organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Bromo-1-[2.6-dichloro-4-(trifluoromethyl)phenyl]-5-(4-methoxybenzylideneamino)-1H-pyrazole-3-carbonitrile

Guohui Zhu, Shuyan Li* and Zhiping Yang

Department of Food and Biotechnology, Zhangzhou Vocational Technical College, 363000 Zhangzhou, People's Republic of China Correspondence e-mail: lisy910@163.com

Received 12 February 2008; accepted 27 February 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.161; data-to-parameter ratio = 17.3.

The title compound, C₁₉H₁₀BrCl₂F₃N₄O, is an imine with an overall Y shape. The dihedral angles between the pyrazole ring and the methoxy- and trifluoromethyl-substituted benzene ring planes are 88.4 (2) and 65.8 (2) $^{\circ}$, respectively.

Related literature

For the insecticidal properties of similar compounds, see: Philippe (1997, 2000). For a related structure, see: Zhong et al. (2005).

Experimental

Crystal data

C19H10BrCl2F3N4O $V = 2062 (2) \text{ Å}^3$ $M_r = 518.12$ Z = 4Monoclinic, $P2_1/c$ a = 10.215 (7) Å b = 13.407 (9) Å c = 15.108 (11) Å $\beta = 94.634 (13)^{\circ}$

Data collection

Bruker P4/SMART CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min} = 0.568, T_{\max} = 0.618$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.160$ S = 1.024681 reflections

Mo $K\alpha$ radiation $\mu = 2.30 \text{ mm}^{-1}$ T = 293 (2) K $0.28 \times 0.25 \times 0.23 \text{ mm}$

15375 measured reflections 4681 independent reflections 4061 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.028$

271 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.87 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -1.22$ e Å⁻³

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the National Natural Science Foundation of Fujian Province (No. B0610033).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2465).

References

Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Winsonsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Philippe, J. (1997). US Patent No. 6 001 384. Philippe, J. (2000). US Patent No. 6 096 329.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhong, P., Yang, Z. & Shi, Q. (2005). Acta Cryst. E61, 0786-0787.

supporting information

Acta Cryst. (2008). E64, o646 [doi:10.1107/S1600536808005539]

4-Bromo-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-5-(4-methoxybenzylideneamino)-1*H*-pyrazole-3-carbonitrile

Guohui Zhu, Shuyan Li and Zhiping Yang

S1. Comment

The title compound, (I), (Fig. 1) is similar to the very effective insecticides used to treat animals such as cows and sheep (Philippe, 1997, 2000) and its structure is reported here, Fig 1. The molecule contains three essentially planar rings and the dihedral angles between the pyrazole ring (C1—C3, N2, N3) and the ring planes of the (C5—C7) and (C13—C17) benzene rings are 88.4 (2)° and 65.8 (2)°, respectively.

S2. Experimental

The title compound was prepared by literature methods (Zhong *et al.*, 2005, Philippe, 2000). Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation of an anhydrous ethanol-acetone (2:1) solution of (I) (m.p. 435–437 K).

S3. Refinement

All H atoms were initially located in a difference Fourier map but were eventually placed in their geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, and with $U_{iso}(H) = 1.2_{eq}(C)$ and 0.96 Å, $U_{iso} = 1.5U_{eq}(C)$ for CH₃ atoms. The low U_{eq} of C11 as compared to its neighbours may be attributed to the high displacement parameters for atoms F1, F2 and F3, indicating either large thermal motion or rotational disorder of the trifluoromethyl group. However, attempts to represent the CF₃ group using a disorder model were unsuccessful.

Figure 1

The molecular structure of (I) showing the atom numbering scheme and displacement ellipsoids at the 30% probability level.

4-Bromo-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-5-(4- methoxybenzylideneamino)-1H-pyrazole-3-

carbonitrile

Crystal data	
$C_{19}H_{10}BrCl_2F_3N_4O$	F(000) = 1024
$M_r = 518.12$	$D_{\rm x} = 1.669 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point = $435-437$ K
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.215 (7) Å	Cell parameters from 3780 reflections
b = 13.407 (9) Å	$\theta = 2.6 - 24.2^{\circ}$
c = 15.108 (11) Å	$\mu = 2.30 \text{ mm}^{-1}$
$\beta = 94.634 \ (13)^{\circ}$	T = 293 K
$V = 2062 (2) Å^3$	Block, colorless
Z = 4	$0.28 \times 0.25 \times 0.23 \text{ mm}$

Data collection

Bruker P4 CCD	15375 measured reflections
diffractometer	4681 independent reflections
Radiation source: fine-focus sealed tube	4061 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.028$
ω scans	$\theta_{max} = 27.6^{\circ}, \theta_{min} = 2.8^{\circ}$
Absorption correction: multi-scan	$h = -13 \rightarrow 10$
(<i>SADABS</i> ; Bruker, 2002)	$k = -17 \rightarrow 17$
$T_{\min} = 0.568, T_{\max} = 0.618$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.160$	neighbouring sites
S = 1.02	H-atom parameters constrained
4681 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1058P)^2 + 1.2139P]$
271 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.87$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -1.22$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2

are statistically about twice as large as those based on *F*, and *R*- factors based on All data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.47949 (4)	0.47599 (2)	0.18806 (3)	0.06204 (17)	
Cl1	0.47167 (9)	0.15617 (7)	-0.07867 (6)	0.0635 (3)	
Cl2	0.21780 (9)	0.09133 (6)	0.21206 (5)	0.0598 (2)	
01	-0.1317 (3)	0.5592 (2)	-0.2291 (2)	0.0705 (7)	
N1	0.7437 (3)	0.2820 (3)	0.3107 (3)	0.0722 (9)	
N2	0.5089 (2)	0.17560 (18)	0.16494 (16)	0.0440 (5)	
N3	0.4063 (2)	0.19538 (16)	0.10558 (15)	0.0401 (5)	
N4	0.2718 (2)	0.32184 (17)	0.03993 (16)	0.0440 (5)	
C1	0.5457 (3)	0.2656 (2)	0.19544 (18)	0.0426 (6)	
C2	0.4669 (3)	0.34164 (19)	0.1561 (2)	0.0431 (6)	
C3	0.3773 (3)	0.29447 (18)	0.09722 (18)	0.0393 (5)	
C4	0.6555 (3)	0.2745 (2)	0.2597 (2)	0.0510 (7)	
C5	0.3380 (3)	0.11449 (18)	0.06234 (17)	0.0372 (5)	
C6	0.2496 (3)	0.0587 (2)	0.10637 (18)	0.0404 (5)	
C7	0.1868 (3)	-0.02304 (19)	0.0660 (2)	0.0455 (6)	
H7	0.1275	-0.0603	0.0959	0.055*	

C8	0.2134 (3)	-0.0482 (2)	-0.0186 (2)	0.0444 (6)
C9	0.2998 (3)	0.0065 (2)	-0.0649 (2)	0.0467 (6)
H9	0.3161	-0.0110	-0.1225	0.056*
C10	0.3616 (3)	0.0880 (2)	-0.02374 (18)	0.0412 (5)
C11	0.1513 (4)	-0.1404 (2)	-0.0601 (3)	0.0606 (8)
C12	0.2714 (3)	0.4090 (2)	0.0053 (2)	0.0468 (6)
H12	0.3433	0.4503	0.0194	0.056*
C13	0.1648 (3)	0.4469 (2)	-0.05455 (19)	0.0423 (6)
C14	0.1740 (3)	0.5440 (2)	-0.0862 (2)	0.0499 (7)
H14	0.2473	0.5823	-0.0682	0.060*
C15	0.0759 (3)	0.5846 (2)	-0.1438 (2)	0.0485 (6)
H15	0.0826	0.6499	-0.1637	0.058*
C16	-0.0316 (3)	0.5275 (2)	-0.1712 (2)	0.0474 (6)
C17	-0.0425 (3)	0.4296 (3)	-0.1403 (2)	0.0556 (7)
H17	-0.1157	0.3913	-0.1586	0.067*
C18	0.0549 (3)	0.3903 (2)	-0.0829 (2)	0.0499 (7)
H18	0.0476	0.3252	-0.0627	0.060*
C19	-0.1250 (5)	0.6581 (3)	-0.2612 (4)	0.0878 (15)
H19C	-0.2005	0.6714	-0.3015	0.132*
H19B	-0.0467	0.6660	-0.2916	0.132*
H19A	-0.1233	0.7039	-0.2123	0.132*
F1	0.2269 (3)	-0.21908 (16)	-0.0449 (2)	0.0972 (10)
F2	0.0391 (3)	-0.1633 (2)	-0.0287 (3)	0.1064 (11)
F3	0.1310 (4)	-0.1354 (3)	-0.1460 (2)	0.1269 (15)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0722 (3)	0.0340 (2)	0.0776 (3)	-0.00455 (12)	-0.00746 (19)	-0.01343 (13)
Cl1	0.0740 (5)	0.0690 (5)	0.0497 (4)	-0.0276 (4)	0.0184 (4)	-0.0037 (3)
Cl2	0.0782 (5)	0.0583 (5)	0.0453 (4)	0.0063 (4)	0.0197 (4)	0.0037 (3)
01	0.0646 (15)	0.0602 (15)	0.0822 (18)	0.0061 (12)	-0.0225 (13)	0.0004 (13)
N1	0.0669 (19)	0.0670 (19)	0.079 (2)	0.0077 (15)	-0.0188 (17)	-0.0201 (16)
N2	0.0514 (13)	0.0380 (12)	0.0416 (11)	0.0037 (10)	-0.0028 (10)	-0.0017 (9)
N3	0.0520 (12)	0.0308 (10)	0.0366 (10)	-0.0008 (9)	-0.0025 (9)	-0.0019 (8)
N4	0.0547 (13)	0.0327 (11)	0.0434 (12)	0.0007 (9)	-0.0037 (10)	-0.0006 (9)
C1	0.0483 (14)	0.0377 (13)	0.0412 (13)	0.0013 (10)	0.0008 (11)	-0.0060 (10)
C2	0.0517 (15)	0.0309 (12)	0.0460 (14)	-0.0012 (10)	-0.0002 (11)	-0.0049 (10)
C3	0.0478 (13)	0.0294 (11)	0.0407 (13)	-0.0014 (10)	0.0045 (10)	-0.0017 (9)
C4	0.0555 (17)	0.0464 (15)	0.0501 (16)	0.0048 (12)	-0.0012 (13)	-0.0126 (12)
C5	0.0458 (13)	0.0271 (11)	0.0381 (12)	0.0005 (9)	0.0002 (10)	-0.0006 (9)
C6	0.0481 (14)	0.0325 (12)	0.0410 (13)	0.0050 (10)	0.0052 (11)	0.0046 (10)
C7	0.0440 (14)	0.0331 (13)	0.0596 (17)	-0.0016 (10)	0.0057 (12)	0.0084 (11)
C8	0.0461 (14)	0.0305 (12)	0.0551 (16)	-0.0028 (10)	-0.0045 (12)	-0.0017 (11)
C9	0.0571 (16)	0.0409 (13)	0.0419 (14)	-0.0053 (12)	0.0019 (12)	-0.0070 (11)
C10	0.0477 (14)	0.0372 (13)	0.0392 (13)	-0.0059 (10)	0.0053 (10)	-0.0023 (10)
C11	0.0627 (19)	0.0413 (16)	0.075 (2)	-0.0116 (14)	-0.0131 (16)	-0.0049 (15)
C12	0.0539 (16)	0.0358 (13)	0.0498 (15)	-0.0028 (11)	-0.0012 (12)	0.0000 (11)

C13	0.0527 (15)	0.0331 (12)	0.0407 (13)	-0.0004 (11)	0.0027 (11)	-0.0002 (10)
C14	0.0570 (17)	0.0344 (13)	0.0567 (17)	-0.0059 (12)	-0.0056 (13)	0.0023 (12)
C15	0.0604 (17)	0.0320 (12)	0.0522 (16)	0.0032 (11)	-0.0007 (13)	0.0019 (11)
C16	0.0513 (16)	0.0440 (16)	0.0461 (15)	0.0069 (11)	-0.0005 (12)	-0.0038 (11)
C17	0.0546 (17)	0.0481 (17)	0.0628 (19)	-0.0122 (13)	-0.0031 (14)	-0.0011 (14)
C18	0.0614 (17)	0.0363 (13)	0.0522 (16)	-0.0082 (12)	0.0061 (13)	0.0024 (11)
C19	0.091 (3)	0.059 (2)	0.106 (4)	0.020 (2)	-0.035 (3)	0.006 (2)
F1	0.0977 (18)	0.0389 (11)	0.150 (3)	0.0004 (11)	-0.0223 (18)	-0.0259 (14)
F2	0.0762 (16)	0.0812 (18)	0.164 (3)	-0.0395 (14)	0.0210 (18)	-0.0324 (19)
F3	0.198 (4)	0.095 (2)	0.0784 (18)	-0.074 (2)	-0.044 (2)	-0.0037 (16)

Geometric parameters (Å, °)

Br1—C2	1.867 (3)	C8—C11	1.503 (4)	
Cl1—C10	1.714 (3)	C9—C10	1.384 (4)	
Cl2—C6	1.712 (3)	С9—Н9	0.9300	
O1—C16	1.359 (4)	C11—F3	1.299 (5)	
O1—C19	1.416 (5)	C11—F2	1.311 (5)	
N1—C4	1.142 (5)	C11—F1	1.317 (4)	
N2-C1	1.334 (4)	C12—C13	1.450 (4)	
N2—N3	1.349 (3)	C12—H12	0.9300	
N3—C3	1.365 (3)	C13—C18	1.393 (4)	
N3—C5	1.420 (3)	C13—C14	1.393 (4)	
N4—C12	1.280 (4)	C14—C15	1.385 (4)	
N4—C3	1.376 (4)	C14—H14	0.9300	
C1—C2	1.402 (4)	C15—C16	1.374 (5)	
C1—C4	1.428 (4)	C15—H15	0.9300	
C2—C3	1.377 (4)	C16—C17	1.401 (5)	
С5—С6	1.383 (4)	C17—C18	1.370 (5)	
C5—C10	1.388 (4)	C17—H17	0.9300	
С6—С7	1.386 (4)	C18—H18	0.9300	
С7—С8	1.371 (5)	C19—H19C	0.9600	
С7—Н7	0.9300	C19—H19B	0.9600	
С8—С9	1.380 (4)	C19—H19A	0.9600	
C16—O1—C19	117.3 (3)	F3—C11—F2	107.5 (3)	
C1—N2—N3	103.5 (2)	F3—C11—F1	105.0 (4)	
N2—N3—C3	113.8 (2)	F2—C11—F1	105.5 (3)	
N2—N3—C5	118.8 (2)	F3—C11—C8	113.7 (3)	
C3—N3—C5	127.3 (2)	F2—C11—C8	113.2 (3)	
C12—N4—C3	118.5 (3)	F1-C11-C8	111.4 (3)	
N2-C1-C2	112.0 (2)	N4—C12—C13	123.5 (3)	
N2-C1-C4	119.7 (3)	N4—C12—H12	118.3	
C2—C1—C4	128.3 (3)	C13—C12—H12	118.3	
C3—C2—C1	105.6 (2)	C18—C13—C14	118.6 (3)	
C3—C2—Br1	129.7 (2)	C18—C13—C12	123.2 (3)	
C1—C2—Br1	124.6 (2)	C14—C13—C12	118.2 (3)	
N3—C3—N4	118.1 (2)	C15—C14—C13	121.1 (3)	

N3—C3—C2	105.0 (2)	C15—C14—H14	119.4
N4—C3—C2	136.8 (2)	C13—C14—H14	119.4
N1-C4-C1	179.6 (5)	C16—C15—C14	119.4 (3)
C6—C5—C10	118.8 (2)	C16—C15—H15	120.3
C6—C5—N3	120.5 (2)	C14—C15—H15	120.3
C10C5N3	120.7 (2)	O1—C16—C15	124.1 (3)
C5—C6—C7	120.8 (3)	O1—C16—C17	115.5 (3)
C5—C6—Cl2	119.4 (2)	C15—C16—C17	120.3 (3)
C7—C6—Cl2	119.8 (2)	C18—C17—C16	119.8 (3)
C8—C7—C6	119.1 (3)	C18—C17—H17	120.1
С8—С7—Н7	120.5	С16—С17—Н17	120.1
С6—С7—Н7	120.5	C17—C18—C13	120.8 (3)
C7—C8—C9	121.6 (3)	C17—C18—H18	119.6
C7—C8—C11	118.9 (3)	C13—C18—H18	119.6
C9—C8—C11	119.5 (3)	O1—C19—H19C	109.5
C8—C9—C10	118.7 (3)	O1—C19—H19B	109.5
С8—С9—Н9	120.7	H19C—C19—H19B	109.5
С10—С9—Н9	120.7	O1—C19—H19A	109.5
C9—C10—C5	121.0 (2)	H19C—C19—H19A	109.5
C9—C10—C11	119.8 (2)	H19B—C19—H19A	109.5
C5—C10—Cl1	119.2 (2)		