organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Phenyl-2-(4-pyrid­yl)pyrimidine

aDépartement de Chimie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec, Canada H3C 3J7, and bLaboratoire de Chimie Inorganique et Matériaux Moléculaires, UMR 7071, Université Pierre et Marie Curie, Paris, France
*Correspondence e-mail: marie-pierre.santoni@umontreal.ca

(Received 22 January 2008; accepted 6 February 2008; online 13 February 2008)

The title compound, C15H11N3, crystallizes with two independent mol­ecules in the asymmetric unit. The dihedral angles between the phenyl and pyridine rings in each mol­ecule are 53.48 (5) and 50.80 (5)°. In the crystal structure, weak inter­molecular C—H⋯N hydrogen bonds connect mol­ecules into one-dimensional chains. In addition, the crystal structure is stabilized by weak C—H⋯π(arene) inter­actions.

Related literature

For related literature, see: Fang et al. (2002[Fang, Y.-Q., Taylor, N. J., Hanan, G. S., Loiseau, F., Passalacqua, R., Campagna, S., Nierengarten, H. & Van Dorsselaer, A. (2002). J. Am. Chem. Soc. 124, 7912-7913.], 2007[Fang, Y.-Q., Taylor, N. J., Laverdière, F., Hanan, G. S., Loiseau, F., Nastasi, F., Campagna, S., Nierengarten, H., Leize-Wagner, E. & Van Dorsselaer, A. (2007). Inorg. Chem. 46, 2854-2863.]); Medlycott & Hanan (2005[Medlycott, E. A. & Hanan, G. S. (2005). Chem. Soc. Rev. 34, 133-142.], 2006[Medlycott, E. A. & Hanan, G. S. (2006). Coord. Chem. Rev. 250, 1763-1782.]); Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11N3

  • Mr = 233.27

  • Triclinic, [P \overline 1]

  • a = 9.2813 (5) Å

  • b = 9.3609 (5) Å

  • c = 13.9001 (7) Å

  • α = 71.462 (2)°

  • β = 86.957 (2)°

  • γ = 75.788 (3)°

  • V = 1109.54 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.68 mm−1

  • T = 100 (2) K

  • 0.40 × 0.38 × 0.08 mm

Data collection
  • Bruker SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.734, Tmax = 0.947

  • 15167 measured reflections

  • 3967 independent reflections

  • 3226 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.139

  • S = 1.00

  • 3967 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N5i 0.95 2.55 3.3818 (18) 147
C9—H9⋯N6ii 0.95 2.56 3.4027 (18) 148
C22—H22⋯N2i 0.95 2.54 3.3784 (18) 147
C24—H24⋯N3ii 0.95 2.56 3.4049 (19) 149
C1—H1⋯Cg3iii 0.95 2.91 3.5925 (15) 129
C4—H4⋯Cg3 0.95 2.72 3.4163 (15) 130
C12—H12⋯Cg1i 0.95 2.89 3.5844 (15) 131
C15—H15⋯Cg1iv 0.95 2.92 3.5202 (15) 122
C17—H17⋯Cg6v 0.95 2.84 3.5561 (16) 133
C20—H20⋯Cg6ii 0.95 2.85 3.5251 (15) 129
C26—H26⋯Cg5 0.95 2.86 3.5242 (15) 128
C29—H29⋯Cg5vi 0.95 2.77 3.4451 (15) 129
Symmetry codes: (i) -x, -y+2, -z+2; (ii) -x+1, -y+1, -z+2; (iii) x-1, y, z; (iv) -x, -y+1, -z+2; (v) -x+1, -y+2, -z+2; (vi) x+1, y, z. Cg1 is the centroid of the N1/C1-C5 ring, Cg3 is the centroid of the N4/C16–C20 ring, Cg5 is the centroid of the C10–C15 ring and Cg6 is the centroid of the C25–C30 ring.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART. Release 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Release 7.06A. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: UdMX (local program).

Supporting information


Comment top

Ruthenium polypyridyl complexes have long attracted attention due to their exceptional photophysical properties which makes them suitable as chromophores in light-harvesting devices (Medlycott & Hanan, 2005, 2006). Recently, we have reported new pyrimidine-substituted terpyridine ligands and their Ru(II) polypyridyl complexes (Fang et al., 2002, 2007). Introduction of the pyrimidine motif on a terpyridine unit leads to planarization of the system through hydrogen bonds, thus extending pi-delocalization in the acceptor ligand of the metal-to-ligand charge transfer (MLCT) emitting excited-states, which improves the photophysical properties of the complexes. The title compound C15H11N3 (3) [see Fig. 3] was designed for the enhanced π-acceptor character of pyridyl-type ligands for coordination and supramolecular chemistry.

The title compound crystallizes with two molecules per asymmetric unit. The assignment of the nitrogen atoms was confirmed by comparing the observed and expected torsion angles and bond lengths. Ligand (3) is less planar than the terpyridyl analogue (Fang et al., 2007) despite weak intramolecular C—H···lone pair (N) interactions. All non-bonded N···H distances are shorter than 2.75 Å [N2···H2 = 2.57 Å, N3···H4 = 2.57 Å, N5···H17 = 2.62 Å, N6···H19 = 2.51 Å]. The dihedral angles between the phenyl and pyridine rings in each molecule are 53.48 (5)° and 50.80 (5)°. These deviations from planarity, in part, may be influenced by weak intermolecular C—H···N hydrogen bonds connecting molecules into one-dimensional chains and in addition, by the crystal structure being stabilized by weak C—H···π stacking interactions between "head-to-tail" molecules.

Related literature top

For related literature, see: Fang et al. (2002, 2007); Medlycott & Hanan (2005, 2006); Spek (2003).

Experimental top

4-Pyridylamidine hydrochloride (1) (10,0 g, 63.5 mmol), 2-phenyl-1,3-bis(dimethylamino)trimethinium hexafluorophosphate (2) (1 eq, 22.1 g, 63.5 mmol) and NaOMe (1.2 eq, 4.13 g, 76.5 mmol) were dissolved in anhydrous MeOH (500 ml). The resulting yellow solution was refluxed for 15 h under N2. The white solid was isolated by filtration and dried under vacuum to give white shiny micro-crystals (11.0 g, 74%) of pure title compound (3). These crystals were suitable for X-ray diffraction measurements, m.p. 477.8–478.5 K. Anal Calcd for C15H11N3 (233.3): C, 77.23; H, 4.75; N, 18.01. Found: C, 77.04; H, 4.69; N, 17.86.

Refinement top

H atoms were generated geometrically (C—H = 0.95 Å) and were included in the refinement in the riding model approximation; their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent site. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 2003).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: UdMX (local program).

Figures top
[Figure 1] Fig. 1. The asymmetric unit with thermal ellipsoids shown at 50% probability levels. H atoms have been omitted.
[Figure 2] Fig. 2. Part of the crystal structure of (3). Hydrogen bonds are shown as dashed lines. Ellipsoids are shown at the 30% probabilty level.
[Figure 3] Fig. 3. The reaction scheme for the title compound.
5-Phenyl-2-(4-pyridyl)pyrimidine top
Crystal data top
C15H11N3Z = 4
Mr = 233.27F(000) = 488
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 9.2813 (5) ÅCell parameters from 5655 reflections
b = 9.3609 (5) Åθ = 3.4–68.9°
c = 13.9001 (7) ŵ = 0.68 mm1
α = 71.462 (2)°T = 100 K
β = 86.957 (2)°Block, colourless
γ = 75.788 (3)°0.40 × 0.38 × 0.08 mm
V = 1109.54 (10) Å3
Data collection top
Bruker SMART 6000
diffractometer
3967 independent reflections
Radiation source: Rotating anode3226 reflections with I > 2σ(I)
Montel 200 optics monochromatorRint = 0.046
Detector resolution: 5.5 pixels mm-1θmax = 68.9°, θmin = 3.4°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.734, Tmax = 0.947l = 1616
15167 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0925P)2 + 0.1892P]
where P = (Fo2 + 2Fc2)/3
3967 reflections(Δ/σ)max = 0.001
325 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H11N3γ = 75.788 (3)°
Mr = 233.27V = 1109.54 (10) Å3
Triclinic, P1Z = 4
a = 9.2813 (5) ÅCu Kα radiation
b = 9.3609 (5) ŵ = 0.68 mm1
c = 13.9001 (7) ÅT = 100 K
α = 71.462 (2)°0.40 × 0.38 × 0.08 mm
β = 86.957 (2)°
Data collection top
Bruker SMART 6000
diffractometer
3967 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3226 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.947Rint = 0.046
15167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
3967 reflectionsΔρmin = 0.30 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.09769 (12)0.44347 (13)1.42209 (9)0.0235 (3)
N20.12326 (12)0.79515 (13)1.05916 (8)0.0215 (3)
N30.10382 (12)0.60327 (13)1.06789 (9)0.0230 (3)
C280.60351 (14)1.04795 (15)0.59991 (10)0.0230 (3)
H280.62351.09800.53130.028*
C240.59612 (14)0.67217 (15)0.96148 (10)0.0211 (3)
H240.66970.61960.92620.025*
C220.40977 (14)0.89133 (15)0.96659 (10)0.0210 (3)
H220.35190.99350.93490.025*
C10.20867 (14)0.54005 (15)1.35782 (10)0.0222 (3)
H10.30610.55811.38350.027*
C20.18962 (14)0.61497 (15)1.25624 (10)0.0206 (3)
H20.27170.68411.21440.025*
C30.04783 (14)0.58719 (14)1.21624 (10)0.0188 (3)
C40.06828 (14)0.48702 (15)1.28198 (10)0.0204 (3)
H40.16640.46471.25800.025*
C50.03846 (14)0.42042 (15)1.38280 (10)0.0218 (3)
H50.11930.35431.42700.026*
C60.02146 (13)0.66572 (15)1.10832 (10)0.0190 (3)
C70.09684 (14)0.86669 (15)0.96277 (10)0.0207 (3)
H70.16710.95850.92650.025*
C80.02937 (13)0.81303 (14)0.91253 (10)0.0191 (3)
C90.12654 (14)0.67759 (15)0.97125 (10)0.0224 (3)
H90.21380.63590.94070.027*
C100.05403 (13)0.89220 (15)0.80502 (10)0.0192 (3)
C110.00409 (13)1.05394 (15)0.76275 (10)0.0203 (3)
H110.04291.11390.80450.024*
C120.02259 (14)1.12719 (15)0.66058 (10)0.0217 (3)
H120.01111.23680.63300.026*
C130.09030 (14)1.04032 (16)0.59868 (10)0.0223 (3)
H130.10211.09030.52870.027*
C140.14063 (14)0.88000 (15)0.63960 (10)0.0227 (3)
H140.18720.82060.59740.027*
C150.12309 (13)0.80658 (15)0.74159 (10)0.0202 (3)
H150.15820.69710.76890.024*
C290.71673 (14)0.94102 (15)0.66453 (10)0.0221 (3)
H290.81440.91780.64000.027*
C300.68821 (13)0.86809 (15)0.76430 (10)0.0197 (3)
H300.76640.79440.80770.024*
C250.54460 (14)0.90173 (15)0.80227 (10)0.0186 (3)
C260.43120 (14)1.00916 (15)0.73613 (10)0.0203 (3)
H260.33321.03260.76010.024*
C270.46033 (15)1.08163 (15)0.63604 (10)0.0230 (3)
H270.38251.15450.59190.028*
C230.51637 (13)0.82266 (15)0.90904 (10)0.0184 (3)
N60.57446 (11)0.59835 (13)1.05838 (8)0.0210 (3)
C210.46901 (13)0.67626 (15)1.10567 (10)0.0187 (3)
N50.38525 (12)0.82082 (12)1.06340 (8)0.0211 (3)
C180.44441 (13)0.59364 (15)1.21314 (10)0.0186 (3)
C190.49348 (13)0.43229 (15)1.25172 (10)0.0203 (3)
H190.54410.37451.20970.024*
C200.46761 (14)0.35763 (15)1.35169 (10)0.0215 (3)
H200.49980.24761.37600.026*
N40.39970 (12)0.43088 (13)1.41673 (8)0.0238 (3)
C160.35492 (14)0.58659 (16)1.37925 (10)0.0231 (3)
H160.30790.64151.42380.028*
C170.37312 (13)0.67179 (16)1.27954 (10)0.0207 (3)
H170.33770.78161.25680.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0246 (6)0.0248 (6)0.0228 (6)0.0064 (5)0.0001 (5)0.0092 (5)
N20.0197 (5)0.0236 (6)0.0209 (6)0.0007 (5)0.0027 (4)0.0095 (5)
N30.0199 (5)0.0226 (6)0.0238 (6)0.0003 (5)0.0001 (5)0.0071 (5)
C280.0266 (7)0.0257 (7)0.0181 (7)0.0088 (6)0.0001 (5)0.0070 (6)
C240.0192 (6)0.0235 (7)0.0211 (7)0.0017 (5)0.0004 (5)0.0104 (6)
C220.0198 (6)0.0187 (6)0.0229 (7)0.0011 (5)0.0013 (5)0.0068 (5)
C10.0192 (6)0.0252 (7)0.0250 (7)0.0050 (5)0.0014 (5)0.0119 (6)
C20.0174 (6)0.0218 (7)0.0243 (7)0.0032 (5)0.0030 (5)0.0102 (6)
C30.0191 (6)0.0176 (6)0.0215 (7)0.0033 (5)0.0019 (5)0.0090 (5)
C40.0173 (6)0.0208 (6)0.0254 (7)0.0033 (5)0.0016 (5)0.0108 (6)
C50.0205 (6)0.0209 (6)0.0234 (7)0.0029 (5)0.0046 (5)0.0070 (6)
C60.0165 (6)0.0191 (6)0.0225 (7)0.0019 (5)0.0035 (5)0.0094 (6)
C70.0199 (6)0.0213 (7)0.0197 (7)0.0001 (5)0.0047 (5)0.0078 (5)
C80.0182 (6)0.0194 (7)0.0212 (7)0.0025 (5)0.0035 (5)0.0094 (6)
C90.0180 (6)0.0250 (7)0.0225 (7)0.0012 (5)0.0010 (5)0.0080 (6)
C100.0135 (6)0.0229 (7)0.0225 (7)0.0037 (5)0.0025 (5)0.0090 (6)
C110.0171 (6)0.0225 (7)0.0230 (7)0.0028 (5)0.0029 (5)0.0106 (6)
C120.0194 (6)0.0208 (6)0.0247 (7)0.0041 (5)0.0049 (5)0.0064 (6)
C130.0211 (6)0.0283 (7)0.0191 (7)0.0085 (6)0.0010 (5)0.0075 (6)
C140.0187 (6)0.0285 (7)0.0257 (7)0.0066 (5)0.0013 (5)0.0145 (6)
C150.0160 (6)0.0193 (6)0.0256 (7)0.0026 (5)0.0017 (5)0.0085 (6)
C290.0200 (6)0.0279 (7)0.0228 (7)0.0077 (6)0.0017 (5)0.0128 (6)
C300.0167 (6)0.0221 (7)0.0206 (7)0.0016 (5)0.0044 (5)0.0089 (5)
C250.0182 (6)0.0188 (6)0.0213 (7)0.0040 (5)0.0016 (5)0.0096 (5)
C260.0166 (6)0.0211 (6)0.0242 (7)0.0030 (5)0.0008 (5)0.0093 (6)
C270.0224 (7)0.0215 (7)0.0239 (7)0.0032 (5)0.0061 (5)0.0059 (6)
C230.0143 (6)0.0211 (7)0.0211 (7)0.0030 (5)0.0025 (5)0.0092 (6)
N60.0197 (5)0.0231 (6)0.0197 (6)0.0008 (5)0.0017 (4)0.0090 (5)
C210.0154 (6)0.0209 (7)0.0214 (7)0.0029 (5)0.0031 (5)0.0094 (6)
N50.0195 (5)0.0203 (6)0.0214 (6)0.0014 (5)0.0000 (4)0.0063 (5)
C180.0135 (6)0.0232 (7)0.0202 (7)0.0038 (5)0.0024 (5)0.0081 (6)
C190.0170 (6)0.0229 (7)0.0230 (7)0.0031 (5)0.0034 (5)0.0104 (6)
C200.0181 (6)0.0217 (7)0.0231 (7)0.0030 (5)0.0051 (5)0.0054 (6)
N40.0208 (6)0.0288 (6)0.0214 (6)0.0051 (5)0.0024 (5)0.0076 (5)
C160.0203 (6)0.0288 (7)0.0223 (7)0.0043 (6)0.0002 (5)0.0119 (6)
C170.0173 (6)0.0228 (7)0.0229 (7)0.0026 (5)0.0022 (5)0.0097 (6)
Geometric parameters (Å, º) top
N1—C11.3429 (18)C11—C121.3890 (18)
N1—C51.3451 (17)C11—H110.95
N2—C71.3338 (17)C12—C131.3904 (18)
N2—C61.3445 (17)C12—H120.95
N3—C91.3344 (17)C13—C141.3911 (19)
N3—C61.3474 (16)C13—H130.95
C28—C291.3874 (19)C14—C151.3854 (18)
C28—C271.3935 (19)C14—H140.95
C28—H280.95C15—H150.95
C24—N61.3341 (17)C29—C301.3810 (18)
C24—C231.3987 (19)C29—H290.95
C24—H240.95C30—C251.4068 (18)
C22—N51.3321 (17)C30—H300.95
C22—C231.4010 (18)C25—C261.3998 (19)
C22—H220.95C25—C231.4746 (18)
C1—C21.3861 (18)C26—C271.3853 (18)
C1—H10.95C26—H260.95
C2—C31.3982 (18)C27—H270.95
C2—H20.95N6—C211.3446 (16)
C3—C41.3924 (19)C21—N51.3442 (17)
C3—C61.4829 (18)C21—C181.4825 (18)
C4—C51.3847 (18)C18—C191.3962 (19)
C4—H40.95C18—C171.3970 (18)
C5—H50.95C19—C201.3808 (18)
C7—C81.3998 (18)C19—H190.95
C7—H70.95C20—N41.3440 (17)
C8—C91.3949 (19)C20—H200.95
C8—C101.4757 (18)N4—C161.3458 (18)
C9—H90.95C16—C171.3871 (19)
C10—C151.4027 (18)C16—H160.95
C10—C111.4039 (19)C17—H170.95
C1—N1—C5116.27 (12)C12—C13—C14119.78 (13)
C7—N2—C6116.84 (11)C12—C13—H13120.1
C9—N3—C6116.34 (11)C14—C13—H13120.1
C29—C28—C27119.71 (12)C15—C14—C13120.31 (12)
C29—C28—H28120.1C15—C14—H14119.8
C27—C28—H28120.1C13—C14—H14119.8
N6—C24—C23123.58 (11)C14—C15—C10120.70 (12)
N6—C24—H24118.2C14—C15—H15119.6
C23—C24—H24118.2C10—C15—H15119.6
N5—C22—C23123.44 (12)C30—C29—C28120.36 (12)
N5—C22—H22118.3C30—C29—H29119.8
C23—C22—H22118.3C28—C29—H29119.8
N1—C1—C2123.93 (12)C29—C30—C25120.69 (12)
N1—C1—H1118C29—C30—H30119.7
C2—C1—H1118C25—C30—H30119.7
C1—C2—C3119.00 (12)C26—C25—C30118.38 (12)
C1—C2—H2120.5C26—C25—C23121.73 (11)
C3—C2—H2120.5C30—C25—C23119.88 (11)
C4—C3—C2117.68 (12)C27—C26—C25120.69 (12)
C4—C3—C6121.26 (11)C27—C26—H26119.7
C2—C3—C6121.03 (12)C25—C26—H26119.7
C5—C4—C3118.96 (12)C26—C27—C28120.18 (12)
C5—C4—H4120.5C26—C27—H27119.9
C3—C4—H4120.5C28—C27—H27119.9
N1—C5—C4124.14 (12)C24—C23—C22114.48 (12)
N1—C5—H5117.9C24—C23—C25122.19 (11)
C4—C5—H5117.9C22—C23—C25123.33 (12)
N2—C6—N3125.23 (12)C24—N6—C21116.46 (11)
N2—C6—C3117.34 (11)N5—C21—N6125.40 (12)
N3—C6—C3117.42 (11)N5—C21—C18118.22 (11)
N2—C7—C8123.18 (12)N6—C21—C18116.37 (11)
N2—C7—H7118.4C22—N5—C21116.63 (11)
C8—C7—H7118.4C19—C18—C17117.45 (12)
C9—C8—C7114.70 (12)C19—C18—C21120.29 (11)
C9—C8—C10123.20 (11)C17—C18—C21122.26 (12)
C7—C8—C10122.08 (12)C20—C19—C18119.28 (12)
N3—C9—C8123.71 (11)C20—C19—H19120.4
N3—C9—H9118.1C18—C19—H19120.4
C8—C9—H9118.1N4—C20—C19124.09 (12)
C15—C10—C11118.38 (12)N4—C20—H20118
C15—C10—C8120.59 (12)C19—C20—H20118
C11—C10—C8120.99 (11)C20—N4—C16116.18 (12)
C12—C11—C10120.74 (12)N4—C16—C17124.03 (12)
C12—C11—H11119.6N4—C16—H16118
C10—C11—H11119.6C17—C16—H16118
C11—C12—C13120.08 (12)C16—C17—C18118.96 (12)
C11—C12—H12120C16—C17—H17120.5
C13—C12—H12120C18—C17—H17120.5
C5—N1—C1—C20.23 (18)C27—C28—C29—C300.06 (19)
N1—C1—C2—C31.52 (19)C28—C29—C30—C250.50 (18)
C1—C2—C3—C41.28 (18)C29—C30—C25—C260.86 (18)
C1—C2—C3—C6179.38 (11)C29—C30—C25—C23179.99 (11)
C2—C3—C4—C50.09 (18)C30—C25—C26—C270.67 (18)
C6—C3—C4—C5178.00 (11)C23—C25—C26—C27179.80 (11)
C1—N1—C5—C41.28 (19)C25—C26—C27—C280.13 (18)
C3—C4—C5—N11.46 (19)C29—C28—C27—C260.25 (19)
C7—N2—C6—N30.15 (18)N6—C24—C23—C220.22 (18)
C7—N2—C6—C3178.6 (1)N6—C24—C23—C25179.12 (11)
C9—N3—C6—N20.02 (19)N5—C22—C23—C240.14 (18)
C9—N3—C6—C3178.77 (11)N5—C22—C23—C25179.20 (11)
C4—C3—C6—N2158.60 (12)C26—C25—C23—C24148.58 (13)
C2—C3—C6—N219.42 (17)C30—C25—C23—C2430.54 (17)
C4—C3—C6—N320.25 (17)C26—C25—C23—C2232.13 (18)
C2—C3—C6—N3161.73 (12)C30—C25—C23—C22148.75 (13)
C6—N2—C7—C80.11 (18)C23—C24—N6—C210.22 (18)
N2—C7—C8—C90.08 (18)C24—N6—C21—N50.14 (18)
N2—C7—C8—C10178.41 (11)C24—N6—C21—C18179.6 (1)
C6—N3—C9—C80.23 (19)C23—C22—N5—C210.07 (18)
C7—C8—C9—N30.26 (19)N6—C21—N5—C220.07 (19)
C10—C8—C9—N3178.57 (11)C18—C21—N5—C22179.67 (11)
C9—C8—C10—C1533.47 (18)N5—C21—C18—C19160.88 (12)
C7—C8—C10—C15144.72 (13)N6—C21—C18—C1918.89 (17)
C9—C8—C10—C11148.99 (13)N5—C21—C18—C1719.43 (18)
C7—C8—C10—C1132.82 (18)N6—C21—C18—C17160.81 (12)
C15—C10—C11—C120.05 (18)C17—C18—C19—C201.14 (18)
C8—C10—C11—C12177.54 (11)C21—C18—C19—C20179.15 (10)
C10—C11—C12—C130.43 (18)C18—C19—C20—N41.45 (19)
C11—C12—C13—C140.57 (19)C19—C20—N4—C160.40 (18)
C12—C13—C14—C150.24 (19)C20—N4—C16—C170.95 (19)
C13—C14—C15—C100.25 (18)N4—C16—C17—C181.19 (19)
C11—C10—C15—C140.39 (18)C19—C18—C17—C160.08 (18)
C8—C10—C15—C14177.20 (11)C21—C18—C17—C16179.62 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N5i0.952.553.3818 (18)147
C9—H9···N6ii0.952.563.4027 (18)148
C22—H22···N2i0.952.543.3784 (18)147
C24—H24···N3ii0.952.563.4049 (19)149
C1—H1···Cg3iii0.952.913.5925 (15)129
C4—H4···Cg30.952.723.4163 (15)130
C12—H12···Cg1i0.952.893.5844 (15)131
C15—H15···Cg1iv0.952.923.5202 (15)122
C17—H17···Cg6v0.952.843.5561 (16)133
C20—H20···Cg6ii0.952.853.5251 (15)129
C26—H26···Cg50.952.863.5242 (15)128
C29—H29···Cg5vi0.952.773.4451 (15)129
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x1, y, z; (iv) x, y+1, z+2; (v) x+1, y+2, z+2; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H11N3
Mr233.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.2813 (5), 9.3609 (5), 13.9001 (7)
α, β, γ (°)71.462 (2), 86.957 (2), 75.788 (3)
V3)1109.54 (10)
Z4
Radiation typeCu Kα
µ (mm1)0.68
Crystal size (mm)0.40 × 0.38 × 0.08
Data collection
DiffractometerBruker SMART 6000
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.734, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
15167, 3967, 3226
Rint0.046
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.139, 1.00
No. of reflections3967
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.30

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), UdMX (local program).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···N5i0.952.553.3818 (18)147
C9—H9···N6ii0.952.563.4027 (18)148
C22—H22···N2i0.952.543.3784 (18)147
C24—H24···N3ii0.952.563.4049 (19)149
C1—H1···Cg3iii0.952.91323.5925 (15)129.44
C4—H4···Cg30.952.72273.4163 (15)130.43
C12—H12···Cg1i0.952.88663.5844 (15)131.20
C15—H15···Cg1iv0.952.92113.5202 (15)122.19
C17—H17···Cg6v0.952.83613.5561 (16)133.33
C20—H20···Cg6ii0.952.85123.5251 (15)128.80
C26—H26···Cg50.952.85763.5242 (15)128.10
C29—H29···Cg5vi0.952.77093.4451 (15)128.64
Symmetry codes: (i) x, y+2, z+2; (ii) x+1, y+1, z+2; (iii) x1, y, z; (iv) x, y+1, z+2; (v) x+1, y+2, z+2; (vi) x+1, y, z.
 

Acknowledgements

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada, the Ministère de l'Education du Québec and the Université de Montréal for financial support. The authors gratefully acknowledge Mme Françine Bélanger-Gariépy (Laboratoire de diffraction des rayons X, Université de Montréal, Canada) for the teaching of crystallography to MPS. Yuan-Qing Fang is acknowledged for help and guidance with the synthesis.

References

First citationBruker (1999). SAINT. Release 7.06A. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SMART. Release 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFang, Y.-Q., Taylor, N. J., Hanan, G. S., Loiseau, F., Passalacqua, R., Campagna, S., Nierengarten, H. & Van Dorsselaer, A. (2002). J. Am. Chem. Soc. 124, 7912–7913.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFang, Y.-Q., Taylor, N. J., Laverdière, F., Hanan, G. S., Loiseau, F., Nastasi, F., Campagna, S., Nierengarten, H., Leize-Wagner, E. & Van Dorsselaer, A. (2007). Inorg. Chem. 46, 2854–2863.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMedlycott, E. A. & Hanan, G. S. (2005). Chem. Soc. Rev. 34, 133–142.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMedlycott, E. A. & Hanan, G. S. (2006). Coord. Chem. Rev. 250, 1763–1782.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds