organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,8-Bis(4-chloro­phen­yl)-4,7-di­methyl­tri­cyclo­[4.2.2.02,5]deca-3,7-diene

aInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan, and bDepartment of Electronic Chemistry, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
*Correspondence e-mail: tomura@ims.ac.jp

(Received 26 January 2008; accepted 29 January 2008; online 6 February 2008)

The title tricyclic diene, C24H22Cl2, is the product of thermal ring-opening of a corresponding basketane (penta­cyclo­[4.4.0.02,5.03,8.04,7]deca­ne) derivative. The cyclo­butene ring is planar to within 0.0032 (12) Å and its geometry is normal. The two 4-chloro­phenyl groups are oriented in an approximately face-to-face conformation with a dihedral angle of 44.14 (6)° between them. The 4-chloro­phenyl group bonded to the cyclo­butene ring lies almost in the plane of the cyclo­butene ring, with a dihedral angle of 8.29 (17)° between the ring planes. The average intra­molecular C⋯C distance between the two C=C bonds is 2.92 Å. In the crystal structure, the mol­ecules are well separated with no close C—H⋯Cl or C—H⋯π inter­molecular inter­actions.

Related literature

For the preparation of the title compound, see: Tezuka et al. (1976[Tezuka, T., Yamashita, Y. & Mukai, T. (1976). J. Am. Chem. Soc. 98, 6051-6052.]); Mukai et al. (1981[Mukai, T., Sato, K. & Yamashita, Y. (1981). J. Am. Chem. Soc. 103, 670-672.]). For cage compounds, see: Osawa & Yonemitsu (1992[Osawa, E. & Yonemitsu, O. (1992). Carbocyclic Cage Compounds. Weinheim: VCH.]). For the crystal structures of compounds with a tricyclo­[4.2.2.02,5]deca-3,7-diene skeleton, see: Lemley et al. (1976[Lemley, J. T., Stezowski, J. J. & Hughes, R. E. (1976). Acta Cryst. B32, 1212-1215.]); Hanson (1981[Hanson, A. H. (1981). Cryst. Struct. Commun. 10, 319-325.]); Mehta et al. (1990[Mehta, G., Padma, S., Pattabhi, V., Pramanik, A. & Chandrasekhar, J. (1990). J. Am. Chem. Soc. 112, 2942-2949.], 2003[Mehta, G., Le Droumaguet, C., Islam, K., Anoop, A. & Jemmis, E. D. (2003). Tetrahedron Lett. 44, 3109-3113.]). For related literature, see: Allen (1984[Allen, F. H. (1984). Acta Cryst. B40, 64-72.], 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22Cl2

  • Mr = 381.32

  • Monoclinic, P 21 /c

  • a = 8.3389 (7) Å

  • b = 21.2224 (12) Å

  • c = 11.6074 (13) Å

  • β = 103.732 (7)°

  • V = 1995.5 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.94 mm−1

  • T = 295 (1) K

  • 0.48 × 0.35 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.328, Tmax = 0.484

  • 4348 measured reflections

  • 4070 independent reflections

  • 2872 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections frequency: 120 min intensity decay: 1.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.160

  • S = 1.04

  • 4070 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992[Enraf-Nonius (1992). CAD-4 EXPRESS Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: TEXSAN (Rigaku/MSC, 2000[Rigaku/MSC (2000). TEXSAN. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There is considerable interest in the chemistry of highly strained polycyclic "cage" compounds (Osawa & Yonemitsu, 1992). The title tricyclic diene, (I), Fig 1, 3,8-bis(4-chlorophenyl)-4,7-dimethyltricyclo[4.2.2.02,5] deca-3,7-diene, C24H22Cl2, is the product of thermal ring-opening of a corresponding basketane (pentacyclo[4.4.0.02,5.03,8.04,7]decane) and reverts to the basketane derivative quantitatively upon irradiation (Tezuka et al., 1976). A search for tricyclo[4.2.2.02,5]deca-3,7-diene skeleton in the Cambridge Structural Database (Version 5.29; Allen, 2002) gave only four examples, CTCYDD (Lemley et al., 1976), CNUNDC (Hanson, 1981), KEVGEX (Mehta et al., 1990) and GACFIA (Mehta et al., 2003).

Bond lengths and angles in the molecule are within the normal ranges (Allen et al., 1987) and the geometry of the cyclobutene ring is also similar to that of cyclobutene (Allen, 1984). The cyclobutene ring adopts a planar, rather than a puckered conformation, where the maximum deviation of the fitted atoms from the least-squares plane is 0.0032 (12) Å. The C3—C4 bond distance [1.562 (3) Å] in the cyclobutene ring is 1.8% shorter than the corresponding distance in the 2,3,4,5-tetrachloro derivative (Lemley et al., 1976). The two 4-chlorophenyl groups are oriented in an approximately face-to-face conformation with a dihedral angle of 44.14 (6)° between them. The 4-chlorophenyl group bonded to the cyclobutene ring lies almost in the plane of the cyclobutene ring with a dihedral angle of 8.29 (17)° between the ring planes. Upon irradiation, an intramolecular photocyclization occurs between the C1?C2 and C6?C7 bonds. Intramolecular C1···C6 and C2···C7 distances are 2.918 (3) and 2.921 (3) Å, respectively, and the dihedral angle between the cyclobutene plane (C1–C4) and the C5–C8 plane is 60.89 (12)°. In the crystal structure the molecules are well separated with no close C—H···Cl or C—H···π intermolecular interactions.

Related literature top

For the preparation of the title compound, see: Tezuka et al. (1976); Mukai et al. (1981). For cage compounds, see: Osawa & Yonemitsu (1992). For the crystal structures of compounds with the tricyclo[4.2.2.02,5]deca-3,7-diene skeleton, see: Lemley et al. (1976); Hanson (1981); Mehta et al. (1990, 2003). For other related literature, see: Allen (1984, 2002); Allen et al. (1987).

Experimental top

The compound (I) was synthesized according to a literature method (Tezuka et al., 1976; Mukai et al., 1981). Colorless crystals of (I) suitable for X-ray analysis were grown from a dichloromethane solution.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H distances of 0.93, 0.96, 0.97 and 0.98 Å for aromatic, methyl, methylene and methine H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic, methylene and methine or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1992); data reduction: TEXSAN (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 20% probability displacement ellipsoids for non-H atoms. H atoms are shown as small spheres with arbitrary radii.
3,8-Bis(4-chlorophenyl)-4,7-dimethyltricyclo[4.2.2.02,5]deca-3,7-diene top
Crystal data top
C24H22Cl2F(000) = 800
Mr = 381.32Dx = 1.269 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.3389 (7) Åθ = 22.7–42.6°
b = 21.2224 (12) ŵ = 2.94 mm1
c = 11.6074 (13) ÅT = 295 K
β = 103.732 (7)°Block, colorless
V = 1995.5 (3) Å30.48 × 0.35 × 0.25 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2872 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.021
Graphite monochromatorθmax = 74.2°, θmin = 4.2°
ω–2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 026
Tmin = 0.328, Tmax = 0.484l = 1414
4348 measured reflections3 standard reflections every 120 min
4070 independent reflections intensity decay: 1.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0822P)2 + 0.357P]
where P = (Fo2 + 2Fc2)/3
4070 reflections(Δ/σ)max = 0.007
237 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C24H22Cl2V = 1995.5 (3) Å3
Mr = 381.32Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.3389 (7) ŵ = 2.94 mm1
b = 21.2224 (12) ÅT = 295 K
c = 11.6074 (13) Å0.48 × 0.35 × 0.25 mm
β = 103.732 (7)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2872 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.328, Tmax = 0.4843 standard reflections every 120 min
4348 measured reflections intensity decay: 1.3%
4070 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
4070 reflectionsΔρmin = 0.33 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49013 (12)0.19930 (4)1.21790 (6)0.1028 (3)
Cl21.19192 (12)0.35095 (4)0.98762 (11)0.1347 (4)
C10.7177 (3)0.00447 (11)0.7920 (3)0.0761 (7)
C20.6407 (3)0.05850 (10)0.8097 (2)0.0661 (5)
C30.5989 (3)0.07597 (11)0.6796 (2)0.0652 (5)
H30.48020.07500.64320.078*
C40.6896 (3)0.01375 (11)0.6609 (2)0.0749 (7)
H40.61630.01790.61440.090*
C50.8386 (3)0.03011 (12)0.6096 (2)0.0753 (7)
H50.90140.00790.60110.090*
C60.9467 (3)0.07722 (11)0.6897 (2)0.0656 (5)
C70.8686 (2)0.13047 (10)0.70463 (19)0.0600 (5)
C80.6880 (2)0.13196 (11)0.63804 (19)0.0618 (5)
H80.63640.17190.65150.074*
C90.6785 (3)0.12218 (14)0.5049 (2)0.0793 (7)
H9A0.56390.11960.46140.095*
H9B0.72900.15760.47430.095*
C100.7692 (3)0.06101 (14)0.4880 (2)0.0858 (8)
H10A0.85850.07040.45030.103*
H10B0.69340.03230.43720.103*
C110.8109 (4)0.04637 (13)0.8691 (3)0.1037 (10)
H11A0.92280.04720.86090.156*
H11B0.75960.08630.84550.156*
H11C0.81020.03820.95030.156*
C121.1250 (3)0.06200 (12)0.7406 (3)0.0787 (7)
H12A1.18030.09850.78010.118*
H12B1.17560.04970.67790.118*
H12C1.13330.02810.79640.118*
C130.6085 (3)0.09224 (10)0.9117 (2)0.0617 (5)
C140.5426 (3)0.15260 (11)0.8976 (2)0.0721 (6)
H140.51940.17090.82270.086*
C150.5102 (3)0.18636 (12)0.9912 (2)0.0759 (6)
H150.46830.22710.97980.091*
C160.5404 (3)0.15904 (12)1.1008 (2)0.0710 (6)
C170.6047 (4)0.09927 (14)1.1188 (2)0.0875 (8)
H170.62480.08091.19360.105*
C180.6390 (4)0.06678 (12)1.0248 (2)0.0838 (7)
H180.68400.02661.03750.101*
C190.9420 (3)0.18508 (10)0.77687 (19)0.0574 (5)
C200.9320 (3)0.24474 (12)0.7278 (2)0.0772 (7)
H200.87390.25050.64960.093*
C211.0060 (4)0.29581 (13)0.7920 (3)0.0924 (9)
H210.99860.33550.75730.111*
C221.0901 (3)0.28762 (13)0.9069 (3)0.0810 (7)
C231.0954 (3)0.23022 (14)0.9607 (2)0.0826 (7)
H231.14860.22561.04030.099*
C241.0210 (3)0.17907 (12)0.8956 (2)0.0736 (6)
H241.02390.14000.93210.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1386 (7)0.1011 (5)0.0714 (4)0.0031 (5)0.0303 (4)0.0133 (3)
Cl20.1042 (6)0.0980 (6)0.1974 (11)0.0306 (5)0.0271 (6)0.0685 (6)
C10.0663 (14)0.0549 (12)0.1071 (19)0.0000 (10)0.0209 (13)0.0022 (12)
C20.0562 (12)0.0574 (12)0.0851 (15)0.0019 (9)0.0176 (11)0.0013 (11)
C30.0487 (10)0.0662 (12)0.0783 (14)0.0005 (9)0.0103 (10)0.0110 (11)
C40.0571 (12)0.0666 (14)0.1002 (18)0.0060 (10)0.0171 (12)0.0246 (13)
C50.0591 (12)0.0737 (14)0.0931 (17)0.0031 (11)0.0181 (12)0.0285 (13)
C60.0520 (11)0.0691 (13)0.0746 (14)0.0025 (10)0.0127 (10)0.0114 (11)
C70.0524 (11)0.0636 (12)0.0625 (12)0.0005 (9)0.0110 (9)0.0040 (9)
C80.0530 (11)0.0680 (12)0.0626 (12)0.0069 (9)0.0104 (9)0.0029 (10)
C90.0639 (13)0.108 (2)0.0635 (13)0.0046 (13)0.0109 (11)0.0095 (13)
C100.0675 (14)0.113 (2)0.0764 (16)0.0002 (14)0.0156 (12)0.0309 (15)
C110.101 (2)0.0642 (15)0.150 (3)0.0211 (14)0.039 (2)0.0158 (17)
C120.0565 (12)0.0775 (15)0.0983 (18)0.0090 (11)0.0107 (12)0.0098 (13)
C130.0554 (11)0.0564 (11)0.0729 (13)0.0017 (9)0.0141 (10)0.0067 (10)
C140.0868 (16)0.0643 (13)0.0687 (13)0.0126 (11)0.0255 (12)0.0139 (11)
C150.0925 (17)0.0610 (13)0.0795 (15)0.0102 (12)0.0308 (13)0.0075 (11)
C160.0742 (14)0.0717 (14)0.0666 (13)0.0071 (11)0.0157 (11)0.0029 (11)
C170.105 (2)0.0858 (17)0.0691 (15)0.0102 (16)0.0156 (14)0.0184 (13)
C180.0937 (18)0.0691 (15)0.0869 (17)0.0185 (13)0.0180 (14)0.0162 (13)
C190.0526 (10)0.0575 (11)0.0636 (12)0.0002 (8)0.0163 (9)0.0031 (9)
C200.0820 (16)0.0708 (15)0.0762 (15)0.0063 (12)0.0137 (12)0.0103 (12)
C210.095 (2)0.0620 (14)0.121 (2)0.0147 (13)0.0270 (18)0.0067 (15)
C220.0630 (14)0.0708 (15)0.112 (2)0.0092 (11)0.0267 (14)0.0259 (15)
C230.0796 (17)0.0903 (18)0.0723 (15)0.0016 (13)0.0067 (12)0.0191 (14)
C240.0837 (16)0.0633 (13)0.0685 (14)0.0029 (11)0.0075 (12)0.0006 (11)
Geometric parameters (Å, º) top
Cl1—C161.739 (3)C11—H11A0.9600
Cl2—C221.740 (3)C11—H11B0.9600
C1—C21.353 (3)C11—H11C0.9600
C1—C111.496 (4)C12—H12A0.9600
C1—C41.496 (4)C12—H12B0.9600
C2—C131.462 (3)C12—H12C0.9600
C2—C31.513 (3)C13—C181.386 (3)
C3—C81.538 (3)C13—C141.388 (3)
C3—C41.562 (3)C14—C151.381 (3)
C3—H30.9800C14—H140.9300
C4—C51.540 (3)C15—C161.366 (3)
C4—H40.9800C15—H150.9300
C5—C61.510 (3)C16—C171.374 (4)
C5—C101.539 (4)C17—C181.377 (4)
C5—H50.9800C17—H170.9300
C6—C71.336 (3)C18—H180.9300
C6—C121.499 (3)C19—C201.383 (3)
C7—C191.476 (3)C19—C241.385 (3)
C7—C81.521 (3)C20—C211.376 (4)
C8—C91.543 (3)C20—H200.9300
C8—H80.9800C21—C221.363 (4)
C9—C101.538 (4)C21—H210.9300
C9—H9A0.9700C22—C231.365 (4)
C9—H9B0.9700C23—C241.383 (3)
C10—H10A0.9700C23—H230.9300
C10—H10B0.9700C24—H240.9300
C2—C1—C11135.9 (3)C1—C11—H11A109.5
C2—C1—C494.5 (2)C1—C11—H11B109.5
C11—C1—C4129.5 (2)H11A—C11—H11B109.5
C1—C2—C13136.3 (2)C1—C11—H11C109.5
C1—C2—C393.5 (2)H11A—C11—H11C109.5
C13—C2—C3130.17 (19)H11B—C11—H11C109.5
C2—C3—C8119.23 (18)C6—C12—H12A109.5
C2—C3—C485.80 (18)C6—C12—H12B109.5
C8—C3—C4108.89 (17)H12A—C12—H12B109.5
C2—C3—H3113.3C6—C12—H12C109.5
C8—C3—H3113.3H12A—C12—H12C109.5
C4—C3—H3113.3H12B—C12—H12C109.5
C1—C4—C5118.5 (2)C18—C13—C14116.7 (2)
C1—C4—C386.23 (18)C18—C13—C2123.2 (2)
C5—C4—C3109.0 (2)C14—C13—C2120.0 (2)
C1—C4—H4113.4C15—C14—C13122.2 (2)
C5—C4—H4113.4C15—C14—H14118.9
C3—C4—H4113.4C13—C14—H14118.9
C6—C5—C10108.8 (2)C16—C15—C14119.0 (2)
C6—C5—C4109.20 (19)C16—C15—H15120.5
C10—C5—C4106.8 (2)C14—C15—H15120.5
C6—C5—H5110.6C15—C16—C17120.9 (2)
C10—C5—H5110.6C15—C16—Cl1119.6 (2)
C4—C5—H5110.6C17—C16—Cl1119.5 (2)
C7—C6—C12126.8 (2)C16—C17—C18119.3 (2)
C7—C6—C5113.71 (19)C16—C17—H17120.4
C12—C6—C5119.4 (2)C18—C17—H17120.4
C6—C7—C19126.06 (19)C17—C18—C13122.0 (2)
C6—C7—C8113.95 (19)C17—C18—H18119.0
C19—C7—C8119.98 (18)C13—C18—H18119.0
C7—C8—C3108.55 (18)C20—C19—C24117.5 (2)
C7—C8—C9108.40 (18)C20—C19—C7120.6 (2)
C3—C8—C9107.24 (19)C24—C19—C7121.9 (2)
C7—C8—H8110.8C21—C20—C19121.5 (2)
C3—C8—H8110.8C21—C20—H20119.2
C9—C8—H8110.8C19—C20—H20119.2
C10—C9—C8109.4 (2)C22—C21—C20119.3 (3)
C10—C9—H9A109.8C22—C21—H21120.3
C8—C9—H9A109.8C20—C21—H21120.3
C10—C9—H9B109.8C21—C22—C23121.0 (2)
C8—C9—H9B109.8C21—C22—Cl2120.0 (2)
H9A—C9—H9B108.3C23—C22—Cl2119.0 (2)
C9—C10—C5109.39 (19)C22—C23—C24119.2 (2)
C9—C10—H10A109.8C22—C23—H23120.4
C5—C10—H10A109.8C24—C23—H23120.4
C9—C10—H10B109.8C23—C24—C19121.2 (2)
C5—C10—H10B109.8C23—C24—H24119.4
H10A—C10—H10B108.2C19—C24—H24119.4
C11—C1—C2—C131.7 (5)C4—C3—C8—C961.1 (2)
C4—C1—C2—C13177.6 (3)C7—C8—C9—C1054.9 (3)
C11—C1—C2—C3176.4 (3)C3—C8—C9—C1062.1 (2)
C4—C1—C2—C30.50 (19)C8—C9—C10—C50.1 (3)
C1—C2—C3—C8109.8 (2)C6—C5—C10—C955.6 (3)
C13—C2—C3—C868.5 (3)C4—C5—C10—C962.2 (3)
C1—C2—C3—C40.48 (18)C1—C2—C13—C189.6 (4)
C13—C2—C3—C4177.8 (2)C3—C2—C13—C18172.8 (2)
C2—C1—C4—C5109.1 (2)C1—C2—C13—C14171.1 (3)
C11—C1—C4—C567.2 (3)C3—C2—C13—C146.5 (4)
C2—C1—C4—C30.48 (18)C18—C13—C14—C150.7 (4)
C11—C1—C4—C3176.8 (3)C2—C13—C14—C15179.9 (2)
C2—C3—C4—C10.43 (16)C13—C14—C15—C161.5 (4)
C8—C3—C4—C1119.93 (19)C14—C15—C16—C171.1 (4)
C2—C3—C4—C5118.5 (2)C14—C15—C16—Cl1176.6 (2)
C8—C3—C4—C51.0 (3)C15—C16—C17—C180.1 (4)
C1—C4—C5—C641.3 (3)Cl1—C16—C17—C18177.8 (2)
C3—C4—C5—C654.8 (3)C16—C17—C18—C130.9 (5)
C1—C4—C5—C10158.8 (2)C14—C13—C18—C170.5 (4)
C3—C4—C5—C1062.6 (2)C2—C13—C18—C17178.8 (3)
C10—C5—C6—C757.9 (3)C6—C7—C19—C20125.7 (3)
C4—C5—C6—C758.3 (3)C8—C7—C19—C2054.0 (3)
C10—C5—C6—C12120.4 (2)C6—C7—C19—C2455.3 (3)
C4—C5—C6—C12123.4 (2)C8—C7—C19—C24125.1 (2)
C12—C6—C7—C191.3 (4)C24—C19—C20—C213.9 (4)
C5—C6—C7—C19179.5 (2)C7—C19—C20—C21177.0 (2)
C12—C6—C7—C8178.3 (2)C19—C20—C21—C220.5 (4)
C5—C6—C7—C80.2 (3)C20—C21—C22—C233.1 (4)
C6—C7—C8—C358.3 (3)C20—C21—C22—Cl2177.3 (2)
C19—C7—C8—C3122.0 (2)C21—C22—C23—C243.2 (4)
C6—C7—C8—C957.9 (3)Cl2—C22—C23—C24177.2 (2)
C19—C7—C8—C9121.8 (2)C22—C23—C24—C190.3 (4)
C2—C3—C8—C740.1 (3)C20—C19—C24—C233.7 (4)
C4—C3—C8—C755.8 (2)C7—C19—C24—C23177.2 (2)
C2—C3—C8—C9156.98 (19)

Experimental details

Crystal data
Chemical formulaC24H22Cl2
Mr381.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.3389 (7), 21.2224 (12), 11.6074 (13)
β (°) 103.732 (7)
V3)1995.5 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.94
Crystal size (mm)0.48 × 0.35 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.328, 0.484
No. of measured, independent and
observed [I > 2σ(I)] reflections
4348, 4070, 2872
Rint0.021
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.160, 1.04
No. of reflections4070
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.33

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1992), TEXSAN (Rigaku/MSC, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

 

Acknowledgements

We thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

References

First citationAllen, F. H. (1984). Acta Cryst. B40, 64–72.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1992). CAD-4 EXPRESS Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHanson, A. H. (1981). Cryst. Struct. Commun. 10, 319–325.  CAS Google Scholar
First citationLemley, J. T., Stezowski, J. J. & Hughes, R. E. (1976). Acta Cryst. B32, 1212–1215.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMehta, G., Le Droumaguet, C., Islam, K., Anoop, A. & Jemmis, E. D. (2003). Tetrahedron Lett. 44, 3109–3113.  Web of Science CSD CrossRef CAS Google Scholar
First citationMehta, G., Padma, S., Pattabhi, V., Pramanik, A. & Chandrasekhar, J. (1990). J. Am. Chem. Soc. 112, 2942–2949.  CSD CrossRef CAS Web of Science Google Scholar
First citationMukai, T., Sato, K. & Yamashita, Y. (1981). J. Am. Chem. Soc. 103, 670–672.  CrossRef CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOsawa, E. & Yonemitsu, O. (1992). Carbocyclic Cage Compounds. Weinheim: VCH.  Google Scholar
First citationRigaku/MSC (2000). TEXSAN. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTezuka, T., Yamashita, Y. & Mukai, T. (1976). J. Am. Chem. Soc. 98, 6051–6052.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds