organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Phenyl-3-(pyren-1-yl)prop-2-en-1-one

aBeijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
*Correspondence e-mail: jnyao@iccas.ac.cn

(Received 6 November 2007; accepted 4 December 2007; online 27 February 2008)

The title compound, C25H16O, was prepared by the condens­ation reaction of pyrene-1-carbaldehyde and acetophenone in ethanol solution at room temperature. The phenyl ring forms a dihedral angle of 39.10 (11)° with the pyrene ring system. In the crystal structure, adjacent pyrene ring systems are linked by aromatic ππ stacking inter­actions, with a perpendicular inter­planar distance of 3.267 (6) Å and a centroid–centroid offset of 2.946 (7) Å.

Related literature

For related literature, see: Ansari et al. (2005[Ansari, F. L., Nazira, S., Noureenb, H. & Mirzab, B. (2005). Chem. Biodiversity, 2, 1656-1664.]); Nielsen et al. (2005[Nielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667-2677.]); Pattanaik et al. (2002[Pattanaik, P., Raman, J. & Balaram, H. (2002). Curr. Top. Med. Chem. 2, 438-496.]); Strack (1997[Strack, D. (1997). In Plant Biochemistry, p. 387. San Diego: Academic Press.]).

[Scheme 1]

Experimental

Crystal data
  • C25H16O

  • Mr = 332.38

  • Monoclinic, P 21

  • a = 4.6739 (15) Å

  • b = 22.535 (7) Å

  • c = 8.250 (3) Å

  • β = 106.45 (2)°

  • V = 833.4 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 (2) K

  • 0.24 × 0.22 × 0.12 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.991

  • 3489 measured reflections

  • 1512 independent reflections

  • 914 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.00

  • 1512 reflections

  • 235 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcone derivatives have always been of interest in the field of inorganic, organic and physical chemists and biology (Strack, 1997) due to their importance in many organic synthetic pathways, biochemical processes and enzymatic mechanisms (Ansari et al., 2005; Pattanaik et al., 2002; Nielsen et al., 2005). In this paper, we report the crystal structure of the title compound, which was obtained by the condensation reaction of pyrene-1-carbaldehyde and acetophenone in ethanol solution at room temperature.

In the title compound, the pyrene ring is substantially planar (maximum displacement 0.011 (4) Å for C12) and forms a dihedral angle of 39.10 (11)° with the phenyl ring. In the crystal packing, adjacent pyrene rings are linked by aromatic π-π stacking interactions, with a centroid-centroid distance of 4.339 (7) Å, a perpendicular interplanar distance of 3.267 (6) Å and a centroid-centroid offset of 2.946 (7) Å.

Related literature top

For related literature, see: Ansari et al. (2005); Nielsen et al. (2005); Pattanaik et al. (2002); Strack (1997).

Experimental top

The title compound was prepared by the condensation reaction of pyrene-1-carbaldehyde (0.05 mol) and acetophenone (0.05 mol) in ethanol (20 ml) at room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by slow evaporation of an ethanol/acetonitrile solution (1:1 v/v) at room temperature.

Refinement top

All H atoms were fixed geometrically and were treated as riding on the parent C atoms, with C—H distances of 0.93 Å. Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged in the final refinement.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXTL (Sheldrick, 1990).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
1-Phenyl-3-(pyren-1-yl)prop-2-en-1-one top
Crystal data top
C25H16OF(000) = 348
Mr = 332.38Dx = 1.324 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 824 reflections
a = 4.6739 (15) Åθ = 2.6–25.7°
b = 22.535 (7) ŵ = 0.08 mm1
c = 8.250 (3) ÅT = 294 K
β = 106.45 (2)°Block, yellow
V = 833.4 (5) Å30.24 × 0.22 × 0.12 mm
Z = 2
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1512 independent reflections
Radiation source: fine-focus sealed tube914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 55
Tmin = 0.981, Tmax = 0.991k = 2614
3489 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0466P)2]
where P = (Fo2 + 2Fc2)/3
1512 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C25H16OV = 833.4 (5) Å3
Mr = 332.38Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.6739 (15) ŵ = 0.08 mm1
b = 22.535 (7) ÅT = 294 K
c = 8.250 (3) Å0.24 × 0.22 × 0.12 mm
β = 106.45 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1512 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
914 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.991Rint = 0.038
3489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.098H-atom parameters constrained
S = 1.00Δρmax = 0.11 e Å3
1512 reflectionsΔρmin = 0.12 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0978 (8)0.06540 (14)0.3854 (4)0.0865 (10)
C10.2634 (8)0.31864 (18)0.6348 (5)0.0474 (10)
C20.4014 (8)0.30397 (17)0.5070 (5)0.0456 (10)
C30.5149 (8)0.24553 (17)0.4986 (5)0.0437 (9)
C40.4779 (8)0.20312 (18)0.6221 (5)0.0532 (11)
H40.54700.16460.61910.064*
C50.3463 (9)0.21795 (19)0.7411 (5)0.0558 (11)
H50.32770.18920.81840.067*
C60.2339 (8)0.27586 (18)0.7539 (5)0.0507 (10)
C70.0951 (9)0.2918 (2)0.8760 (6)0.0676 (12)
H70.07540.26370.95470.081*
C80.0129 (11)0.3477 (2)0.8831 (6)0.0781 (15)
H80.10580.35720.96560.094*
C90.0158 (9)0.3905 (2)0.7673 (6)0.0706 (14)
H90.05690.42860.77360.085*
C100.1518 (9)0.37699 (19)0.6421 (5)0.0561 (11)
C110.1810 (9)0.4196 (2)0.5191 (6)0.0657 (13)
H110.10790.45780.52310.079*
C120.3107 (9)0.40594 (19)0.3987 (6)0.0619 (12)
H120.32630.43470.32080.074*
C130.4260 (8)0.34749 (15)0.3881 (5)0.0481 (10)
C140.5642 (9)0.33242 (19)0.2671 (5)0.0555 (11)
H140.58410.36100.18970.067*
C150.6733 (9)0.27656 (17)0.2572 (5)0.0542 (11)
H150.76220.26800.17230.065*
C160.6540 (8)0.23186 (16)0.3724 (5)0.0460 (10)
C170.7838 (9)0.17355 (17)0.3629 (5)0.0527 (10)
H170.78790.14770.45130.063*
C180.8963 (9)0.15305 (17)0.2438 (5)0.0585 (11)
H180.88270.17650.14910.070*
C191.0416 (9)0.09496 (19)0.2545 (6)0.0561 (11)
C201.1212 (8)0.07115 (16)0.1054 (5)0.0486 (9)
C211.3317 (9)0.0265 (2)0.1272 (5)0.0617 (11)
H211.42900.01350.23570.074*
C221.3998 (10)0.00115 (19)0.0091 (7)0.0751 (14)
H221.53970.02930.00760.090*
C231.2618 (11)0.0207 (2)0.1689 (6)0.0732 (13)
H231.30940.00400.26110.088*
C241.0536 (11)0.0648 (2)0.1928 (5)0.0740 (13)
H240.95810.07770.30180.089*
C250.9834 (11)0.09030 (18)0.0569 (5)0.0632 (13)
H250.84260.12060.07470.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.123 (3)0.079 (2)0.0604 (19)0.027 (2)0.0325 (18)0.0182 (18)
C10.035 (2)0.059 (3)0.043 (2)0.0053 (19)0.0029 (18)0.007 (2)
C20.038 (2)0.055 (3)0.042 (2)0.0131 (19)0.0081 (19)0.0036 (19)
C30.037 (2)0.054 (3)0.037 (2)0.0056 (19)0.0062 (18)0.0029 (19)
C40.057 (3)0.056 (3)0.048 (2)0.004 (2)0.017 (2)0.004 (2)
C50.056 (3)0.065 (3)0.047 (3)0.009 (2)0.015 (2)0.007 (2)
C60.042 (2)0.068 (3)0.041 (2)0.007 (2)0.0105 (19)0.003 (2)
C70.056 (3)0.093 (4)0.054 (3)0.003 (3)0.016 (2)0.006 (2)
C80.068 (3)0.107 (5)0.064 (3)0.001 (3)0.026 (3)0.018 (3)
C90.054 (3)0.085 (4)0.069 (3)0.001 (2)0.011 (3)0.029 (3)
C100.045 (2)0.065 (3)0.054 (3)0.005 (2)0.008 (2)0.016 (2)
C110.056 (3)0.054 (3)0.078 (3)0.004 (2)0.005 (3)0.002 (2)
C120.060 (3)0.051 (3)0.072 (3)0.003 (2)0.014 (3)0.008 (2)
C130.041 (2)0.051 (3)0.050 (2)0.0058 (19)0.009 (2)0.003 (2)
C140.061 (3)0.056 (3)0.051 (3)0.006 (2)0.019 (2)0.015 (2)
C150.059 (3)0.061 (3)0.045 (2)0.007 (2)0.018 (2)0.001 (2)
C160.047 (2)0.047 (3)0.044 (2)0.009 (2)0.012 (2)0.000 (2)
C170.058 (2)0.055 (3)0.046 (2)0.004 (2)0.015 (2)0.001 (2)
C180.077 (3)0.053 (3)0.049 (2)0.004 (2)0.022 (2)0.006 (2)
C190.058 (3)0.056 (3)0.053 (3)0.000 (2)0.013 (2)0.004 (2)
C200.057 (2)0.041 (2)0.050 (2)0.005 (2)0.0174 (19)0.0035 (19)
C210.065 (3)0.057 (2)0.058 (3)0.002 (2)0.009 (2)0.001 (2)
C220.073 (3)0.062 (3)0.091 (4)0.007 (3)0.026 (3)0.015 (3)
C230.082 (4)0.074 (3)0.070 (3)0.000 (3)0.031 (3)0.011 (3)
C240.099 (4)0.069 (3)0.054 (3)0.017 (3)0.023 (3)0.001 (2)
C250.086 (3)0.052 (3)0.051 (3)0.017 (2)0.020 (3)0.003 (2)
Geometric parameters (Å, º) top
O1—C191.232 (5)C12—H120.9300
C1—C61.411 (5)C13—C141.377 (5)
C1—C21.422 (4)C14—C151.369 (5)
C1—C101.422 (6)C14—H140.9300
C2—C131.414 (5)C15—C161.405 (5)
C2—C31.429 (5)C15—H150.9300
C3—C161.409 (5)C16—C171.459 (5)
C3—C41.443 (5)C17—C181.322 (5)
C4—C51.340 (5)C17—H170.9300
C4—H40.9300C18—C191.466 (5)
C5—C61.422 (5)C18—H180.9300
C5—H50.9300C19—C201.483 (5)
C6—C71.391 (5)C20—C251.380 (5)
C7—C81.364 (6)C20—C211.382 (5)
C7—H70.9300C21—C221.377 (5)
C8—C91.390 (6)C21—H210.9300
C8—H80.9300C22—C231.366 (6)
C9—C101.392 (5)C22—H220.9300
C9—H90.9300C23—C241.365 (6)
C10—C111.431 (6)C23—H230.9300
C11—C121.338 (6)C24—C251.381 (5)
C11—H110.9300C24—H240.9300
C12—C131.435 (5)C25—H250.9300
C6—C1—C2120.8 (3)C2—C13—C12119.2 (4)
C6—C1—C10119.5 (4)C15—C14—C13121.9 (4)
C2—C1—C10119.7 (4)C15—C14—H14119.0
C13—C2—C1119.7 (3)C13—C14—H14119.0
C13—C2—C3120.1 (3)C14—C15—C16121.5 (4)
C1—C2—C3120.2 (3)C14—C15—H15119.2
C16—C3—C2119.5 (3)C16—C15—H15119.2
C16—C3—C4123.3 (4)C15—C16—C3118.3 (4)
C2—C3—C4117.1 (3)C15—C16—C17120.1 (3)
C5—C4—C3121.6 (4)C3—C16—C17121.5 (3)
C5—C4—H4119.2C18—C17—C16127.9 (4)
C3—C4—H4119.2C18—C17—H17116.1
C4—C5—C6122.6 (4)C16—C17—H17116.1
C4—C5—H5118.7C17—C18—C19122.8 (4)
C6—C5—H5118.7C17—C18—H18118.6
C7—C6—C1119.0 (4)C19—C18—H18118.6
C7—C6—C5123.3 (4)O1—C19—C18121.1 (4)
C1—C6—C5117.7 (3)O1—C19—C20119.3 (4)
C8—C7—C6121.6 (5)C18—C19—C20119.6 (4)
C8—C7—H7119.2C25—C20—C21118.2 (3)
C6—C7—H7119.2C25—C20—C19122.3 (3)
C7—C8—C9120.1 (4)C21—C20—C19119.5 (4)
C7—C8—H8119.9C22—C21—C20121.1 (4)
C9—C8—H8119.9C22—C21—H21119.4
C8—C9—C10120.8 (4)C20—C21—H21119.4
C8—C9—H9119.6C23—C22—C21119.9 (4)
C10—C9—H9119.6C23—C22—H22120.0
C9—C10—C1118.9 (4)C21—C22—H22120.0
C9—C10—C11122.4 (4)C24—C23—C22119.7 (4)
C1—C10—C11118.7 (4)C24—C23—H23120.1
C12—C11—C10121.7 (4)C22—C23—H23120.1
C12—C11—H11119.1C23—C24—C25120.6 (4)
C10—C11—H11119.1C23—C24—H24119.7
C11—C12—C13120.9 (4)C25—C24—H24119.7
C11—C12—H12119.6C20—C25—C24120.3 (4)
C13—C12—H12119.6C20—C25—H25119.8
C14—C13—C2118.6 (4)C24—C25—H25119.8
C14—C13—C12122.1 (4)
C6—C1—C2—C13179.5 (4)C3—C2—C13—C140.9 (5)
C10—C1—C2—C130.1 (5)C1—C2—C13—C120.0 (5)
C6—C1—C2—C30.6 (5)C3—C2—C13—C12180.0 (3)
C10—C1—C2—C3179.9 (4)C11—C12—C13—C14179.1 (4)
C13—C2—C3—C160.7 (5)C11—C12—C13—C20.0 (6)
C1—C2—C3—C16179.3 (3)C2—C13—C14—C151.0 (6)
C13—C2—C3—C4179.0 (4)C12—C13—C14—C15179.8 (4)
C1—C2—C3—C41.0 (4)C13—C14—C15—C161.1 (6)
C16—C3—C4—C5179.5 (3)C14—C15—C16—C30.8 (6)
C2—C3—C4—C50.8 (5)C14—C15—C16—C17177.4 (4)
C3—C4—C5—C60.2 (6)C2—C3—C16—C150.7 (5)
C2—C1—C6—C7179.4 (3)C4—C3—C16—C15179.0 (3)
C10—C1—C6—C70.1 (5)C2—C3—C16—C17177.5 (3)
C2—C1—C6—C50.1 (5)C4—C3—C16—C172.8 (6)
C10—C1—C6—C5179.5 (3)C15—C16—C17—C188.4 (6)
C4—C5—C6—C7179.6 (4)C3—C16—C17—C18173.5 (4)
C4—C5—C6—C10.3 (6)C16—C17—C18—C19175.2 (4)
C1—C6—C7—C80.0 (6)C17—C18—C19—O18.9 (6)
C5—C6—C7—C8179.3 (4)C17—C18—C19—C20170.8 (4)
C6—C7—C8—C90.4 (7)O1—C19—C20—C25157.8 (4)
C7—C8—C9—C100.6 (7)C18—C19—C20—C2521.9 (6)
C8—C9—C10—C10.4 (6)O1—C19—C20—C2119.5 (6)
C8—C9—C10—C11179.0 (4)C18—C19—C20—C21160.8 (4)
C6—C1—C10—C90.1 (5)C25—C20—C21—C220.9 (6)
C2—C1—C10—C9179.6 (3)C19—C20—C21—C22176.5 (4)
C6—C1—C10—C11179.4 (3)C20—C21—C22—C231.1 (7)
C2—C1—C10—C110.2 (5)C21—C22—C23—C240.9 (7)
C9—C10—C11—C12179.6 (4)C22—C23—C24—C250.7 (7)
C1—C10—C11—C120.2 (6)C21—C20—C25—C240.7 (6)
C10—C11—C12—C130.1 (6)C19—C20—C25—C24176.7 (4)
C1—C2—C13—C14179.1 (3)C23—C24—C25—C200.6 (7)

Experimental details

Crystal data
Chemical formulaC25H16O
Mr332.38
Crystal system, space groupMonoclinic, P21
Temperature (K)294
a, b, c (Å)4.6739 (15), 22.535 (7), 8.250 (3)
β (°) 106.45 (2)
V3)833.4 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.22 × 0.12
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.981, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3489, 1512, 914
Rint0.038
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.00
No. of reflections1512
No. of parameters235
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.12

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1990).

 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 90301010, 50573084, 90606004),

References

First citationAnsari, F. L., Nazira, S., Noureenb, H. & Mirzab, B. (2005). Chem. Biodiversity, 2, 1656–1664.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNielsen, S. F., Larsen, M., Boesen, T., Schønning, K. & Kromann, H. (2005). J. Med. Chem. 48, 2667–2677.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPattanaik, P., Raman, J. & Balaram, H. (2002). Curr. Top. Med. Chem. 2, 438–496.  CrossRef Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationStrack, D. (1997). In Plant Biochemistry, p. 387. San Diego: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds