organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­benzo­yl)-3,6-di­meth­oxy­naphthalene

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan, bSection Manager, Group I, Section III, Functional Chemicals Research Laboratory, Nippon Kayaku Co. Ltd, Shimo 3-chome, Kita-ku, Tokyo 115-0042, Japan, and cInstrumentation Analysis Center, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: yonezawa@cc.tuat.ac.jp

(Received 16 February 2008; accepted 18 February 2008; online 22 February 2008)

In the title compound, C19H15ClO3, the inter­planar angle between the naphthalene and benzene ring systems is 62.67 (6)°. The carbonyl group is twisted from both ring planes, with torsion angles of −44.9 (2)° with respect to the naphthalene ring and −26.7 (2)° with respect to the phenyl­ene ring. There is an inter­molecular hydrogen bond between an H atom of one meth­oxy group and the O atom of the second meth­oxy group, forming chains along the ac diagonal.

Related literature

For related literature, see: Ahn et al. (2003[Ahn, T. H., Park, Y. H., Kim, S. H. & Baik, D. H. (2003). J. Appl. Polym. Sci. 90, 3473-3480.]); Allen et al. (1998[Allen, J. M., Horwell, D. C., Lainton, J. A. H., O'Neill, J. A. & Ratcliffe, G. S. (1998). Lett. Pept. Sci., 5, 133-137.]); Chen et al. (2005[Chen, B.-K., Tsay, S.-Y. & Chen, J.-Y. (2005). Polymer, 46, 8624-8633.]); Crasto & Stevens (1998[Crasto, C. J. & Stevens, E. D. (1998). J. Mol. Struct. (Theochem), 454, 51-59.], 2002[Crasto, C. J. & Stevens, E. D. (2002). J. Mol. Struct. (Theochem), 582, 77-84.]); Lorenzetti et al. (2005[Lorenzetti, C., Finelli, L., Lotti, N., Vannini, M., Gazzano, M., Berti, C. & Munari, A. (2005). Polymer, 46, 4041-4051.]); Nakaema et al. (2007[Nakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.]); Su et al. (2004[Su, C.-Y., Gorforth, A. M., Smith, M. D. & Loye, H.-N. (2004). Chem. Commun. pp. 2158-2159.]); Wang & Guen (1995[Wang, Z. Y. & Guen, A. L. (1995). Macromolecules, 28, 3728-3732.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15ClO3

  • Mr = 326.76

  • Monoclinic, P 21 /c

  • a = 8.1894 (5) Å

  • b = 20.5251 (13) Å

  • c = 9.9098 (7) Å

  • β = 106.358 (4)°

  • V = 1598.29 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.22 mm−1

  • T = 296 K

  • 0.50 × 0.25 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.458, Tmax = 0.801

  • 30087 measured reflections

  • 2917 independent reflections

  • 2652 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.100

  • S = 1.07

  • 2917 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18C⋯O3i 0.96 2.51 3.460 (2) 171
Symmetry code: (i) x-1, y, z-1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Naphthalene derivatives, such as 1,5-disubstituted and 2,6-disubstituted naphthalenes, have been used widely as key building blocks of functional organic compounds such as liquid crystals and electric materials (Su et al., 2004; Ahn et al., 2003; Lorenzetti et al., 2005; Chen et al., 2005). Recently, 1,8-disubstituted naphthalenes have received much attention as unique structured aromatic core compounds, exemplified by dendron cores and supramolecular building blocks (Wang & Guen, 1995; Allen et al., 1998; Crasto & Stevens, 1998, 2002).

In this paper, the structural characteristics of the title compound, which is one of the products of electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, is reported and discussed. The authors have recently reported the crystal structure of the 1,8-diaroylated derivative of 2,7-dimethoxynaphthalene as the product of regioselective electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene with 4-chlorobenzoic acid (Nakaema et al., 2007). As 3-substituted naphthalene compounds are generally regarded to be thermodynamically more stable than the corresponding 1-positioned isomeric molecules, the title molecule is of interest from both the stereochemical features of its conformation and the thermodynamic aspects of its molecular structure.

An ORTEPIII (Burnett & Johnson, 1996) plot of the title molecule, (I), is displayed in Fig. 1. The 4-chlorobenzoyl group is twisted away from the attached naphthalene ring. The interplanar angle between the best planes of the chlorophenyl ring and the naphthalene ring is 62.67 (6)°. The torsion angle between the carbonyl group and the naphthalene ring is relatively large [C4—C3—C11—O1 = -44.9 (2)°] and that between 4-chlorophenyl group and carbonyl group is rather small [O1—C11—C12—C13 = -26.7 (2)°].

The crystal packing is stabilized mainly by van der Waals interactions. In addition, there is a C—H···O hydrogen bond between a hydrogen of the 2-methoxy group which is situated adjacent to the chlorobenzoyl group, and the ethereal oxygen of the 7-methoxy group in a neighboring molecule that could also contribute the stabilization of the crystal packing (Table 1, Figure 2).

Related literature top

For related literature, see: Ahn et al. (2003); Allen et al. (1998); Chen et al. (2005); Crasto & Stevens (1998, 2002); Lorenzetti et al. (2005); Nakaema et al. (2007); Su et al. (2004); Wang & Guen (1995).

Experimental top

The title compound was prepared by electrophilic aromatic aroylation reaction of 2,7-dimethoxynaphthalene with 4-chlorobenzoic acid. Yellow single crystals suitable for X-ray diffraction were obtained by recrystallization from ethanol and ethyl acetate.

Refinement top

All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.93 (aromatic) and 0.96 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound, viewed down the c axis. The dashed lines indicate hydrogen bonds.
2-(4-Chlorobenzoyl)-3,6-dimethoxynaphthalene top
Crystal data top
C19H15ClO3F(000) = 680
Mr = 326.76Dx = 1.358 Mg m3
Monoclinic, P21/cMelting point = 424.8–425.2 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54187 Å
a = 8.1894 (5) ÅCell parameters from 28831 reflections
b = 20.5251 (13) Åθ = 4.3–68.2°
c = 9.9098 (7) ŵ = 2.22 mm1
β = 106.358 (4)°T = 296 K
V = 1598.29 (18) Å3Platelet, colorless
Z = 40.50 × 0.25 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2917 independent reflections
Radiation source: rotating anode2652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 10.00 pixels mm-1θmax = 68.2°, θmin = 4.3°
ω scansh = 99
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2424
Tmin = 0.458, Tmax = 0.801l = 1111
30087 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.054P)2 + 0.2906P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2917 reflectionsΔρmax = 0.17 e Å3
211 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0039 (4)
Crystal data top
C19H15ClO3V = 1598.29 (18) Å3
Mr = 326.76Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.1894 (5) ŵ = 2.22 mm1
b = 20.5251 (13) ÅT = 296 K
c = 9.9098 (7) Å0.50 × 0.25 × 0.10 mm
β = 106.358 (4)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2917 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2652 reflections with I > 2σ(I)
Tmin = 0.458, Tmax = 0.801Rint = 0.049
30087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
2917 reflectionsΔρmin = 0.28 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25848 (6)0.44273 (2)0.48382 (4)0.06829 (17)
O10.25367 (15)0.47599 (6)0.18888 (12)0.0662 (3)
O20.21482 (13)0.30244 (5)0.06521 (11)0.0560 (3)
O30.44684 (14)0.21975 (6)0.70829 (12)0.0662 (3)
C10.01126 (17)0.27069 (7)0.26978 (14)0.0452 (3)
H10.00240.22720.24210.054*
C20.09091 (17)0.31627 (7)0.18563 (14)0.0439 (3)
C30.07602 (17)0.38337 (7)0.22433 (14)0.0441 (3)
C40.03617 (18)0.40089 (7)0.35010 (15)0.0478 (3)
H40.04300.44440.37700.057*
C50.14146 (17)0.35510 (7)0.44000 (14)0.0457 (3)
C60.2559 (2)0.37226 (8)0.57153 (17)0.0573 (4)
H60.26420.41550.60060.069*
C70.3536 (2)0.32631 (8)0.65574 (17)0.0602 (4)
H70.42800.33840.74160.072*
C80.34269 (17)0.26071 (8)0.61388 (15)0.0515 (4)
C90.23401 (16)0.24175 (7)0.48760 (15)0.0475 (3)
H90.22840.19820.46060.057*
C100.13031 (16)0.28874 (7)0.39836 (14)0.0427 (3)
C110.18305 (18)0.43524 (7)0.13539 (15)0.0474 (3)
C120.19823 (17)0.43754 (6)0.01795 (15)0.0446 (3)
C130.34026 (19)0.46603 (8)0.11003 (16)0.0559 (4)
H130.42420.48390.07470.067*
C140.3593 (2)0.46831 (8)0.25247 (17)0.0579 (4)
H140.45560.48700.31320.070*
C150.2335 (2)0.44241 (6)0.30339 (15)0.0498 (3)
C160.0880 (2)0.41601 (8)0.21476 (16)0.0561 (4)
H160.00170.40040.25020.067*
C170.07217 (19)0.41313 (7)0.07204 (16)0.0527 (4)
H170.02460.39450.01160.063*
C180.2507 (2)0.23549 (8)0.03027 (17)0.0576 (4)
H18A0.28030.21400.10610.086*
H18B0.15190.21510.01490.086*
H18C0.34390.23240.05370.086*
C190.4318 (2)0.15190 (9)0.6806 (2)0.0759 (5)
H19A0.45730.14290.59360.114*
H19B0.31780.13810.67380.114*
H19C0.51020.12880.75560.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1005 (4)0.0595 (3)0.0412 (2)0.0008 (2)0.0139 (2)0.00090 (15)
O10.0758 (7)0.0705 (7)0.0523 (6)0.0258 (6)0.0178 (5)0.0004 (5)
O20.0605 (6)0.0511 (6)0.0437 (5)0.0009 (5)0.0059 (5)0.0007 (4)
O30.0597 (6)0.0702 (7)0.0541 (7)0.0035 (5)0.0078 (5)0.0142 (5)
C10.0489 (7)0.0428 (7)0.0405 (7)0.0011 (5)0.0070 (6)0.0004 (5)
C20.0440 (7)0.0491 (7)0.0355 (7)0.0019 (5)0.0063 (5)0.0004 (5)
C30.0458 (7)0.0467 (7)0.0385 (7)0.0014 (5)0.0099 (6)0.0039 (5)
C40.0523 (8)0.0437 (7)0.0454 (8)0.0030 (6)0.0105 (6)0.0002 (6)
C50.0450 (7)0.0489 (7)0.0407 (7)0.0052 (6)0.0079 (6)0.0018 (6)
C60.0609 (9)0.0543 (8)0.0480 (8)0.0101 (7)0.0014 (7)0.0023 (7)
C70.0586 (9)0.0664 (10)0.0442 (8)0.0109 (7)0.0039 (7)0.0006 (7)
C80.0436 (7)0.0621 (9)0.0439 (8)0.0021 (6)0.0044 (6)0.0109 (6)
C90.0458 (7)0.0495 (8)0.0442 (8)0.0006 (6)0.0077 (6)0.0047 (6)
C100.0401 (6)0.0487 (7)0.0381 (7)0.0029 (5)0.0090 (5)0.0035 (5)
C110.0468 (7)0.0472 (7)0.0467 (8)0.0045 (6)0.0106 (6)0.0016 (6)
C120.0474 (7)0.0405 (7)0.0443 (8)0.0040 (5)0.0101 (6)0.0039 (5)
C130.0526 (8)0.0628 (9)0.0504 (9)0.0167 (7)0.0117 (7)0.0064 (7)
C140.0561 (8)0.0608 (9)0.0497 (9)0.0109 (7)0.0033 (7)0.0088 (7)
C150.0652 (9)0.0395 (7)0.0417 (8)0.0021 (6)0.0102 (6)0.0031 (5)
C160.0638 (9)0.0562 (8)0.0516 (9)0.0124 (7)0.0218 (7)0.0063 (7)
C170.0501 (7)0.0569 (8)0.0491 (8)0.0138 (6)0.0109 (6)0.0100 (7)
C180.0579 (9)0.0551 (9)0.0509 (9)0.0030 (7)0.0007 (7)0.0085 (7)
C190.0724 (11)0.0675 (11)0.0721 (12)0.0099 (9)0.0050 (9)0.0169 (9)
Geometric parameters (Å, º) top
Cl1—C151.7415 (15)C8—C91.372 (2)
O1—C111.2196 (18)C9—C101.4180 (19)
O2—C21.3610 (16)C9—H90.9300
O2—C181.4273 (18)C11—C121.490 (2)
O3—C81.3638 (17)C12—C171.384 (2)
O3—C191.418 (2)C12—C131.3891 (19)
C1—C21.3703 (19)C13—C141.377 (2)
C1—C101.4184 (18)C13—H130.9300
C1—H10.9300C14—C151.376 (2)
C2—C31.425 (2)C14—H140.9300
C3—C41.3718 (19)C15—C161.377 (2)
C3—C111.4980 (18)C16—C171.385 (2)
C4—C51.4098 (19)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C101.419 (2)C18—H18A0.9600
C5—C61.419 (2)C18—H18B0.9600
C6—C71.360 (2)C18—H18C0.9600
C6—H60.9300C19—H19A0.9600
C7—C81.404 (2)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C2—O2—C18117.72 (11)O1—C11—C3120.14 (13)
C8—O3—C19117.97 (13)C12—C11—C3119.31 (12)
C2—C1—C10121.05 (13)C17—C12—C13118.41 (13)
C2—C1—H1119.5C17—C12—C11121.76 (12)
C10—C1—H1119.5C13—C12—C11119.81 (13)
O2—C2—C1124.60 (12)C14—C13—C12121.32 (14)
O2—C2—C3115.07 (11)C14—C13—H13119.3
C1—C2—C3120.30 (12)C12—C13—H13119.3
C4—C3—C2118.85 (12)C15—C14—C13118.88 (14)
C4—C3—C11118.65 (13)C15—C14—H14120.6
C2—C3—C11122.47 (12)C13—C14—H14120.6
C3—C4—C5122.22 (13)C14—C15—C16121.41 (14)
C3—C4—H4118.9C14—C15—Cl1119.44 (12)
C5—C4—H4118.9C16—C15—Cl1119.15 (12)
C4—C5—C10118.58 (12)C15—C16—C17118.92 (14)
C4—C5—C6122.91 (13)C15—C16—H16120.5
C10—C5—C6118.50 (13)C17—C16—H16120.5
C7—C6—C5120.92 (15)C12—C17—C16120.98 (13)
C7—C6—H6119.5C12—C17—H17119.5
C5—C6—H6119.5C16—C17—H17119.5
C6—C7—C8120.41 (14)O2—C18—H18A109.5
C6—C7—H7119.8O2—C18—H18B109.5
C8—C7—H7119.8H18A—C18—H18B109.5
O3—C8—C9124.79 (15)O2—C18—H18C109.5
O3—C8—C7114.39 (13)H18A—C18—H18C109.5
C9—C8—C7120.82 (13)H18B—C18—H18C109.5
C8—C9—C10119.77 (14)O3—C19—H19A109.5
C8—C9—H9120.1O3—C19—H19B109.5
C10—C9—H9120.1H19A—C19—H19B109.5
C9—C10—C1121.47 (13)O3—C19—H19C109.5
C9—C10—C5119.58 (12)H19A—C19—H19C109.5
C1—C10—C5118.93 (12)H19B—C19—H19C109.5
O1—C11—C12120.53 (13)
C18—O2—C2—C15.6 (2)C2—C1—C10—C50.6 (2)
C18—O2—C2—C3172.22 (13)C4—C5—C10—C9179.51 (12)
C10—C1—C2—O2175.97 (12)C6—C5—C10—C90.7 (2)
C10—C1—C2—C31.7 (2)C4—C5—C10—C11.44 (19)
O2—C2—C3—C4174.76 (12)C6—C5—C10—C1177.42 (13)
C1—C2—C3—C43.1 (2)C4—C3—C11—O144.9 (2)
O2—C2—C3—C112.86 (19)C2—C3—C11—O1132.68 (15)
C1—C2—C3—C11179.26 (13)C4—C3—C11—C12133.39 (14)
C2—C3—C4—C52.3 (2)C2—C3—C11—C1248.98 (19)
C11—C3—C4—C5179.99 (13)O1—C11—C12—C17151.86 (15)
C3—C4—C5—C100.0 (2)C3—C11—C12—C1726.5 (2)
C3—C4—C5—C6178.83 (14)O1—C11—C12—C1326.7 (2)
C4—C5—C6—C7179.15 (15)C3—C11—C12—C13154.93 (14)
C10—C5—C6—C70.3 (2)C17—C12—C13—C142.1 (2)
C5—C6—C7—C80.1 (3)C11—C12—C13—C14179.24 (14)
C19—O3—C8—C95.8 (2)C12—C13—C14—C150.8 (3)
C19—O3—C8—C7173.98 (16)C13—C14—C15—C161.7 (2)
C6—C7—C8—O3179.71 (15)C13—C14—C15—Cl1178.11 (13)
C6—C7—C8—C90.1 (2)C14—C15—C16—C172.8 (2)
O3—C8—C9—C10179.38 (13)Cl1—C15—C16—C17177.04 (12)
C7—C8—C9—C100.4 (2)C13—C12—C17—C161.0 (2)
C8—C9—C10—C1177.32 (13)C11—C12—C17—C16179.62 (14)
C8—C9—C10—C50.7 (2)C15—C16—C17—C121.4 (2)
C2—C1—C10—C9178.63 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···O3i0.962.513.460 (2)171
Symmetry code: (i) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC19H15ClO3
Mr326.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.1894 (5), 20.5251 (13), 9.9098 (7)
β (°) 106.358 (4)
V3)1598.29 (18)
Z4
Radiation typeCu Kα
µ (mm1)2.22
Crystal size (mm)0.50 × 0.25 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.458, 0.801
No. of measured, independent and
observed [I > 2σ(I)] reflections
30087, 2917, 2652
Rint0.049
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.100, 1.07
No. of reflections2917
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.28

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···O3i0.962.513.460 (2)171
Symmetry code: (i) x1, y, z1.
 

Acknowledgements

This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationAhn, T. H., Park, Y. H., Kim, S. H. & Baik, D. H. (2003). J. Appl. Polym. Sci. 90, 3473–3480.  Web of Science CrossRef CAS Google Scholar
First citationAllen, J. M., Horwell, D. C., Lainton, J. A. H., O'Neill, J. A. & Ratcliffe, G. S. (1998). Lett. Pept. Sci., 5, 133–137.  CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationChen, B.-K., Tsay, S.-Y. & Chen, J.-Y. (2005). Polymer, 46, 8624-8633.  CrossRef CAS Google Scholar
First citationCrasto, C. J. & Stevens, E. D. (1998). J. Mol. Struct. (Theochem), 454, 51–59.  CrossRef CAS Google Scholar
First citationCrasto, C. J. & Stevens, E. D. (2002). J. Mol. Struct. (Theochem), 582, 77–84.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLorenzetti, C., Finelli, L., Lotti, N., Vannini, M., Gazzano, M., Berti, C. & Munari, A. (2005). Polymer, 46, 4041-4051.  CrossRef CAS Google Scholar
First citationNakaema, K., Okamoto, A., Noguchi, K. & Yonezawa, N. (2007). Acta Cryst. E63, o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C.-Y., Gorforth, A. M., Smith, M. D. & Loye, H.-N. (2004). Chem. Commun. pp. 2158–2159.  Web of Science CSD CrossRef Google Scholar
First citationWang, Z. Y. & Guen, A. L. (1995). Macromolecules, 28, 3728–3732.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds