.53 (8)C8—C7—N1118.44 (14)
O4—S1—C11108.63 (8)C6—C7—N1118.54 (14)
O5—S1—C1107.57 (8)C7—C8—C9117.81 (15)
O4—S1—C1106.61 (8)C7—C8—H8121.1
C11—S1—C1106.95 (7)C9—C8—H8121.1
O2—N1—O3124.14 (16)C10—C9—C8120.74 (16)
O2—N1—C7118.48 (15)C10—C9—H9119.6
O3—N1—C7117.38 (16)C8—C9—H9119.6
C4—C1—C2130.13 (14)C9—C10—C5120.92 (15)
C4—C1—S1116.88 (12)C9—C10—H10119.5
C2—C1—S1112.89 (11)C5—C10—H10119.5
O1—C2—C3121.90 (17)C16—C11—C12121.53 (15)
O1—C2—C1120.05 (15)C16—C11—S1119.05 (12)
C3—C2—C1117.76 (16)C12—C11—S1119.18 (13)
C2—C3—H31109.5C11—C12—C13118.54 (18)
C2—C3—H32109.5C11—C12—H12120.7
H31—C3—H32109.5C13—C12—H12120.7
C2—C3—H33109.5C14—C13—C12120.20 (18)
H31—C3—H33109.5C14—C13—H13119.9
H32—C3—H33109.5C12—C13—H13119.9
C1—C4—C5128.65 (14)C15—C14—C13120.55 (18)
C1—C4—H4115.7C15—C14—H14119.7
C5—C4—H4115.7C13—C14—H14119.7
C6—C5—C10118.61 (14)C14—C15—C16120.5 (2)
C6—C5—C4118.26 (14)C14—C15—H15119.7
C10—C5—C4123.10 (14)C16—C15—H15119.7
C7—C6—C5118.80 (14)C15—C16—C11118.64 (18)
C7—C6—H6120.6C15—C16—H16120.7
C5—C6—H6120.6C11—C16—H16120.7
O4—S1—C1—C236.47 (12)C4—C1—C2—C358.5 (2)
O4—S1—C1—C4140.16 (11)C1—C4—C5—C6155.46 (15)
O4—S1—C11—C128.06 (15)C1—C4—C5—C1026.5 (2)
O4—S1—C11—C16177.55 (14)C4—C5—C6—C7178.54 (13)
O5—S1—C1—C2165.12 (10)C4—C5—C10—C9179.12 (15)
O5—S1—C1—C411.50 (13)C6—C5—C10—C92.9 (2)
O5—S1—C11—C12121.99 (13)C10—C5—C6—C73.4 (2)
O5—S1—C11—C1652.59 (15)C5—C6—C7—N1178.84 (13)
C1—S1—C11—C12122.77 (13)C5—C6—C7—C81.3 (2)
C1—S1—C11—C1662.81 (15)N1—C7—C8—C9178.34 (14)
C11—S1—C1—C279.59 (11)C6—C7—C8—C91.6 (2)
C11—S1—C1—C4103.79 (12)C7—C8—C9—C102.2 (2)
O2—N1—C7—C628.2 (2)C8—C9—C10—C50.0 (2)
O2—N1—C7—C8151.86 (15)S1—C11—C12—C13173.00 (13)
O3—N1—C7—C6151.83 (16)S1—C11—C16—C15173.37 (15)
O3—N1—C7—C828.2 (2)C12—C11—C16—C151.0 (2)
S1—C1—C2—O156.37 (18)C16—C11—C12—C131.3 (2)
S1—C1—C2—C3117.54 (15)C11—C12—C13—C140.2 (2)
S1—C1—C4—C5179.53 (12)C12—C13—C14—C151.0 (3)
C2—C1—C4—C54.5 (2)C13—C14—C15—C161.3 (3)
C4—C1—C2—O1127.56 (18)C14—C15—C16—C110.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.932.603.104 (2)114
C8—H8···O5ii0.932.533.321 (2)143
C10—H10···O3iii0.932.543.364 (2)148
C13—H13···O5iii0.932.593.433 (2)152
C12—H12···O40.932.522.903 (2)105
C16—H16···O4i0.932.603.524 (2)176
C9—H9···Cg1ii0.932.803.608 (2)145
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H13NO5S
Mr331.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.957 (2), 10.580 (3), 18.271 (6)
β (°) 95.976 (14)
V3)1529.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.923, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
14836, 3507, 2890
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.05
No. of reflections3507
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.40

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O4i0.932.6033.104 (2)114
C8—H8···O5ii0.932.5303.321 (2)143
C10—H10···O3iii0.932.5413.364 (2)148
C13—H13···O5iii0.932.5863.433 (2)152
C12—H12···O40.932.522.903 (2)105
C16—H16···O4i0.932.603.524 (2)176
C9—H9···Cg1ii0.932.803.608 (2)145
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y, z.
 

Acknowledgements

This work was supported by the Open Foundation of the Key Discipline of Industrial Catalysis.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationPei, W. (1998). Chem. J. Chin. Univ. 19, 402–404.  CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWada, E., Pei, W., Yasuoka, H., Chin, U. & Kanemasa, S. (1996). Tetrahedron, 52, 1205–1220.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds