organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di­benzyl-N′′-(4-bromo­benzo­yl)-N,N′-di­methyl­phospho­ric tri­amide

aDepartment of Chemistry, Alzahra University, Vanak, Tehran, Iran, bLaboratoire DECMET, UMR CNRS 7513, Université Louis Pasteur, Strasbourg, France, and cDépartement de Chimie, Faculté des Sciences et Techniques, Université de Nouakchott, Nouakchott, Mauritania
*Correspondence e-mail: dehganpour_farasha@yahoo.com

(Received 9 January 2008; accepted 19 February 2008; online 27 February 2008)

In the title compound, C23H25BrN3O2P, the P atom has a distorted tetra­hedral coordination. In the crystal structure, the mol­ecules form centrosymmetric dimers via pairs of essentially linear N—H⋯O hydrogen bonds.

Related literature

For the use of carbacyl­amido­phosphate, see: Barak et al. (2000[Barak, D., Ordentlich, A., Kaplan, D., Barak, R., Mizrahi, D., Kronman, C., Segall, Y., Velan, B. & Shaerman, A. (2000). Biochemistry, 39, 1156-1161.]); Burla et al. (1989[Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.]); Gubina et al. (2000[Gubina, K. E., Ovchynnikov, V. A., Amirkhanov, V. M., Fischer, H., Stumpf, R. & Skopenko, V. V. (2000). Z. Naturforsch. Teil B, 55, 576-582.]); Mallender et al. (2000[Mallender, W. D., Szegletes, T. & Rosenberry, T. L. (2000). Biochemistry, 39, 7753-7763.]); Trush et al. (2003[Trush, V. A., Amirkhanov, V. M., Ovchinnikov, V. A., Swiatek-Kozlowska, J., Lanikina, K. A. & Domasevitch, K. V. (2003). Polyhedron, 22, 1221-1229.]). For related structures, see: Trush et al. (1999[Trush, V. A., Domasevitch, K. V., Amirkhanov, V. M. & Sieler, J. (1999). Z. Naturforsch. Teil B, 54, 451-455.]).

[Scheme 1]

Experimental

Crystal data
  • C23H25BrN3O2P

  • Mr = 486.34

  • Monoclinic, P 21 /n

  • a = 9.0140 (4) Å

  • b = 13.2690 (5) Å

  • c = 19.377 (1) Å

  • β = 94.1500 (14)°

  • V = 2311.54 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.87 mm−1

  • T = 293 (2) K

  • 0.11 × 0.09 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 12951 measured reflections

  • 5214 independent reflections

  • 2593 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.135

  • S = 1.00

  • 5214 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 1.99 2.845 (3) 170
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Carbacylamidophosphate compounds have attracted substantial interest for many years. These compounds have been employed in coordination chemistry as chelating reagents for various metal ions via their =P(O)N(H)C(O)- moiety (Trush et al., 2003; Gubina et al., 2000), as prodrugs in pharmacology and as pesticides in agriculture (Barak et al., 2000; Mallender et al., 2000). A thorough knowledge of the structural properties of these compounds should be beneficial for a detailed understanding of their pharmacological effects. The title compound, (I), was prepared by the reaction of (pBr-C6H5)C(O)NHP(O)(Cl)2 with two molecules of methylmenzyl amine.

The crystal structure of (I) reveals that, in the molecular core unit C(O)NHP(O), the C(O) and P(O) oxygen atoms are in anti-positions to each other. The phosphorus centre has a slightly distorted tetrahedral coordination, mainly due to the presence of the different substituents. The N3–P1–N1 angle (105.20 (12)°) is narrower than the ideal tetrahedral angle of 109.5, whereas the opposite O2–P1–N3 angle (119.05 (13)°) is wider than the ideal tetrahedral angle. The P1–O2 bond length (1.474 (2) Å) is in good agreement with P–O distances in other carbacylamidophosphates (Trush et al., 1999).

Examination of intermolecular distances indicates that the crystal structure of compound (I) consists of C9H13N2O2P units linked together via N—H···O hydrogen bonds into centrosymmetric dimers featuring eight-membered (OPNH)2 rings (Fig.2, Table 1).

Related literature top

For the use of carbacylamidophosphate, see: Barak et al. (2000); Burla et al. (1989); Gubina et al. (2000); Mallender et al. (2000); Trush et al. (2003). For related structures, see: Trush et al. (1999).

Experimental top

Compound (I) was synthesized via the reaction of BrC6H4C(O)NHP(O)Cl2 with two molecules of methylbenzylamine in a 1:4 molar ratio. Methylbenzylamine was added dropwise to a mixture of BrC6H4C(O)NHP(O)Cl2 in chloroform while stirring at room temperature for 4 h. The product was filtered off and then washed with cold water. The compound was recrystallized from ethanol (yield 88%). Analysis, calculated for C23 H25 Br N3 O2 P: C 56.80, H 5.18, N 8.64%; found: C 56.81, H 5.19, N 8.64%.

Refinement top

H atoms were placed in idealized positions with C—H distances at 0.97, 0.96 and 0.93 Å for CH2, CH3 and aromatic CH groups, respectively using a riding model. Uiso(H) for H was assigned as 1.2 Ueq(Ci) of the attached C atoms (1.5 for methyl). No absorption correction was applied due to the small cystal size and the sufficiently low µ value.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of I showing the atom-labelling scheme with thermal ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Representation of the hydrogen bonds in the structure of (I). For clarity, only the O2 atom in the second molecule is labeled (O2i), Symmetry code i: 2 - x, 1 - y, -z.
N,N'-Dibenzyl-N''-(4-bromobenzoyl)- N,N'-dimethylphosphoric triamide top
Crystal data top
C23H25BrN3O2PF(000) = 1000
Mr = 486.34Dx = 1.397 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 10293 reflections
a = 9.0140 (4) Åθ = 1.0–27.5°
b = 13.2690 (5) ŵ = 1.87 mm1
c = 19.377 (1) ÅT = 293 K
β = 94.1500 (14)°Prism, colorless
V = 2311.54 (18) Å30.11 × 0.09 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2593 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
π scansh = 1110
12951 measured reflectionsk = 1714
5214 independent reflectionsl = 1725
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.052P)2 + 0.3719P]
where P = (Fo2 + 2Fc2)/3
5214 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C23H25BrN3O2PV = 2311.54 (18) Å3
Mr = 486.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0140 (4) ŵ = 1.87 mm1
b = 13.2690 (5) ÅT = 293 K
c = 19.377 (1) Å0.11 × 0.09 × 0.08 mm
β = 94.1500 (14)°
Data collection top
Nonius KappaCCD
diffractometer
2593 reflections with I > 2σ(I)
12951 measured reflectionsRint = 0.051
5214 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
5214 reflectionsΔρmin = 0.62 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.97528 (7)0.99976 (3)0.19720 (3)0.1095 (3)
P10.97988 (9)0.37741 (5)0.08475 (4)0.0427 (2)
O10.8889 (3)0.48944 (15)0.21515 (13)0.0676 (7)
O21.0335 (2)0.37714 (14)0.01466 (10)0.0493 (5)
N10.9570 (3)0.49921 (14)0.10487 (13)0.0453 (6)
H10.96610.54140.07170.054*
N21.0988 (3)0.32013 (17)0.13878 (12)0.0478 (7)
N30.8203 (3)0.32336 (16)0.09738 (13)0.0474 (6)
C10.9380 (3)0.6529 (2)0.17215 (15)0.0440 (7)
C20.8517 (3)0.7031 (2)0.21718 (16)0.0505 (8)
H20.78720.66650.24290.061*
C30.8593 (4)0.8061 (2)0.22469 (17)0.0588 (9)
H30.79860.83950.25410.071*
C40.9584 (4)0.8585 (2)0.18784 (18)0.0615 (10)
C51.0478 (4)0.8100 (2)0.14387 (19)0.0682 (10)
H51.11520.84650.11960.082*
C61.0366 (4)0.7066 (2)0.13596 (17)0.0564 (9)
H61.09610.67330.10600.068*
C70.9257 (3)0.5404 (2)0.16691 (17)0.0486 (8)
C81.0706 (4)0.2882 (3)0.20873 (17)0.0669 (10)
H8A0.96970.30390.21760.100*
H8B1.13730.32280.24160.100*
H8C1.08610.21680.21310.100*
C91.2491 (4)0.2979 (2)0.11888 (18)0.0566 (9)
H9A1.32000.31710.15660.068*
H9B1.26860.33900.07920.068*
C101.2746 (3)0.1886 (2)0.10116 (17)0.0506 (8)
C111.3680 (4)0.1286 (3)0.14281 (19)0.0680 (10)
H111.41110.15430.18420.082*
C121.3988 (5)0.0301 (3)0.1237 (3)0.0867 (13)
H121.46310.00950.15200.104*
C131.3348 (5)0.0078 (3)0.0640 (3)0.0903 (14)
H131.35460.07380.05130.108*
C141.2410 (5)0.0505 (3)0.0221 (2)0.0830 (12)
H141.19800.02410.01910.100*
C151.2100 (4)0.1478 (3)0.04062 (19)0.0646 (10)
H151.14500.18650.01220.078*
C160.8132 (4)0.2134 (2)0.0867 (2)0.0710 (11)
H16A0.90950.18460.09810.107*
H16B0.78290.19940.03910.107*
H16C0.74250.18480.11580.107*
C170.6770 (3)0.3738 (2)0.08216 (17)0.0545 (8)
H17A0.68720.44390.09590.065*
H17B0.60430.34330.11020.065*
C180.6182 (3)0.3696 (2)0.00736 (16)0.0463 (8)
C190.5215 (4)0.2942 (3)0.01586 (19)0.0655 (10)
H190.49080.24630.01520.079*
C200.4698 (4)0.2890 (3)0.0847 (2)0.0781 (11)
H200.40560.23740.09980.094*
C210.5125 (4)0.3591 (3)0.13033 (19)0.0726 (11)
H210.47610.35620.17640.087*
C220.6101 (4)0.4348 (3)0.10826 (19)0.0665 (10)
H220.64100.48230.13950.080*
C230.6611 (4)0.4394 (2)0.03991 (19)0.0574 (9)
H230.72610.49070.02510.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1798 (6)0.0408 (2)0.1100 (5)0.0035 (2)0.0253 (4)0.0180 (2)
P10.0553 (5)0.0330 (4)0.0398 (5)0.0004 (4)0.0042 (4)0.0012 (3)
O10.108 (2)0.0516 (14)0.0455 (14)0.0064 (12)0.0206 (14)0.0020 (11)
O20.0716 (14)0.0369 (11)0.0401 (13)0.0037 (9)0.0092 (11)0.0006 (9)
N10.0654 (17)0.0327 (13)0.0383 (15)0.0008 (11)0.0068 (13)0.0019 (10)
N20.0522 (17)0.0476 (14)0.0432 (16)0.0058 (12)0.0009 (13)0.0108 (12)
N30.0476 (16)0.0404 (14)0.0542 (17)0.0004 (11)0.0035 (13)0.0044 (12)
C10.0524 (19)0.0436 (17)0.0356 (18)0.0029 (14)0.0001 (15)0.0034 (14)
C20.052 (2)0.0533 (19)0.0466 (19)0.0017 (15)0.0035 (16)0.0025 (16)
C30.071 (3)0.053 (2)0.051 (2)0.0103 (17)0.0030 (18)0.0144 (17)
C40.087 (3)0.0387 (18)0.058 (2)0.0037 (17)0.001 (2)0.0077 (16)
C50.091 (3)0.053 (2)0.063 (2)0.0175 (18)0.016 (2)0.0092 (18)
C60.073 (2)0.0428 (18)0.056 (2)0.0014 (16)0.0195 (18)0.0081 (16)
C70.060 (2)0.0449 (17)0.042 (2)0.0006 (15)0.0078 (16)0.0022 (16)
C80.090 (3)0.063 (2)0.047 (2)0.0128 (19)0.0006 (19)0.0097 (17)
C90.051 (2)0.0508 (19)0.067 (2)0.0036 (15)0.0023 (17)0.0058 (17)
C100.0425 (19)0.0478 (18)0.062 (2)0.0007 (14)0.0061 (17)0.0063 (17)
C110.064 (2)0.063 (2)0.075 (3)0.0067 (18)0.006 (2)0.005 (2)
C120.092 (3)0.068 (3)0.099 (4)0.028 (2)0.006 (3)0.016 (3)
C130.096 (3)0.063 (3)0.113 (4)0.017 (2)0.012 (3)0.011 (2)
C140.083 (3)0.078 (3)0.087 (3)0.005 (2)0.004 (2)0.021 (2)
C150.062 (2)0.062 (2)0.068 (3)0.0057 (18)0.004 (2)0.0013 (19)
C160.074 (3)0.0398 (18)0.098 (3)0.0097 (16)0.003 (2)0.0053 (19)
C170.052 (2)0.058 (2)0.054 (2)0.0010 (16)0.0072 (17)0.0010 (16)
C180.0409 (18)0.0485 (18)0.050 (2)0.0054 (14)0.0055 (15)0.0038 (15)
C190.061 (2)0.070 (2)0.064 (3)0.0133 (18)0.0004 (19)0.005 (2)
C200.081 (3)0.073 (2)0.077 (3)0.020 (2)0.015 (2)0.001 (2)
C210.083 (3)0.077 (3)0.055 (2)0.007 (2)0.011 (2)0.004 (2)
C220.071 (3)0.068 (2)0.059 (3)0.0012 (19)0.002 (2)0.0139 (19)
C230.059 (2)0.050 (2)0.062 (2)0.0029 (15)0.0046 (18)0.0030 (17)
Geometric parameters (Å, º) top
Br1—C41.889 (3)C10—C111.377 (4)
P1—O21.474 (2)C10—C151.382 (4)
P1—N21.631 (2)C11—C121.392 (5)
P1—N31.642 (2)C11—H110.9300
P1—N11.679 (2)C12—C131.353 (6)
O1—C71.218 (4)C12—H120.9300
N1—C71.368 (4)C13—C141.369 (6)
N1—H10.8600C13—H130.9300
N2—C81.460 (4)C14—C151.375 (5)
N2—C91.465 (4)C14—H140.9300
N3—C171.465 (4)C15—H150.9300
N3—C161.474 (4)C16—H16A0.9600
C1—C61.370 (4)C16—H16B0.9600
C1—C21.381 (4)C16—H16C0.9600
C1—C71.501 (4)C17—C181.508 (4)
C2—C31.376 (4)C17—H17A0.9700
C2—H20.9300C17—H17B0.9700
C3—C41.372 (5)C18—C231.377 (4)
C3—H30.9300C18—C191.381 (4)
C4—C51.374 (5)C19—C201.382 (5)
C5—C61.385 (4)C19—H190.9300
C5—H50.9300C20—C211.359 (5)
C6—H60.9300C20—H200.9300
C8—H8A0.9600C21—C221.382 (5)
C8—H8B0.9600C21—H210.9300
C8—H8C0.9600C22—C231.371 (5)
C9—C101.512 (4)C22—H220.9300
C9—H9A0.9700C23—H230.9300
C9—H9B0.9700
O2—P1—N2110.25 (13)C11—C10—C15118.3 (3)
O2—P1—N3119.05 (13)C11—C10—C9121.2 (3)
N2—P1—N3104.06 (12)C15—C10—C9120.4 (3)
O2—P1—N1105.69 (12)C10—C11—C12120.8 (3)
N2—P1—N1112.69 (13)C10—C11—H11119.6
N3—P1—N1105.20 (12)C12—C11—H11119.6
C7—N1—P1128.7 (2)C13—C12—C11119.7 (4)
C7—N1—H1115.7C13—C12—H12120.1
P1—N1—H1115.7C11—C12—H12120.1
C8—N2—C9114.4 (2)C12—C13—C14120.3 (4)
C8—N2—P1125.5 (2)C12—C13—H13119.9
C9—N2—P1120.1 (2)C14—C13—H13119.9
C17—N3—C16113.3 (2)C13—C14—C15120.3 (4)
C17—N3—P1122.65 (19)C13—C14—H14119.8
C16—N3—P1116.2 (2)C15—C14—H14119.8
C6—C1—C2119.3 (3)C14—C15—C10120.6 (3)
C6—C1—C7122.0 (3)C14—C15—H15119.7
C2—C1—C7118.7 (3)C10—C15—H15119.7
C3—C2—C1121.3 (3)N3—C16—H16A109.5
C3—C2—H2119.3N3—C16—H16B109.5
C1—C2—H2119.3H16A—C16—H16B109.5
C4—C3—C2118.5 (3)N3—C16—H16C109.5
C4—C3—H3120.7H16A—C16—H16C109.5
C2—C3—H3120.7H16B—C16—H16C109.5
C3—C4—C5121.3 (3)N3—C17—C18114.8 (3)
C3—C4—Br1120.2 (3)N3—C17—H17A108.6
C5—C4—Br1118.5 (3)C18—C17—H17A108.6
C4—C5—C6119.4 (3)N3—C17—H17B108.6
C4—C5—H5120.3C18—C17—H17B108.6
C6—C5—H5120.3H17A—C17—H17B107.5
C1—C6—C5120.2 (3)C23—C18—C19118.1 (3)
C1—C6—H6119.9C23—C18—C17121.2 (3)
C5—C6—H6119.9C19—C18—C17120.7 (3)
O1—C7—N1122.5 (3)C18—C19—C20120.7 (3)
O1—C7—C1121.5 (3)C18—C19—H19119.6
N1—C7—C1116.0 (3)C20—C19—H19119.6
N2—C8—H8A109.5C21—C20—C19120.2 (3)
N2—C8—H8B109.5C21—C20—H20119.9
H8A—C8—H8B109.5C19—C20—H20119.9
N2—C8—H8C109.5C20—C21—C22120.0 (3)
H8A—C8—H8C109.5C20—C21—H21120.0
H8B—C8—H8C109.5C22—C21—H21120.0
N2—C9—C10114.3 (2)C23—C22—C21119.5 (3)
N2—C9—H9A108.7C23—C22—H22120.3
C10—C9—H9A108.7C21—C22—H22120.3
N2—C9—H9B108.7C22—C23—C18121.5 (3)
C10—C9—H9B108.7C22—C23—H23119.3
H9A—C9—H9B107.6C18—C23—H23119.3
O2—P1—N1—C7171.6 (3)C2—C1—C7—O127.1 (4)
N2—P1—N1—C751.2 (3)C6—C1—C7—N130.6 (4)
N3—P1—N1—C761.6 (3)C2—C1—C7—N1152.3 (3)
O2—P1—N2—C8167.1 (2)C8—N2—C9—C1076.2 (3)
N3—P1—N2—C838.3 (3)P1—N2—C9—C10104.6 (3)
N1—P1—N2—C875.1 (3)N2—C9—C10—C11111.6 (3)
O2—P1—N2—C913.8 (2)N2—C9—C10—C1571.6 (4)
N3—P1—N2—C9142.6 (2)C15—C10—C11—C121.2 (5)
N1—P1—N2—C9104.0 (2)C9—C10—C11—C12175.6 (3)
O2—P1—N3—C1781.9 (3)C10—C11—C12—C130.8 (6)
N2—P1—N3—C17154.9 (2)C11—C12—C13—C140.5 (7)
N1—P1—N3—C1736.2 (3)C12—C13—C14—C150.5 (7)
O2—P1—N3—C1664.9 (3)C13—C14—C15—C101.0 (6)
N2—P1—N3—C1658.3 (3)C11—C10—C15—C141.3 (5)
N1—P1—N3—C16177.0 (2)C9—C10—C15—C14175.6 (3)
C6—C1—C2—C32.2 (5)C16—N3—C17—C1865.4 (3)
C7—C1—C2—C3179.4 (3)P1—N3—C17—C1882.3 (3)
C1—C2—C3—C42.0 (5)N3—C17—C18—C2385.4 (4)
C2—C3—C4—C50.5 (5)N3—C17—C18—C1993.4 (3)
C2—C3—C4—Br1179.1 (2)C23—C18—C19—C200.2 (5)
C3—C4—C5—C60.7 (6)C17—C18—C19—C20178.7 (3)
Br1—C4—C5—C6179.6 (3)C18—C19—C20—C210.7 (6)
C2—C1—C6—C50.9 (5)C19—C20—C21—C221.2 (6)
C7—C1—C6—C5178.0 (3)C20—C21—C22—C231.1 (6)
C4—C5—C6—C10.5 (5)C21—C22—C23—C180.5 (5)
P1—N1—C7—O110.8 (5)C19—C18—C23—C220.1 (5)
P1—N1—C7—C1169.7 (2)C17—C18—C23—C22178.8 (3)
C6—C1—C7—O1150.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.992.845 (3)170.4
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H25BrN3O2P
Mr486.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.0140 (4), 13.2690 (5), 19.377 (1)
β (°) 94.1500 (14)
V3)2311.54 (18)
Z4
Radiation typeMo Kα
µ (mm1)1.87
Crystal size (mm)0.11 × 0.09 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12951, 5214, 2593
Rint0.051
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.135, 1.00
No. of reflections5214
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.62

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.861.992.845 (3)170.4
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

SD acknowledges the Alzahra University Research Council for partial support of this work.

References

First citationBarak, D., Ordentlich, A., Kaplan, D., Barak, R., Mizrahi, D., Kronman, C., Segall, Y., Velan, B. & Shaerman, A. (2000). Biochemistry, 39, 1156–1161.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGubina, K. E., Ovchynnikov, V. A., Amirkhanov, V. M., Fischer, H., Stumpf, R. & Skopenko, V. V. (2000). Z. Naturforsch. Teil B, 55, 576–582.  CAS Google Scholar
First citationMallender, W. D., Szegletes, T. & Rosenberry, T. L. (2000). Biochemistry, 39, 7753–7763.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrush, V. A., Amirkhanov, V. M., Ovchinnikov, V. A., Swiatek-Kozlowska, J., Lanikina, K. A. & Domasevitch, K. V. (2003). Polyhedron, 22, 1221–1229.  Web of Science CSD CrossRef CAS Google Scholar
First citationTrush, V. A., Domasevitch, K. V., Amirkhanov, V. M. & Sieler, J. (1999). Z. Naturforsch. Teil B, 54, 451–455.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds