metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m451-m452

Poly[tetra­aqua­bis­(μ2-2,4,6-tri­nitro­phenolato)barium(II)]

aDepartment of Physics, Loyola College, Chennai 600 034, India, and bSophisticated Analytical Instruments Facility, Indian Institute of Technology Madras, Chennai 600 036, India
*Correspondence e-mail: varghese@iitm.ac.in

(Received 17 December 2007; accepted 26 January 2008; online 6 February 2008)

The asymmetric unit of the title compound, [Ba(C6H2N3O7)2(H2O)4]n, consists of a barium ion coordinated by two nitrophenolate ligands and four water mol­ecules. Barium is deca­coordinated by O atoms. These units are linked together through bridging nitro groups to form a one-dimensional polymeric chain. The three-dimensional packing is facilitated through hydrogen-bonding inter­actions mediated through water mol­ecules. The coordination distances around Ba vary from 2.728 (4) to 3.138 (5) Å. The crystal sample, on exposure to air at room temperature for many days, slowly loses the water and peels out as filaments.

Related literature

For related literature, see: Brahadeeswaran et al. (1998[Brahadeeswaran, S., Venkataramanan, V., Sherwood, J. N. & Bhat, H. L. (1998). J. Mater. Chem. 8, 613-618.], 1999[Brahadeeswaran, S., Venkataramanan, V. & Bhat, H. L. (1999). J. Cryst. Growth, 205, 548-553.]); Jonie Varjula et al. (2007[Jonie Varjula, A., Vesta, C., Justin Raj, C., Dinakaran, S., Ramanand, A. & Jerome Das, S. (2007). Mater. Lett. 61, 5053-5055.]); Milton Boaz et al. (2005[Milton Boaz, B., Mary Linet, J., Varghese, B., Palanichamy, M. & Jerome Das, S. (2005). J. Cryst. Growth, 280, 448-451.]); Vesta et al. (2007[Vesta, C., Uthrakumar, R., Justin Raj, C., Jonie Varjula, A., Mary Linet, J. & Jerome Das, S. (2007). J. Mater. Sci. Technol. 23, 855-859.]).

[Scheme 1]

Experimental

Crystal data
  • [Ba(C6H2N3O7)2(H2O)4]

  • Mr = 665.62

  • Monoclinic, P 21 /c

  • a = 11.6765 (4) Å

  • b = 6.6878 (2) Å

  • c = 27.0324 (9) Å

  • β = 95.608 (2)°

  • V = 2100.86 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.00 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker Kappa APEX2 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.652, Tmax = 0.723

  • 20976 measured reflections

  • 3674 independent reflections

  • 3552 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.084

  • S = 1.42

  • 3674 reflections

  • 360 parameters

  • 234 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H15A⋯O7i 0.85 (4) 2.20 (4) 2.939 (6) 145 (6)
O15—H15A⋯O6i 0.85 (4) 2.33 (4) 3.030 (7) 140 (5)
O15—H15B⋯O9ii 0.85 (4) 2.103 (6) 2.953 (6) 179 (7)
O16—H16A⋯O4iii 0.85 (3) 2.08 (4) 2.806 (6) 142 (5)
O16—H16B⋯O15iv 0.85 (6) 2.11 (3) 2.906 (7) 156 (6)
O17—H17A⋯O12v 0.85 (4) 2.45 (3) 3.258 (8) 158 (6)
O17—H17B⋯O18v 0.85 (5) 1.969 (17) 2.805 (7) 168 (7)
O18—H18A⋯O16i 0.85 (4) 2.04 (3) 2.822 (7) 153 (7)
O18—H18B⋯O1vi 0.85 (5) 2.47 (3) 3.241 (7) 151 (6)
Symmetry codes: (i) x, y-1, z; (ii) -x+2, -y+1, -z; (iii) x-1, y, z; (iv) x, y+1, z; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Gascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Nitrophenol family of crystals are found to have high laser damage threshold, wide transparency windows, and high NLO co-efficients ((Brahadeeswaran et al., 1998, 1999), (Milton Boaz et al., 2005), (Vesta et al., 2007), (Jonie Varjula et al., 2007)). Nitrophenol groups are found to be good proton acceptors from the metallic hydroxide complexes. The title compound was synthesized as part of our ongoing research for synthesizing and characterizing new optically active materials. In the present work, the crystal structure of the compound (BaC12H4N6O14.4H2O) is reported for the first time.The reported compound is not optically active.

The title compound crystallizes in monoclinic system with space group P21/c. ORTEP representation of the molecule with 50% anisotropic ellipsoids are shown in figure1.The asymmetric unit consists of two nitrophenolate moieties coordinated to barium through phenolate O atoms O7 and O14 and one nitro oxygen each from nitrophenolate moieties (O1 and O8), on one side. Four water molecules of the asymmetric unit coordinates to other side. The asymmetric unit and its inversion are linked to each other through nitro oxygen O5(symm: 2 - x, 2 - y, -z) coordinating to metal. The centrosymmetric pair and its a-translations are joined to each other through nitro O atoms O11 (symm: x - 1, y, z) to form an one dimensional infinite polymeric chain parallel to a axis (Fig.2).Thus, Barium is coordinated with 10 O atoms. The coordination distances around Ba vary from 2.728 Å to 3.138 Å. The one dimensional chains are further linked to each other (along b and c directions) through water mediated O—H···O hydrogen bonds (Fig.3). The crystal sample, on exposure to air at room temperature for many days, slowly looses the water and peels out as filaments.

Related literature top

For related literature, see: Brahadeeswaran et al. (1998, 1999); Jonie Varjula et al. (2007); Milton Boaz et al. (2005); Vesta et al. (2007).

Experimental top

Picric acid (99%, 5.73 g ms) was dissolved in deionized water (100 ml) and then Ba(OH)2 (97%, 3.94 g ms) was added slowly with stirring to obtain saturated solution. The saturated solution kept at 305 K yielded fine yellow crystals in three days through spontaneous nucleation. The sample was purified further through recrystallization.

Refinement top

The aromatic H atoms were located in Fourier difference map and geometrically constrained at idealized positions (C—H = 0.93 Å) and were given riding model refinement with Uiso equal to 1.2 times Ueq of the parent carbon. All the water H atoms were located in difference Fourier map and refined isotropically with following restrints: O—H = 0.850 (1)Å and H···H = 1.380 (1) Å. These restraints were put to avoid bad geometry after refinement. The isotropic thermal parameters of H atoms H16A, H16B, H17A, H17B, H18A and H18B were constrained as 0.08 Å-2 during refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2/SAINT (Bruker, 2004); data reduction: SAINT/XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP representation of the molecule with 50% probability anisotropic ellipsoid.
[Figure 2] Fig. 2. One dimensional polymeric chain of the title compound formed by a-translation of the asymmetric unit and its inversion.
[Figure 3] Fig. 3. Packing of molecules in the unit cell viewed down b axis. Hydrogen bonds are shown with dotted lines.
Poly[tetraaquabis(µ2-2,4,6-trinitrophenolato)barium(II)] top
Crystal data top
[Ba(C6H2N3O7)2(H2O)4]F(000) = 1304
Mr = 665.62Dx = 2.104 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 6588 reflections
a = 11.6765 (4) Åθ = 2.4–25.0°
b = 6.6878 (2) ŵ = 2.00 mm1
c = 27.0324 (9) ÅT = 293 K
β = 95.608 (2)°Plate, yellow
V = 2100.86 (12) Å30.20 × 0.20 × 0.15 mm
Z = 4
Data collection top
Bruker Kappa APEX2
diffractometer
3674 independent reflections
Radiation source: fine-focus sealed tube3552 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and ϕ scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1313
Tmin = 0.652, Tmax = 0.723k = 77
20976 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.42 w = 1/[σ2(Fo2) + 9.4089P]
where P = (Fo2 + 2Fc2)/3
3674 reflections(Δ/σ)max = 0.002
360 parametersΔρmax = 0.58 e Å3
234 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Ba(C6H2N3O7)2(H2O)4]V = 2100.86 (12) Å3
Mr = 665.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6765 (4) ŵ = 2.00 mm1
b = 6.6878 (2) ÅT = 293 K
c = 27.0324 (9) Å0.20 × 0.20 × 0.15 mm
β = 95.608 (2)°
Data collection top
Bruker Kappa APEX2
diffractometer
3674 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3552 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.723Rint = 0.020
20976 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044234 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.42Δρmax = 0.58 e Å3
3674 reflectionsΔρmin = 0.53 e Å3
360 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.2555 (4)1.1054 (8)0.13511 (18)0.0242 (11)
C21.1690 (4)1.1014 (7)0.09309 (19)0.0238 (10)
C31.2195 (4)1.1225 (7)0.04666 (18)0.0255 (11)
C41.3344 (4)1.1314 (8)0.04212 (19)0.0280 (11)
H41.36171.13690.01100.034*
C51.4101 (4)1.1319 (8)0.0851 (2)0.0271 (11)
C61.3720 (4)1.1214 (7)0.13149 (19)0.0258 (11)
H61.42381.12510.15990.031*
C71.3226 (4)0.6198 (7)0.09934 (18)0.0246 (11)
C81.4352 (4)0.6309 (8)0.0885 (2)0.0280 (12)
H81.45270.63630.05570.034*
C91.5217 (4)0.6338 (8)0.12707 (19)0.0268 (11)
C101.4971 (4)0.6212 (8)0.1761 (2)0.0301 (12)
H101.55610.61870.20180.036*
C111.3855 (5)0.6125 (8)0.18597 (19)0.0291 (12)
C121.2861 (4)0.6108 (8)0.1489 (2)0.0270 (11)
N11.2203 (4)1.0954 (7)0.18515 (16)0.0324 (10)
N21.5322 (4)1.1492 (8)0.0809 (2)0.0409 (12)
N31.1438 (4)1.1353 (7)0.00065 (17)0.0339 (11)
N41.2374 (4)0.6143 (7)0.05641 (16)0.0284 (10)
N51.6402 (4)0.6485 (8)0.11597 (19)0.0384 (12)
N61.3656 (4)0.6031 (9)0.23850 (18)0.0426 (12)
O11.1282 (4)1.0179 (7)0.19220 (15)0.0450 (11)
O21.2845 (4)1.1681 (8)0.21915 (15)0.0524 (12)
O31.5656 (4)1.1695 (9)0.03987 (19)0.0671 (15)
O41.5960 (4)1.1459 (10)0.1193 (2)0.0709 (16)
O51.1760 (4)1.0643 (9)0.03692 (16)0.0604 (14)
O61.0527 (4)1.2218 (8)0.00097 (17)0.0616 (14)
O71.0641 (3)1.0833 (6)0.09589 (14)0.0359 (9)
O81.1364 (3)0.6458 (8)0.06148 (16)0.0566 (13)
O91.2699 (4)0.5776 (7)0.01567 (14)0.0467 (11)
O101.6600 (4)0.6531 (9)0.07262 (19)0.0672 (15)
O111.7160 (3)0.6578 (8)0.15020 (18)0.0573 (13)
O121.2822 (5)0.6819 (10)0.25207 (18)0.0770 (17)
O131.4367 (4)0.5156 (8)0.26667 (17)0.0616 (14)
O141.1854 (3)0.5971 (7)0.15895 (15)0.0419 (10)
O150.9006 (4)0.4119 (7)0.07251 (15)0.0403 (10)
O160.8349 (4)1.1003 (8)0.13919 (18)0.0522 (12)
O170.9062 (4)0.8444 (9)0.22439 (17)0.0601 (13)
O180.9301 (5)0.4269 (8)0.19520 (18)0.0639 (14)
Ba0.96482 (2)0.74829 (6)0.130390 (11)0.02924 (11)
H15A0.955 (3)0.334 (7)0.067 (2)0.07 (3)*
H15B0.852 (4)0.415 (11)0.0470 (14)0.08 (3)*
H16A0.7657 (17)1.072 (11)0.144 (3)0.080*
H16B0.835 (5)1.182 (10)0.115 (2)0.080*
H17A0.852 (3)0.930 (6)0.222 (2)0.080*
H17B0.948 (5)0.866 (11)0.2514 (15)0.080*
H18A0.925 (6)0.318 (5)0.179 (2)0.080*
H18B0.901 (6)0.410 (10)0.2224 (15)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.030 (3)0.020 (2)0.023 (2)0.002 (2)0.003 (2)0.002 (2)
C20.019 (2)0.017 (2)0.035 (3)0.002 (2)0.003 (2)0.001 (2)
C30.031 (3)0.017 (3)0.028 (3)0.004 (2)0.000 (2)0.001 (2)
C40.033 (3)0.023 (3)0.030 (3)0.004 (2)0.010 (2)0.003 (2)
C50.023 (3)0.021 (3)0.038 (3)0.002 (2)0.004 (2)0.003 (2)
C60.024 (3)0.019 (3)0.033 (3)0.003 (2)0.003 (2)0.002 (2)
C70.026 (3)0.018 (2)0.029 (3)0.000 (2)0.004 (2)0.000 (2)
C80.027 (3)0.025 (3)0.032 (3)0.001 (2)0.006 (2)0.002 (2)
C90.019 (2)0.024 (3)0.038 (3)0.000 (2)0.003 (2)0.002 (2)
C100.026 (3)0.027 (3)0.036 (3)0.002 (2)0.007 (2)0.003 (2)
C110.030 (3)0.030 (3)0.027 (3)0.000 (2)0.001 (2)0.001 (2)
C120.022 (3)0.021 (3)0.037 (3)0.000 (2)0.001 (2)0.001 (2)
N10.031 (2)0.036 (3)0.030 (2)0.001 (2)0.0047 (19)0.002 (2)
N20.028 (2)0.042 (3)0.054 (3)0.001 (2)0.008 (2)0.004 (2)
N30.033 (3)0.036 (3)0.032 (2)0.010 (2)0.0009 (19)0.005 (2)
N40.027 (2)0.023 (2)0.034 (2)0.0018 (19)0.0030 (18)0.0015 (19)
N50.023 (2)0.041 (3)0.051 (3)0.002 (2)0.005 (2)0.003 (2)
N60.035 (3)0.054 (3)0.039 (3)0.001 (3)0.004 (2)0.000 (3)
O10.040 (2)0.058 (3)0.039 (2)0.016 (2)0.0174 (18)0.002 (2)
O20.050 (3)0.075 (3)0.032 (2)0.011 (2)0.0019 (19)0.015 (2)
O30.042 (3)0.095 (4)0.069 (3)0.010 (3)0.029 (2)0.006 (3)
O40.023 (2)0.115 (4)0.073 (3)0.002 (3)0.004 (2)0.008 (3)
O50.046 (3)0.102 (4)0.033 (2)0.012 (3)0.0025 (19)0.013 (3)
O60.058 (3)0.064 (3)0.058 (3)0.024 (3)0.019 (2)0.002 (3)
O70.0214 (19)0.039 (2)0.047 (2)0.0024 (17)0.0017 (16)0.0081 (19)
O80.025 (2)0.091 (4)0.051 (3)0.015 (2)0.0070 (18)0.014 (3)
O90.042 (2)0.070 (3)0.028 (2)0.006 (2)0.0009 (17)0.003 (2)
O100.040 (3)0.106 (4)0.059 (3)0.001 (3)0.019 (2)0.013 (3)
O110.022 (2)0.081 (3)0.068 (3)0.007 (2)0.003 (2)0.003 (3)
O120.070 (3)0.117 (5)0.047 (3)0.026 (3)0.019 (2)0.006 (3)
O130.065 (3)0.077 (4)0.040 (2)0.001 (3)0.008 (2)0.015 (2)
O140.024 (2)0.055 (3)0.047 (2)0.0024 (19)0.0071 (17)0.003 (2)
O150.040 (2)0.039 (2)0.040 (2)0.004 (2)0.0036 (19)0.0070 (19)
O160.033 (2)0.054 (3)0.069 (3)0.006 (2)0.004 (2)0.005 (2)
O170.060 (3)0.084 (4)0.038 (2)0.006 (3)0.008 (2)0.001 (2)
O180.082 (4)0.059 (3)0.048 (3)0.010 (3)0.007 (3)0.011 (2)
Ba0.02237 (16)0.03288 (18)0.03255 (17)0.00217 (15)0.00312 (11)0.00155 (16)
Geometric parameters (Å, º) top
C1—C61.378 (7)N3—O61.211 (6)
C1—C21.444 (7)N3—O51.214 (6)
C1—N11.453 (6)N4—O81.218 (6)
C2—O71.241 (6)N4—O91.224 (6)
C2—C31.445 (7)N5—O101.216 (6)
C3—C41.360 (7)N5—O111.218 (6)
C3—N31.457 (7)N6—O121.196 (7)
C4—C51.388 (7)N6—O131.220 (7)
C4—H40.9300O1—Ba3.010 (4)
C5—C61.374 (7)O5—Bai3.138 (5)
C5—N21.446 (7)O7—Ba2.728 (4)
C6—H60.9300O8—Ba2.947 (4)
C7—C81.377 (7)O11—Baii3.065 (4)
C7—C121.446 (7)O14—Ba2.805 (4)
C7—N41.453 (6)O15—Ba2.801 (4)
C8—C91.379 (7)O15—H15A0.85 (4)
C8—H80.9300O15—H15B0.85 (4)
C9—C101.385 (7)O16—Ba2.823 (5)
C9—N51.448 (6)O16—H16A0.85 (3)
C10—C111.356 (7)O16—H16B0.85 (6)
C10—H100.9300O17—Ba2.771 (4)
C11—C121.458 (7)O17—H17A0.85 (4)
C11—N61.463 (7)O17—H17B0.85 (5)
C12—O141.236 (6)O18—Ba2.827 (5)
N1—O11.225 (6)O18—H18A0.85 (4)
N1—O21.228 (6)O18—H18B0.85 (5)
N2—O31.218 (6)Ba—O11iii3.065 (4)
N2—O41.218 (7)Ba—O5i3.138 (5)
C6—C1—C2124.4 (4)C12—O14—Ba141.3 (4)
C6—C1—N1116.1 (4)Ba—O15—H15A116 (3)
C2—C1—N1119.5 (4)Ba—O15—H15B124 (5)
O7—C2—C1124.9 (5)H15A—O15—H15B109 (5)
O7—C2—C3123.5 (5)Ba—O16—H16A111 (5)
C1—C2—C3111.6 (4)Ba—O16—H16B116 (5)
C4—C3—C2124.9 (5)H16A—O16—H16B109 (6)
C4—C3—N3116.3 (5)Ba—O17—H17A109 (5)
C2—C3—N3118.8 (4)Ba—O17—H17B131 (5)
C3—C4—C5118.5 (5)H17A—O17—H17B108 (6)
C3—C4—H4120.7Ba—O18—H18A110 (4)
C5—C4—H4120.7Ba—O18—H18B137 (5)
C6—C5—C4121.8 (5)H18A—O18—H18B109 (6)
C6—C5—N2119.1 (5)O7—Ba—O17105.91 (15)
C4—C5—N2119.1 (5)O7—Ba—O15124.63 (12)
C5—C6—C1118.6 (5)O17—Ba—O15128.47 (15)
C5—C6—H6120.7O7—Ba—O1488.90 (12)
C1—C6—H6120.7O17—Ba—O1497.68 (14)
C8—C7—C12125.0 (5)O15—Ba—O1493.02 (13)
C8—C7—N4115.1 (4)O7—Ba—O1666.02 (13)
C12—C7—N4119.9 (4)O17—Ba—O1663.03 (16)
C7—C8—C9118.9 (5)O15—Ba—O16126.89 (13)
C7—C8—H8120.5O14—Ba—O16139.82 (13)
C9—C8—H8120.5O7—Ba—O18158.07 (13)
C8—C9—C10121.1 (5)O17—Ba—O1862.93 (17)
C8—C9—N5119.2 (5)O15—Ba—O1871.85 (14)
C10—C9—N5119.6 (5)O14—Ba—O1874.86 (15)
C11—C10—C9119.0 (5)O16—Ba—O18118.10 (16)
C11—C10—H10120.5O7—Ba—O868.72 (14)
C9—C10—H10120.5O17—Ba—O8151.36 (13)
C10—C11—C12125.5 (5)O15—Ba—O867.76 (13)
C10—C11—N6116.1 (5)O14—Ba—O855.05 (12)
C12—C11—N6118.4 (5)O16—Ba—O8130.63 (15)
O14—C12—C7125.4 (5)O18—Ba—O8111.25 (17)
O14—C12—C11124.0 (5)O7—Ba—O155.28 (11)
C7—C12—C11110.5 (4)O17—Ba—O163.37 (13)
O1—N1—O2122.1 (5)O15—Ba—O1155.78 (13)
O1—N1—C1119.7 (4)O14—Ba—O163.12 (13)
O2—N1—C1118.1 (4)O16—Ba—O176.72 (13)
O3—N2—O4123.7 (5)O18—Ba—O1103.48 (13)
O3—N2—C5119.1 (5)O8—Ba—O193.27 (12)
O4—N2—C5117.2 (5)O7—Ba—O11iii131.55 (13)
O6—N3—O5122.5 (5)O17—Ba—O11iii64.06 (14)
O6—N3—C3118.8 (5)O15—Ba—O11iii74.48 (13)
O5—N3—C3118.6 (5)O14—Ba—O11iii137.85 (13)
O8—N4—O9121.6 (4)O16—Ba—O11iii67.90 (14)
O8—N4—C7120.0 (4)O18—Ba—O11iii62.99 (16)
O9—N4—C7118.3 (4)O8—Ba—O11iii141.18 (13)
O10—N5—O11122.6 (5)O1—Ba—O11iii125.55 (12)
O10—N5—C9118.4 (5)O7—Ba—O5i66.63 (12)
O11—N5—C9119.0 (5)O17—Ba—O5i119.27 (15)
O12—N6—O13123.0 (6)O15—Ba—O5i77.31 (14)
O12—N6—C11119.4 (5)O14—Ba—O5i139.51 (12)
O13—N6—C11117.6 (5)O16—Ba—O5i59.42 (14)
N1—O1—Ba133.3 (3)O18—Ba—O5i134.99 (15)
N3—O5—Bai109.7 (4)O8—Ba—O5i85.35 (12)
C2—O7—Ba123.8 (3)O1—Ba—O5i117.49 (13)
N4—O8—Ba146.8 (3)O11iii—Ba—O5i77.80 (13)
N5—O11—Baii120.5 (4)
C6—C1—C2—O7178.6 (5)C10—C11—N6—O12146.4 (6)
N1—C1—C2—O72.5 (8)C12—C11—N6—O1233.9 (9)
C6—C1—C2—C31.8 (7)C10—C11—N6—O1332.8 (8)
N1—C1—C2—C3177.2 (4)C12—C11—N6—O13146.9 (6)
O7—C2—C3—C4176.1 (5)O2—N1—O1—Ba164.9 (4)
C1—C2—C3—C44.2 (7)C1—N1—O1—Ba15.9 (8)
O7—C2—C3—N33.8 (8)O6—N3—O5—Bai17.7 (7)
C1—C2—C3—N3175.8 (4)C3—N3—O5—Bai160.0 (3)
C2—C3—C4—C53.9 (8)C1—C2—O7—Ba65.4 (6)
N3—C3—C4—C5176.2 (5)C3—C2—O7—Ba115.0 (5)
C3—C4—C5—C60.8 (8)O9—N4—O8—Ba178.2 (5)
C3—C4—C5—N2177.6 (5)C7—N4—O8—Ba1.9 (10)
C4—C5—C6—C11.5 (8)O10—N5—O11—Baii7.9 (8)
N2—C5—C6—C1179.9 (5)C9—N5—O11—Baii171.3 (4)
C2—C1—C6—C50.9 (8)C7—C12—O14—Ba42.3 (9)
N1—C1—C6—C5179.8 (5)C11—C12—O14—Ba140.1 (5)
C12—C7—C8—C90.0 (8)C2—O7—Ba—O17105.6 (4)
N4—C7—C8—C9179.1 (5)C2—O7—Ba—O1585.0 (4)
C7—C8—C9—C101.5 (8)C2—O7—Ba—O147.9 (4)
C7—C8—C9—N5179.1 (5)C2—O7—Ba—O16155.6 (4)
C8—C9—C10—C112.2 (8)C2—O7—Ba—O1849.6 (6)
N5—C9—C10—C11178.4 (5)C2—O7—Ba—O844.7 (4)
C9—C10—C11—C121.5 (9)C2—O7—Ba—O165.4 (4)
C9—C10—C11—N6178.9 (5)C2—O7—Ba—O11iii174.8 (4)
C8—C7—C12—O14178.6 (5)C2—O7—Ba—O5i138.9 (4)
N4—C7—C12—O140.5 (8)C12—O14—Ba—O725.0 (6)
C8—C7—C12—C110.7 (7)C12—O14—Ba—O17130.9 (6)
N4—C7—C12—C11178.4 (4)C12—O14—Ba—O1599.6 (6)
C10—C11—C12—O14177.9 (6)C12—O14—Ba—O1674.3 (6)
N6—C11—C12—O141.8 (8)C12—O14—Ba—O18169.9 (6)
C10—C11—C12—C70.0 (8)C12—O14—Ba—O839.5 (6)
N6—C11—C12—C7179.7 (5)C12—O14—Ba—O176.1 (6)
C6—C1—N1—O1156.2 (5)C12—O14—Ba—O11iii169.6 (5)
C2—C1—N1—O124.8 (7)C12—O14—Ba—O5i25.7 (7)
C6—C1—N1—O224.6 (7)N4—O8—Ba—O785.4 (8)
C2—C1—N1—O2154.4 (5)N4—O8—Ba—O171.1 (10)
C6—C5—N2—O3176.0 (6)N4—O8—Ba—O15129.7 (8)
C4—C5—N2—O32.4 (8)N4—O8—Ba—O1418.9 (7)
C6—C5—N2—O42.7 (8)N4—O8—Ba—O16110.0 (8)
C4—C5—N2—O4178.9 (6)N4—O8—Ba—O1871.1 (8)
C4—C3—N3—O6144.6 (5)N4—O8—Ba—O134.8 (8)
C2—C3—N3—O635.4 (7)N4—O8—Ba—O11iii144.0 (7)
C4—C3—N3—O533.1 (7)N4—O8—Ba—O5i152.1 (8)
C2—C3—N3—O5146.9 (5)N1—O1—Ba—O745.6 (5)
C8—C7—N4—O8164.9 (5)N1—O1—Ba—O17178.3 (6)
C12—C7—N4—O815.9 (7)N1—O1—Ba—O1552.7 (7)
C8—C7—N4—O915.2 (7)N1—O1—Ba—O1463.4 (5)
C12—C7—N4—O9164.0 (5)N1—O1—Ba—O16115.5 (5)
C8—C9—N5—O101.7 (8)N1—O1—Ba—O18128.4 (5)
C10—C9—N5—O10177.7 (6)N1—O1—Ba—O815.6 (5)
C8—C9—N5—O11177.6 (5)N1—O1—Ba—O11iii165.4 (5)
C10—C9—N5—O113.0 (8)N1—O1—Ba—O5i70.9 (5)
Symmetry codes: (i) x+2, y+2, z; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O7iv0.85 (4)2.20 (4)2.939 (6)145 (6)
O15—H15A···O6iv0.85 (4)2.33 (4)3.030 (7)140 (5)
O15—H15B···O9v0.85 (4)2.10 (1)2.953 (6)179 (7)
O16—H16A···O4iii0.85 (3)2.08 (4)2.806 (6)142 (5)
O16—H16B···O15vi0.85 (6)2.11 (3)2.906 (7)156 (6)
O17—H17A···O12vii0.85 (4)2.45 (3)3.258 (8)158 (6)
O17—H17B···O18vii0.85 (5)1.97 (2)2.805 (7)168 (7)
O18—H18A···O16iv0.85 (4)2.04 (3)2.822 (7)153 (7)
O18—H18B···O1viii0.85 (5)2.47 (3)3.241 (7)151 (6)
Symmetry codes: (iii) x1, y, z; (iv) x, y1, z; (v) x+2, y+1, z; (vi) x, y+1, z; (vii) x+2, y+1/2, z+1/2; (viii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ba(C6H2N3O7)2(H2O)4]
Mr665.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.6765 (4), 6.6878 (2), 27.0324 (9)
β (°) 95.608 (2)
V3)2100.86 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.00
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker Kappa APEX2
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.652, 0.723
No. of measured, independent and
observed [I > 2σ(I)] reflections
20976, 3674, 3552
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.084, 1.42
No. of reflections3674
No. of parameters360
No. of restraints234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.53

Computer programs: APEX2 (Bruker, 2004), APEX2/SAINT (Bruker, 2004), SAINT/XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Bruno et al., 2002).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O7i0.85 (4)2.20 (4)2.939 (6)145 (6)
O15—H15A···O6i0.85 (4)2.33 (4)3.030 (7)140 (5)
O15—H15B···O9ii0.85 (4)2.103 (6)2.953 (6)179 (7)
O16—H16A···O4iii0.85 (3)2.08 (4)2.806 (6)142 (5)
O16—H16B···O15iv0.85 (6)2.11 (3)2.906 (7)156 (6)
O17—H17A···O12v0.85 (4)2.45 (3)3.258 (8)158 (6)
O17—H17B···O18v0.85 (5)1.969 (17)2.805 (7)168 (7)
O18—H18A···O16i0.85 (4)2.04 (3)2.822 (7)153 (7)
O18—H18B···O1vi0.85 (5)2.47 (3)3.241 (7)151 (6)
Symmetry codes: (i) x, y1, z; (ii) x+2, y+1, z; (iii) x1, y, z; (iv) x, y+1, z; (v) x+2, y+1/2, z+1/2; (vi) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Sophisticated Analytical Instruments Facility, Indian Institute of Technology Madras, Chennai, for the X-ray data collection.

References

First citationAltomare, A., Gascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrahadeeswaran, S., Venkataramanan, V. & Bhat, H. L. (1999). J. Cryst. Growth, 205, 548–553.  Web of Science CrossRef CAS Google Scholar
First citationBrahadeeswaran, S., Venkataramanan, V., Sherwood, J. N. & Bhat, H. L. (1998). J. Mater. Chem. 8, 613–618.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 6.0). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJonie Varjula, A., Vesta, C., Justin Raj, C., Dinakaran, S., Ramanand, A. & Jerome Das, S. (2007). Mater. Lett. 61, 5053–5055.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMilton Boaz, B., Mary Linet, J., Varghese, B., Palanichamy, M. & Jerome Das, S. (2005). J. Cryst. Growth, 280, 448–451.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVesta, C., Uthrakumar, R., Justin Raj, C., Jonie Varjula, A., Mary Linet, J. & Jerome Das, S. (2007). J. Mater. Sci. Technol. 23, 855–859.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 3| March 2008| Pages m451-m452
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds