metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m455-m456

Di­chlorido(9-methyl­adenine-κN7)(η5-penta­methyl­cyclo­penta­dien­yl)iridium(III) di­chloro­methane solvate

aUniversität Kassel, FB 18, Naturwissenschaften, Abt. Metallorganische Chemie, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany, and bMartin-Luther-Universität Halle-Wittenberg, Institut für Chemie–Anorganische Chemie, Kurt-Mothes-Strasse 2, 06120 Halle, Germany
*Correspondence e-mail: dirk.steinborn@chemie.uni-halle.de

(Received 9 January 2008; accepted 4 February 2008; online 6 February 2008)

In the title complex, [Ir(C10H15)Cl2(C6H7N5)]·CH2Cl2 or [Ir(η5-C5Me5)Cl2(9-MeAde-κN7)]·CH2Cl2 (9-MeAde = 9-methyl­adenine), the coordination geometry of the IrIII atom approximates to a three-legged piano stool. The 9-methyl­adenine ligand is coordinated in a monodentate fashion to the Ir centre through its N-7 atom. The crystal structure contains centrosymmetric pairs of mol­ecules, inter­acting through two N—H⋯N hydrogen bonds. An intra­molecular N—H⋯Cl hydrogen bond is formed between the H atom of an NH2 group and a chlorido ligand. Further short intra- and inter­molecular C—H⋯Cl contacts are observed.

Related literature

For background information, see: Lippert (2000[Lippert, B. (2000). Coord. Chem. Rev. 200-202, 487-516.]); Houlton (2002[Houlton, A. (2002). Adv. Inorg. Chem. 53, 87-158.]). For related literature, see: Zhu et al. (2002[Zhu, X., Rusanov, E., Kluge, R., Schmidt, H. & Steinborn, D. (2002). Inorg. Chem. 41, 2667-2671.]); Gaballa et al. (2004[Gaballa, A., Schmidt, H., Hempel, G., Reichert, D., Wagner, C., Rusanov, E. & Steinborn, D. (2004). J. Inorg. Biochem. 98, 439-446.], 2008[Gaballa, A. S., Schmidt, H., Wagner, C. & Steinborn, D. (2008). Inorg. Chim. Acta, doi:10.1016/j.ica.2007.10.023.]); Aakeröy et al. (1999[Aakeröy, C. B., Evans, T. A., Seddon, K. R. & Palinko, I. (1999). New J. Chem. pp. 145-152.]); Baldovino-Pantaleon et al. (2007[Baldovino-Pantaleon, O., Morales-Morales, D., Hernandez-Ortega, S., Toscano, R. A. & Valdes-Martinez, J. (2007). Cryst. Growth Des. 7, 117-123.]); Davies et al. (2003[Davies, D. L., Al-Duaij, O., Fawcett, J., Giardiello, M., Hilton, S. T. & Russell, D. R. (2003). Dalton Trans. pp. 4132-4138.]); Huang et al. (1998[Huang, L.-Y., Aulwurm, U. R., Heinemann, F. W., Knoch, F. & Kisch, H. (1998). Chem. Eur. J. 4, 1641-1646.]); Jeffrey & Saenger (1994[Jeffrey, G. A. & Saenger, W. (1994). Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.]); Kistenmacher & Rossi (1977[Kistenmacher, T. J. & Rossi, M. (1977). Acta Cryst. B33, 253-256.]); McMullan et al. (1980[McMullan, R. K., Benci, P. & Craven, B. M. (1980). Acta Cryst. B36, 1424-1430.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C10H15)Cl2(C6H7N5)]·CH2Cl2

  • Mr = 632.41

  • Triclinic, [P \overline 1]

  • a = 7.294 (2) Å

  • b = 11.8698 (14) Å

  • c = 13.649 (3) Å

  • α = 71.338 (15)°

  • β = 83.83 (3)°

  • γ = 78.003 (14)°

  • V = 1094.0 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.60 mm−1

  • T = 200 (2) K

  • 0.19 × 0.15 × 0.13 mm

Data collection
  • Stoe STADI-4 diffractometer

  • Absorption correction: multi-scan (X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.32, Tmax = 0.43

  • 4132 measured reflections

  • 3807 independent reflections

  • 3246 reflections with I > 2σ(I)

  • Rint = 0.068

  • 1 standard reflections frequency: 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.125

  • S = 1.13

  • 3807 reflections

  • 250 parameters

  • H-atom parameters constrained

  • Δρmax = 2.87 e Å−3

  • Δρmin = −3.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

C10—Ir 2.127 (10)
C11—Ir 2.165 (10)
C12—Ir 2.164 (10)
C13—Ir 2.159 (11)
C14—Ir 2.153 (10)
Cl1—Ir 2.402 (3)
Cl2—Ir 2.423 (3)
N7—Ir 2.152 (8)
N7—Ir—Cl1 86.0 (2)
N7—Ir—Cl2 91.0 (2)
Cl1—Ir—Cl2 85.72 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯N1i 0.88 2.14 3.007 (13) 170
N6—H6B⋯Cl2 0.88 2.35 3.168 (10) 155
C8—H8⋯Cl1 0.95 2.77 3.237 (11) 111
C8—H8⋯Cl1ii 0.95 2.65 3.537 (11) 156
C9—H9B⋯Cl3iii 0.98 2.75 3.697 (13) 163
C20—H20B⋯Cl1ii 0.99 2.75 3.519 (15) 135
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y, -z+1.

Data collection: STADI4 (Stoe & Cie, 2002[Stoe & Cie (2002). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: STADI4 (Stoe & Cie, 2002[Stoe & Cie (2002). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Due to their importance in chemotherapy, nucleobase complexes of platinum and other transition metals attract attention. We are interested in syntheses and characterization of such complexes having, especially, metals in higher oxidation states (Zhu et al., 2002; Gaballa et al., 2004; Gaballa et al., 2007). The iridium(III) title complex [IrCl2(η5-C5Me5)(9-MeAde-κN7)].CH2Cl2 (see Figure 1) crystallizes in the triclinic space group P1. Crystals contain centrosymmetric dinuclear molecules (see Figure 2). The coordination geometry of the iridium center approximates a three-legged piano stool, the irdium atom being directly bound to two chloro ligands, to a N7 coordinated 9-methyladenine ligand and to a η5-pentamethylcyclopentadienyl ligand. The 9-MeAde ligand is planar in good approximation, the greatest deviation from the mean plane was found for the exocyclic N6 atom (0.06 (1) Å). The Ir–N7 and Ir–Cl1/Ir–Cl2 bonds are as long as those in the complex [IrCl2(η5-C5Me5)(NH2Ph-κN)] (2.152 (8) versus. 2.152 Å and 2.402 (3)/2.423 (3) versus. 2.394/2.419 Å) (Davies et al., 2003).

The dimers are formed through two N6–H6A···N1' hydrogen bonds (N6···N1' 3.01 (1) Å; H6A···N1' 2.14 Å; N6–H6A···N1' 170°). Furthermore, the other hydrogen atom of the exocyclic amino group acts as hydrogen donor in a N6–H6B···Cl2 hydrogen bond (N6···Cl2 3.17 (1) Å; H6B···Cl2 2.35 Å; N6–H6B···Cl2 155°). The structural parameters of these two hydrogen bonds are in accord with analogous hydrogen bonds in nucleobases and in chloro metal complexes, respectively (Jeffrey & Saenger, 1994; Baldovino-Pantaleon et al., 2007). Noteworthy, in crystals of 9-methyladenine two N6–H6A···N1' and N6–H6B···N7' hydrogen bonds link molecules in ribbons (Kistenmacher & Rossi, 1977; McMullan et al., 1980). Furthermore, short intra- and intermolecular C–H···Cl contacts (see Table) indicate stabilizing interactions (Huang et al., 1998; Aakeröy et al., 1999).

Related literature top

For background information, see: Lippert (2000); Houlton (2002). For related literature, see: Zhu et al. (2002); Gaballa et al. (2004); Aakeröy et al. (1999); Baldovino-Pantaleon, Morales-Morales, Hernandez-Ortega, Toscano & Valdes-Martinez (2007); Davies et al. (2003); Gaballa et al. (2007); Huang et al. (1998); Jeffrey & Saenger (1994); Kistenmacher & Rossi (1977); McMullan et al. (1980).

Experimental top

Reaction of [{IrCl2(η5-C5Me5)}2] with 9-methyladenine (9-MeAde) in 1: 2 ratio in methylene chloride resulted in the formation of yellow crystals of the title complex in 67% yield. 1H NMR (CD2Cl2, 200 MHz): δ 1.49 (s, 15H, C5(CH3)5), 3.88 (s, 3H, NCH3), 8.41 (s, br, 1H, H8), 8.64 (s, br, 1H, H2).

Refinement top

All non-H atoms were refined with anisotropic thermal parameters. H atoms were included in the model in calculated positions using the riding model, with their isotropic displacement parameter tied to 1.2 times that of the bonded atom.

Computing details top

Data collection: STADI4 (Stoe & Cie, 2002); cell refinement: STADI4 (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of the asymmetric unit of the title complex [IrCl2(η5-C5Me5)(9-MeAde-κN7)].CH2Cl2. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Structure of the dinuclear complex [{IrCl2(η5-C5Me5)(9-MeAde-κN7)}2] in crystals of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The numbering scheme of the C atoms is as shown in Figure 1. Symmetry codes: (i) –x + 2, –y, –z + 2.
Dichlorido(9-methyladenine-κN7)(η5– pentamethylcyclopentadienyl)iridium(III) dichloromethane solvate top
Crystal data top
[Ir(C10H15)Cl2(C6H7N5)]·CH2Cl2Z = 2
Mr = 632.41F(000) = 612
Triclinic, P1Dx = 1.920 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.294 (2) ÅCell parameters from 32 reflections
b = 11.8698 (14) Åθ = 6.5–18.9°
c = 13.649 (3) ŵ = 6.60 mm1
α = 71.338 (15)°T = 200 K
β = 83.83 (3)°Block, colourless
γ = 78.003 (14)°0.19 × 0.15 × 0.13 mm
V = 1094.0 (4) Å3
Data collection top
Stoe STADI-4
diffractometer
3246 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
profile data from ω/2θ scansh = 88
Absorption correction: multi-scan
(X-RED; Stoe & Cie, 2002)
k = 1314
Tmin = 0.32, Tmax = 0.43l = 816
4132 measured reflections1 standard reflections every 60 min
3807 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0666P)2]
where P = (Fo2 + 2Fc2)/3
3807 reflections(Δ/σ)max < 0.001
250 parametersΔρmax = 2.87 e Å3
0 restraintsΔρmin = 3.41 e Å3
0 constraints
Crystal data top
[Ir(C10H15)Cl2(C6H7N5)]·CH2Cl2γ = 78.003 (14)°
Mr = 632.41V = 1094.0 (4) Å3
Triclinic, P1Z = 2
a = 7.294 (2) ÅMo Kα radiation
b = 11.8698 (14) ŵ = 6.60 mm1
c = 13.649 (3) ÅT = 200 K
α = 71.338 (15)°0.19 × 0.15 × 0.13 mm
β = 83.83 (3)°
Data collection top
Stoe STADI-4
diffractometer
3246 reflections with I > 2σ(I)
Absorption correction: multi-scan
(X-RED; Stoe & Cie, 2002)
Rint = 0.068
Tmin = 0.32, Tmax = 0.431 standard reflections every 60 min
4132 measured reflections intensity decay: none
3807 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.13Δρmax = 2.87 e Å3
3807 reflectionsΔρmin = 3.41 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.9961 (15)0.0640 (10)0.7978 (9)0.030 (2)
H21.06280.14500.81650.036*
C40.8452 (14)0.0945 (9)0.6832 (8)0.023 (2)
C50.7931 (13)0.1571 (8)0.7549 (7)0.019 (2)
C60.8617 (15)0.0991 (9)0.8549 (8)0.026 (2)
C80.6814 (13)0.2726 (9)0.6092 (8)0.020 (2)
H80.61980.34020.55730.024*
C90.7869 (16)0.1435 (10)0.4929 (8)0.029 (2)
H9A0.71370.21090.44160.035*
H9B0.73750.06960.50340.035*
H9C0.91850.13180.46820.035*
C100.2376 (14)0.3257 (10)0.7454 (8)0.028 (2)
C110.3065 (16)0.2573 (10)0.8485 (9)0.030 (3)
C120.2955 (15)0.3417 (11)0.9036 (8)0.031 (3)
C130.2174 (16)0.4615 (11)0.8368 (10)0.037 (3)
C140.1805 (14)0.4482 (10)0.7419 (9)0.030 (3)
C150.213 (2)0.2713 (14)0.6624 (11)0.053 (4)
H15A0.24820.32420.59450.064*
H15B0.08210.26320.66350.064*
H15C0.29410.19140.67540.064*
C160.3688 (18)0.1234 (10)0.8885 (11)0.045 (3)
H16A0.47890.10480.93010.054*
H16B0.40140.09070.83010.054*
H16C0.26710.08690.93150.054*
C170.3513 (19)0.3108 (14)1.0118 (9)0.050 (4)
H17A0.40300.37721.01970.060*
H17B0.44650.23661.02820.060*
H17C0.24120.29821.05910.060*
C180.180 (2)0.5756 (12)0.8658 (13)0.060 (4)
H18A0.21260.64200.80670.072*
H18B0.25550.56510.92430.072*
H18C0.04640.59460.88550.072*
C190.0889 (17)0.5477 (13)0.6515 (12)0.056 (4)
H19A0.08300.62630.66210.068*
H19B0.03830.53610.64620.068*
H19C0.16270.54540.58760.068*
C200.331 (2)0.2130 (12)0.3148 (10)0.045 (3)
H20A0.21670.21110.28260.053*
H20B0.35330.29720.29030.053*
Cl10.5584 (4)0.5480 (2)0.6167 (2)0.0268 (5)
Cl20.7133 (4)0.4366 (2)0.8520 (2)0.0289 (6)
Cl30.2938 (5)0.1691 (3)0.4491 (3)0.0505 (8)
Cl40.5213 (6)0.1194 (4)0.2750 (4)0.0745 (12)
N10.9631 (12)0.0139 (8)0.8738 (7)0.027 (2)
N30.9494 (13)0.0174 (7)0.6998 (7)0.029 (2)
N60.8322 (13)0.1512 (8)0.9311 (7)0.031 (2)
H6A0.87890.11150.99210.037*
H6B0.76630.22490.91990.037*
N70.6850 (11)0.2692 (7)0.7069 (6)0.0188 (17)
N90.7732 (12)0.1709 (8)0.5912 (6)0.0233 (18)
Ir0.47641 (5)0.39087 (3)0.76639 (3)0.01833 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.030 (6)0.026 (6)0.033 (6)0.002 (5)0.006 (5)0.011 (5)
C40.025 (5)0.024 (5)0.026 (5)0.008 (4)0.003 (4)0.011 (4)
C50.022 (5)0.017 (5)0.017 (5)0.004 (4)0.001 (4)0.006 (4)
C60.028 (6)0.023 (5)0.021 (5)0.002 (4)0.003 (4)0.003 (4)
C80.014 (5)0.017 (5)0.025 (5)0.002 (4)0.004 (4)0.004 (4)
C90.043 (7)0.025 (6)0.022 (5)0.009 (5)0.006 (5)0.011 (4)
C100.018 (5)0.040 (7)0.029 (6)0.016 (5)0.005 (4)0.011 (5)
C110.033 (6)0.025 (6)0.035 (6)0.017 (5)0.016 (5)0.009 (5)
C120.026 (6)0.043 (7)0.025 (6)0.013 (5)0.010 (4)0.012 (5)
C130.023 (6)0.030 (6)0.053 (8)0.005 (5)0.012 (5)0.015 (6)
C140.018 (5)0.028 (6)0.037 (6)0.006 (4)0.002 (4)0.004 (5)
C150.055 (9)0.069 (10)0.053 (9)0.046 (8)0.006 (7)0.026 (8)
C160.048 (8)0.015 (6)0.064 (9)0.014 (5)0.005 (6)0.001 (6)
C170.041 (7)0.074 (10)0.029 (7)0.006 (7)0.006 (6)0.013 (7)
C180.054 (9)0.041 (8)0.092 (12)0.003 (7)0.027 (8)0.047 (8)
C190.019 (6)0.057 (9)0.068 (10)0.001 (6)0.000 (6)0.012 (7)
C200.054 (8)0.037 (7)0.047 (8)0.007 (6)0.001 (6)0.020 (6)
Cl10.0323 (14)0.0227 (13)0.0256 (13)0.0081 (10)0.0010 (10)0.0057 (10)
Cl20.0349 (14)0.0274 (13)0.0295 (14)0.0074 (11)0.0051 (11)0.0136 (11)
Cl30.055 (2)0.0467 (19)0.058 (2)0.0206 (16)0.0060 (16)0.0227 (16)
Cl40.071 (3)0.081 (3)0.072 (3)0.008 (2)0.009 (2)0.042 (2)
N10.028 (5)0.018 (4)0.033 (5)0.000 (4)0.002 (4)0.008 (4)
N30.032 (5)0.015 (4)0.040 (6)0.001 (4)0.000 (4)0.013 (4)
N60.043 (6)0.023 (5)0.023 (5)0.011 (4)0.009 (4)0.011 (4)
N70.021 (4)0.010 (4)0.020 (4)0.004 (3)0.002 (3)0.001 (3)
N90.029 (5)0.022 (4)0.019 (4)0.006 (4)0.005 (3)0.008 (4)
Ir0.0201 (2)0.0154 (2)0.0201 (2)0.00199 (14)0.00201 (14)0.00814 (15)
Geometric parameters (Å, º) top
C2—N31.325 (14)C13—C181.494 (17)
C2—N11.331 (14)C13—Ir2.159 (11)
C2—H20.9500C14—C191.510 (16)
C4—N31.348 (13)C14—Ir2.153 (10)
C4—N91.375 (13)C15—H15A0.9800
C4—C51.386 (14)C15—H15B0.9800
C5—N71.392 (12)C15—H15C0.9800
C5—C61.410 (14)C16—H16A0.9800
C6—N11.349 (13)C16—H16B0.9800
C6—N61.349 (14)C16—H16C0.9800
C8—N71.325 (13)C17—H17A0.9800
C8—N91.335 (13)C17—H17B0.9800
C8—H80.9500C17—H17C0.9800
C9—N91.467 (13)C18—H18A0.9800
C9—H9A0.9800C18—H18B0.9800
C9—H9B0.9800C18—H18C0.9800
C9—H9C0.9800C19—H19A0.9800
C10—C141.414 (16)C19—H19B0.9800
C10—C111.463 (16)C19—H19C0.9800
C10—C151.514 (17)C20—Cl41.743 (13)
C10—Ir2.127 (10)C20—Cl31.745 (13)
C11—C121.419 (16)C20—H20A0.9900
C11—C161.493 (15)C20—H20B0.9900
C11—Ir2.165 (10)Cl1—Ir2.402 (3)
C12—C131.458 (16)Cl2—Ir2.423 (3)
C12—C171.484 (16)N6—H6A0.8800
C12—Ir2.164 (10)N6—H6B0.8800
C13—C141.413 (17)N7—Ir2.152 (8)
N3—C2—N1129.5 (10)C12—C17—H17A109.5
N3—C2—H2115.3C12—C17—H17B109.5
N1—C2—H2115.3H17A—C17—H17B109.5
N3—C4—N9127.0 (9)C12—C17—H17C109.5
N3—C4—C5127.0 (10)H17A—C17—H17C109.5
N9—C4—C5106.0 (9)H17B—C17—H17C109.5
C4—C5—N7108.9 (8)C13—C18—H18A109.5
C4—C5—C6116.4 (9)C13—C18—H18B109.5
N7—C5—C6134.6 (9)H18A—C18—H18B109.5
N1—C6—N6119.0 (9)C13—C18—H18C109.5
N1—C6—C5117.6 (9)H18A—C18—H18C109.5
N6—C6—C5123.4 (9)H18B—C18—H18C109.5
N7—C8—N9112.9 (8)C14—C19—H19A109.5
N7—C8—H8123.5C14—C19—H19B109.5
N9—C8—H8123.5H19A—C19—H19B109.5
N9—C9—H9A109.5C14—C19—H19C109.5
N9—C9—H9B109.5H19A—C19—H19C109.5
H9A—C9—H9B109.5H19B—C19—H19C109.5
N9—C9—H9C109.5Cl4—C20—Cl3112.3 (8)
H9A—C9—H9C109.5Cl4—C20—H20A109.2
H9B—C9—H9C109.5Cl3—C20—H20A109.2
C14—C10—C11107.9 (10)Cl4—C20—H20B109.2
C14—C10—C15126.5 (11)Cl3—C20—H20B109.2
C11—C10—C15125.3 (11)H20A—C20—H20B107.9
C14—C10—Ir71.7 (6)C2—N1—C6119.0 (9)
C11—C10—Ir71.5 (6)C2—N3—C4110.4 (9)
C15—C10—Ir127.3 (8)C6—N6—H6A120.0
C12—C11—C10107.0 (10)C6—N6—H6B120.0
C12—C11—C16126.9 (11)H6A—N6—H6B120.0
C10—C11—C16126.1 (11)C8—N7—C5104.9 (8)
C12—C11—Ir70.8 (6)C8—N7—Ir119.3 (6)
C10—C11—Ir68.7 (5)C5—N7—Ir132.2 (6)
C16—C11—Ir127.4 (8)C8—N9—C4107.2 (8)
C11—C12—C13108.4 (10)C8—N9—C9126.4 (9)
C11—C12—C17125.0 (12)C4—N9—C9126.3 (9)
C13—C12—C17126.6 (12)C10—Ir—N797.3 (4)
C11—C12—Ir70.9 (6)C10—Ir—C1438.6 (4)
C13—C12—Ir70.1 (6)N7—Ir—C14130.7 (4)
C17—C12—Ir125.7 (8)C10—Ir—C1365.1 (5)
C14—C13—C12107.3 (10)N7—Ir—C13160.2 (4)
C14—C13—C18127.1 (12)C14—Ir—C1338.3 (5)
C12—C13—C18125.6 (13)C10—Ir—C1265.4 (4)
C14—C13—Ir70.6 (6)N7—Ir—C12126.5 (4)
C12—C13—Ir70.4 (6)C14—Ir—C1264.8 (4)
C18—C13—Ir125.4 (9)C13—Ir—C1239.4 (4)
C13—C14—C10109.4 (10)C10—Ir—C1139.9 (4)
C13—C14—C19125.8 (12)N7—Ir—C1195.5 (4)
C10—C14—C19124.7 (12)C14—Ir—C1165.2 (4)
C13—C14—Ir71.1 (6)C13—Ir—C1165.3 (4)
C10—C14—Ir69.7 (6)C12—Ir—C1138.3 (4)
C19—C14—Ir126.8 (8)C10—Ir—Cl1112.7 (3)
C10—C15—H15A109.5N7—Ir—Cl186.0 (2)
C10—C15—H15B109.5C14—Ir—Cl193.1 (3)
H15A—C15—H15B109.5C13—Ir—Cl1108.6 (3)
C10—C15—H15C109.5C12—Ir—Cl1147.4 (3)
H15A—C15—H15C109.5C11—Ir—Cl1152.5 (3)
H15B—C15—H15C109.5C10—Ir—Cl2160.2 (3)
C11—C16—H16A109.5N7—Ir—Cl291.0 (2)
C11—C16—H16B109.5C14—Ir—Cl2138.2 (3)
H16A—C16—H16B109.5C13—Ir—Cl2103.0 (4)
C11—C16—H16C109.5C12—Ir—Cl295.2 (3)
H16A—C16—H16C109.5C11—Ir—Cl2121.6 (3)
H16B—C16—H16C109.5Cl1—Ir—Cl285.72 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N1i0.882.143.007 (13)170
N6—H6B···Cl20.882.353.168 (10)155
C8—H8···Cl10.952.773.237 (11)111
C8—H8···Cl1ii0.952.653.537 (11)156
C9—H9B···Cl3iii0.982.753.697 (13)163
C20—H20B···Cl1ii0.992.753.519 (15)135
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ir(C10H15)Cl2(C6H7N5)]·CH2Cl2
Mr632.41
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)7.294 (2), 11.8698 (14), 13.649 (3)
α, β, γ (°)71.338 (15), 83.83 (3), 78.003 (14)
V3)1094.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)6.60
Crystal size (mm)0.19 × 0.15 × 0.13
Data collection
DiffractometerStoe STADI-4
diffractometer
Absorption correctionMulti-scan
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.32, 0.43
No. of measured, independent and
observed [I > 2σ(I)] reflections
4132, 3807, 3246
Rint0.068
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.125, 1.13
No. of reflections3807
No. of parameters250
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.87, 3.41

Computer programs: STADI4 (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Selected geometric parameters (Å, º) top
C10—Ir2.127 (10)C14—Ir2.153 (10)
C11—Ir2.165 (10)Cl1—Ir2.402 (3)
C12—Ir2.164 (10)Cl2—Ir2.423 (3)
C13—Ir2.159 (11)N7—Ir2.152 (8)
N7—Ir—Cl186.0 (2)Cl1—Ir—Cl285.72 (9)
N7—Ir—Cl291.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···N1i0.88002.14003.007 (13)170.00
N6—H6B···Cl20.88002.35003.168 (10)155.00
C8—H8···Cl10.95002.77003.237 (11)111.00
C8—H8···Cl1ii0.95002.65003.537 (11)156.00
C9—H9B···Cl3iii0.98002.75003.697 (13)163.00
C20—H20B···Cl1ii0.99002.75003.519 (15)135.00
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft for financial support.

References

First citationAakeröy, C. B., Evans, T. A., Seddon, K. R. & Palinko, I. (1999). New J. Chem. pp. 145–152.  Google Scholar
First citationBaldovino-Pantaleon, O., Morales-Morales, D., Hernandez-Ortega, S., Toscano, R. A. & Valdes-Martinez, J. (2007). Cryst. Growth Des. 7, 117–123.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDavies, D. L., Al-Duaij, O., Fawcett, J., Giardiello, M., Hilton, S. T. & Russell, D. R. (2003). Dalton Trans. pp. 4132–4138.  Web of Science CSD CrossRef Google Scholar
First citationGaballa, A., Schmidt, H., Hempel, G., Reichert, D., Wagner, C., Rusanov, E. & Steinborn, D. (2004). J. Inorg. Biochem. 98, 439–446.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGaballa, A. S., Schmidt, H., Wagner, C. & Steinborn, D. (2008). Inorg. Chim. Acta, doi:10.1016/j.ica.2007.10.023.  Google Scholar
First citationHoulton, A. (2002). Adv. Inorg. Chem. 53, 87–158.  Web of Science CrossRef CAS Google Scholar
First citationHuang, L.-Y., Aulwurm, U. R., Heinemann, F. W., Knoch, F. & Kisch, H. (1998). Chem. Eur. J. 4, 1641–1646.  CrossRef CAS Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1994). Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.  Google Scholar
First citationKistenmacher, T. J. & Rossi, M. (1977). Acta Cryst. B33, 253–256.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationLippert, B. (2000). Coord. Chem. Rev. 200202, 487–516.  Web of Science CrossRef CAS Google Scholar
First citationMcMullan, R. K., Benci, P. & Craven, B. M. (1980). Acta Cryst. B36, 1424–1430.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). STADI4 and X-RED. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationZhu, X., Rusanov, E., Kluge, R., Schmidt, H. & Steinborn, D. (2002). Inorg. Chem. 41, 2667–2671.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m455-m456
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds