organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phenyl α-L-rhamno­pyran­oside hemihydrate

aDepartment of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China, and bShanghai Innovative Research Center of Traditional Chinese Medicine, Cailun Road 720, No. 3 Building, Shanghai 201203, People's Republic of China
*Correspondence e-mail: jbzhang@chem.ecnu.edu.cn

(Received 8 December 2007; accepted 7 March 2008; online 14 March 2008)

The absolute configuration of the title compound, C12H15NO7·0.5H2O, was assigned from the synthesis. There are two rhamnoside mol­ecules and one water mol­ecule in the asymmetric unit, displaying O—H⋯O hydrogen bonding. One of the nitro groups does not conjugate efficiently with the benzene ring.

Related literature

For related literature, see: Garegg & Norberg (1983[Garegg, P. J. & Norberg, T. (1983). Carbohydr. Res. 116, 308-311.]); Garegg et al. (1978[Garegg, P. J., Hultberg, H. & Iversen, T. (1978). Carbohydr. Res. 62, 173-174.]); Martearena et al. (2003[Martearena, M. R., Blanco, S. & Ellenrieder, G. (2003). Bioresour. Technol. 90, 297-303.]); Nishio et al. (2004[Nishio, T., Hoshino, S. & Kondo, A. (2004). Carbohydr. Res. 339, 1389-1393.]); Temeriusz et al. (2005[Temeriusz, A., Gubica, T., Rogowska, P., Paradowskab, K. & Cyranski, M. K. (2005). Carbohydr. Res. 340, 1175-1184.]); Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]); Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15NO7·0.5H2O

  • Mr = 294.26

  • Monoclinic, P 21

  • a = 10.6189 (10) Å

  • b = 6.9002 (7) Å

  • c = 18.9318 (18) Å

  • β = 100.909 (2)°

  • V = 1362.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.51 × 0.49 × 0.31 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.802, Tmax = 1.000 (expected range = 0.772–0.963)

  • 8073 measured reflections

  • 3220 independent reflections

  • 2745 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.092

  • S = 0.97

  • 3220 reflections

  • 405 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O15i 0.87 (4) 1.83 (4) 2.697 (3) 171 (4)
O3—H3A⋯O4ii 0.87 (4) 1.78 (4) 2.652 (3) 179 (3)
O4—H4A⋯O10 0.829 (19) 1.98 (2) 2.799 (3) 168 (3)
O9—H9A⋯O11iii 0.80 (4) 1.96 (4) 2.724 (3) 161 (3)
O10—H10⋯O3ii 0.828 (19) 2.18 (2) 2.993 (3) 166 (3)
O11—H11A⋯O3ii 0.816 (19) 1.92 (2) 2.668 (3) 153 (3)
O15—H15A⋯O9 0.89 (2) 2.04 (2) 2.909 (3) 165 (5)
O15—H15B⋯O2ii 0.88 (2) 1.96 (2) 2.820 (3) 167 (5)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x, y+1, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Para-nitrophenyl-α-L-rhamnoside is an important substrate in the studies on α-L-rhamnosidase, for its chromogenic property of the released para-nitrophenol (Garegg et al., 1978). It also serves as synthetic intermediate for glycosidic compounds (Martearena et al., 2003).

In order to develop a greener synthetic method, a series of approaches have been carried out in this lab. A fairly convenient route was found finally, in which the title compound was synthesized in only two steps. First, L-rhamnose (1) was acetylated and chlorinated to yield 2,3,4-tri-O-acetyl-α-L-rhamnopyranosyl chloride (2) in the presence of acetyl chloride; then it was converted to the target molecule (3) in the condition of phase transfer catalyst (Scheme 1). The synthetic route was more concise compared with published methods (Garegg & Norberg, 1983). Additionally, the bioactivity of the synthetic compound was confirmed by enzymatic assay (Nishio et al., 2004)

Suitable crystals of target product were obtained by slow crystallization from 95% ethanol. The crystal structure was determined in order to ascertain its stereochemistry and solid-state conformation. These data are consistent with the proton and carbon NMR studies. Due to the absence of heavy atoms, refinement of the Flack parameter was not possible, and the absolute configurations could not be determined directly. Instead, they were assigned based on the knowledge of stereochemistry of the synthetic precursors and the mechanisms of synthesis. The crystal of rhamnoside has two molecules and one water molecule in the independent part of the unit cell. The configuration, conformation and atom numbering are shown in Fig. 1.

Similar to the known structures of the nitrophenyl glycopyranosides, the analyzed rhamnopyranoside (3) crystallizes in the P 21 space group. Besides, one of the nitro groups is slightly rotated with respect to the phenyl fragments. The angles between the best planes of the phenyl ring and the nitro groups are 13.3° and 0.5°, respectively. This finding partly supports the earlier opinion that the nitro group does not conjugate effectively with the benzene ring (Temeriusz et al., 2005). The sugar moieties adopt 4C1 conformations. Fig. 2 shows the intermolecular interactions in the crystal lattice. The crystal structure of (3) consists of molecular sheets lying perpendicular to the b axis (Fig. 2), in which the molecules are linked by short hydrogen bonds (Table 1).

For related literature, see [type here to add references to related literature].

Related literature top

For related literature, see: Garegg & Norberg (1983); Garegg et al. (1978); Martearena et al. (2003); Nishio et al. (2004); Temeriusz et al. (2005); Flack & Bernardinelli (2000).

Experimental top

Para-nitrophenyl-α-L-rhamnoside (3) was obtained upon one-pot reaction combined with glycosylation and deacetylation, using 10%NaOH aqueous and cetyl alkyl trimethyl ammonium bromide from 2,3,4-tri-O-acetyl-α-L-rhamnosyl chloride and para-nitrophenol. A yield of 37% of the title compound was obtained after purification by flash column chromatography on silica gel with petroleum ether–ethyl acetate (1:3) as solvent. The compound was then recrystallized via solvent evaporation (ethanol) at room temperature, appearing as colorless blocks. Analysis: Mp: 179–180°C, [α]D 20 -158.7° (c 1.0, EtOH) Rf 0.49 (dichloromethane/ methanol, 8:1, silica-gel plate 60 F254); 1H-NMR (CD3OD, 500 MHz, p.p.m.): δ 8.22(2H, aromatic H), 7.25(2H, aromatic H), 5.60(d, 1H, J1, 2=2 Hz, H-1), 4.03(m, 1H, H-2), 3.84(dd, 1H, H-3), 3.56–3.36(m, 2H, H-4, H-5), 1.22(d, 3H, CH3); 13 C-NMR (125 MHz, CD3OD): δ 150.83, 141.85, 124.75, 115.62(aromatic C), 98.01(C-1), 71.62, 70.15, 69.75, 69.34(C-2, C-3, C-4, C-5), 16.07(C-6).

Refinement top

In the absence of any significant anomalous scattering, the Flack (1983) parameter was indeterminable (Flack & Bernardinelli, 2000). Hence, the Friedel equivalents were merged prior to the final refinements, and the absolute structure was set by reference to the known chirality of the enantiopure starting sugar employed.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (3), with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary.
[Figure 2] Fig. 2. Packing diagram of (3) viewed down the b axis. Hydrogen bonds are displayed with dashed lines.
[Figure 3] Fig. 3. Scheme 1. The two-step synthesis of (3), with phase transfer catalysis.
4-Nitrophenyl α-L-rhamnopyranoside top
Crystal data top
C12H15NO7·0.5H2OF(000) = 620
Mr = 294.26Dx = 1.435 Mg m3
Monoclinic, P21Melting point: 453 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 10.6189 (10) ÅCell parameters from 3190 reflections
b = 6.9002 (7) Åθ = 4.8–5.7°
c = 18.9318 (18) ŵ = 0.12 mm1
β = 100.909 (2)°T = 293 K
V = 1362.1 (2) Å3Prismatic, colourless
Z = 40.51 × 0.49 × 0.31 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3220 independent reflections
Radiation source: fine-focus sealed tube2745 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1213
Tmin = 0.802, Tmax = 1.000k = 87
8073 measured reflectionsl = 2324
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.037P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max = 0.004
S = 0.97Δρmax = 0.20 e Å3
3220 reflectionsΔρmin = 0.21 e Å3
405 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
12 restraintsExtinction coefficient: 0.0202 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier map
Crystal data top
C12H15NO7·0.5H2OV = 1362.1 (2) Å3
Mr = 294.26Z = 4
Monoclinic, P21Mo Kα radiation
a = 10.6189 (10) ŵ = 0.12 mm1
b = 6.9002 (7) ÅT = 293 K
c = 18.9318 (18) Å0.51 × 0.49 × 0.31 mm
β = 100.909 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3220 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2745 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 1.000Rint = 0.087
8073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04212 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.20 e Å3
3220 reflectionsΔρmin = 0.21 e Å3
405 parametersAbsolute structure: Flack (1983)
Special details top

Experimental. Para-nitrophenyl-α-L-rhamnoside(3) was obtained upon one-pot reaction combined with glycosylation and deacetylation, using 10% NaOH aqueous and cetyl alkyl trimethyl ammonium bromide from 2,3,4-tri-O-acetyl-α-L-rhamnosyl chloride and para-nitrophenol. A yield of 37% of the title compound was obtained after purification by flash column chromatography on silica gel with Petroleum ether – Ethyl acetate (1:3) as solvent. The compound was then recrystallized via solvent evaporation (ethanol) at room temperature, appearing as colorless blocks. Analysis: Rf 0.49 (Dichloromethane/ methanol, 8:1, silica-gel plate 60 F254); 1H-NMR (CD3OD, 500 MHz, p.p.m.): δ 8.22(2H, aromatic H), 7.25(2H, aromatic H), 5.60(d, 1H, J1, 2=2 Hz, H-1), 4.03(m, 1H, H-2), 3.84(dd, 1H, H-3), 3.56–3.36(m, 2H, H-4, H-5), 1.22(d, 3H, CH3); 13 C-NMR (125 MHz, CD3OD): δ 150.83, 141.85, 124.75, 115.62(aromatic C), 98.01(C-1), 71.62, 70.15, 69.75, 69.34(C-2, C-3, C-4, C-5), 16.07(C-6).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19455 (17)1.0324 (2)0.33890 (9)0.0398 (4)
O20.1174 (2)0.9293 (3)0.47272 (10)0.0457 (5)
O30.33922 (18)0.7408 (3)0.52541 (9)0.0415 (4)
O40.51029 (17)0.9318 (3)0.44976 (10)0.0411 (4)
O50.16218 (18)0.7063 (2)0.30768 (9)0.0425 (4)
O60.0339 (3)0.8596 (5)0.02333 (13)0.0908 (9)
O70.1729 (2)0.6342 (4)0.01726 (11)0.0666 (7)
O80.82087 (17)0.6288 (2)0.22589 (9)0.0403 (4)
O90.7702 (2)0.8782 (3)0.33951 (12)0.0528 (6)
O100.6155 (2)0.6111 (3)0.39139 (10)0.0482 (5)
O110.7502 (2)0.2697 (2)0.35244 (11)0.0468 (5)
O120.60585 (18)0.6789 (3)0.17194 (10)0.0471 (5)
O130.4597 (3)0.6372 (5)0.16104 (13)0.0842 (8)
O140.6635 (3)0.6568 (6)0.14965 (14)0.1026 (11)
O150.8807 (2)0.8258 (3)0.49102 (14)0.0577 (6)
N10.1080 (2)0.7455 (4)0.01055 (13)0.0540 (7)
N20.5671 (3)0.6494 (4)0.12425 (14)0.0606 (7)
C10.1293 (2)0.8625 (4)0.34999 (14)0.0378 (6)
H10.03670.88590.33730.045*
C20.1625 (2)0.7922 (4)0.42766 (14)0.0358 (5)
H20.12250.66590.43210.043*
C30.3070 (2)0.7757 (4)0.45007 (12)0.0331 (5)
H30.33660.66600.42470.040*
C40.3743 (2)0.9566 (4)0.43259 (12)0.0312 (5)
H40.35141.06190.46250.037*
C50.3317 (2)1.0148 (4)0.35410 (13)0.0361 (6)
H50.35740.91370.32330.043*
C60.3851 (3)1.2050 (5)0.33591 (17)0.0627 (9)
H6A0.35561.23230.28580.094*
H6B0.47711.19910.34600.094*
H6C0.35691.30560.36430.094*
C70.1446 (2)0.7275 (4)0.23480 (13)0.0380 (6)
C80.0812 (3)0.8810 (4)0.19674 (15)0.0483 (7)
H80.04780.98060.22070.058*
C90.0680 (3)0.8846 (5)0.12280 (16)0.0511 (7)
H90.02430.98580.09640.061*
C100.1192 (3)0.7394 (4)0.08867 (14)0.0443 (6)
C110.1813 (3)0.5855 (5)0.12565 (15)0.0496 (7)
H110.21500.48690.10130.060*
C120.1930 (3)0.5790 (4)0.19884 (15)0.0487 (7)
H120.23360.47430.22450.058*
C130.7158 (2)0.7509 (4)0.21975 (14)0.0393 (6)
H130.73880.87740.20230.047*
C140.6727 (3)0.7788 (4)0.29176 (14)0.0408 (6)
H140.59300.85400.28460.049*
C150.6516 (2)0.5824 (4)0.32289 (13)0.0358 (5)
H150.58060.51810.29080.043*
C160.7705 (3)0.4593 (3)0.32767 (13)0.0354 (5)
H160.84220.52050.36030.042*
C170.8030 (3)0.4388 (4)0.25371 (14)0.0396 (6)
H170.73180.37440.22180.047*
C180.9237 (3)0.3276 (5)0.2535 (2)0.0662 (10)
H18A0.94190.32650.20570.099*
H18B0.91320.19700.26880.099*
H18C0.99330.38790.28570.099*
C190.6052 (3)0.6749 (4)0.09986 (14)0.0413 (6)
C200.4846 (3)0.6600 (4)0.05670 (15)0.0466 (6)
H200.41220.65510.07760.056*
C210.4716 (3)0.6523 (4)0.01641 (15)0.0491 (7)
H210.39080.64280.04550.059*
C220.5802 (3)0.6590 (4)0.04625 (15)0.0473 (7)
C230.7006 (3)0.6735 (5)0.00431 (16)0.0505 (7)
H230.77250.67780.02560.061*
C240.7141 (3)0.6817 (5)0.06912 (16)0.0497 (7)
H240.79500.69160.09800.060*
H100.617 (4)0.501 (3)0.4090 (18)0.074 (12)*
H2A0.038 (4)0.906 (6)0.476 (2)0.081 (12)*
H3A0.389 (3)0.639 (5)0.5343 (16)0.052 (9)*
H4A0.530 (3)0.830 (4)0.4316 (18)0.062 (10)*
H9A0.753 (3)0.991 (5)0.3344 (17)0.053 (10)*
H11A0.743 (3)0.284 (5)0.3943 (11)0.056 (9)*
H15A0.835 (5)0.829 (8)0.4467 (15)0.124 (19)*
H15B0.873 (5)0.708 (4)0.507 (3)0.108 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0446 (10)0.0357 (9)0.0357 (9)0.0069 (8)0.0009 (8)0.0013 (7)
O20.0424 (11)0.0504 (11)0.0482 (11)0.0037 (9)0.0185 (9)0.0139 (9)
O30.0527 (11)0.0429 (11)0.0291 (9)0.0109 (9)0.0084 (7)0.0060 (8)
O40.0327 (9)0.0420 (11)0.0469 (11)0.0014 (8)0.0034 (8)0.0095 (9)
O50.0499 (10)0.0408 (10)0.0334 (9)0.0045 (8)0.0005 (8)0.0050 (8)
O60.106 (2)0.120 (2)0.0416 (13)0.0504 (19)0.0000 (13)0.0104 (15)
O70.0579 (13)0.0952 (18)0.0489 (12)0.0037 (13)0.0159 (10)0.0109 (13)
O80.0423 (10)0.0368 (10)0.0447 (10)0.0003 (8)0.0162 (7)0.0064 (8)
O90.0800 (16)0.0245 (10)0.0513 (12)0.0015 (10)0.0053 (11)0.0015 (9)
O100.0726 (13)0.0375 (11)0.0408 (11)0.0125 (10)0.0268 (9)0.0006 (9)
O110.0786 (14)0.0260 (9)0.0419 (11)0.0029 (9)0.0274 (10)0.0003 (8)
O120.0444 (10)0.0567 (12)0.0417 (10)0.0047 (9)0.0121 (8)0.0030 (9)
O130.0877 (19)0.104 (2)0.0528 (14)0.0079 (17)0.0082 (13)0.0063 (14)
O140.099 (2)0.143 (3)0.0490 (14)0.013 (2)0.0223 (14)0.0026 (18)
O150.0538 (13)0.0506 (14)0.0698 (16)0.0070 (10)0.0146 (11)0.0015 (12)
N10.0492 (14)0.0716 (18)0.0410 (13)0.0021 (14)0.0081 (11)0.0081 (13)
N20.0780 (19)0.0592 (17)0.0447 (14)0.0011 (15)0.0115 (14)0.0001 (13)
C10.0326 (13)0.0405 (14)0.0383 (14)0.0026 (11)0.0020 (10)0.0061 (11)
C20.0390 (13)0.0328 (12)0.0369 (13)0.0028 (11)0.0106 (10)0.0042 (10)
C30.0416 (13)0.0326 (12)0.0255 (11)0.0045 (10)0.0073 (9)0.0017 (9)
C40.0357 (12)0.0309 (11)0.0269 (11)0.0042 (10)0.0058 (9)0.0040 (10)
C50.0388 (14)0.0389 (13)0.0300 (12)0.0003 (11)0.0050 (10)0.0008 (10)
C60.072 (2)0.062 (2)0.0493 (18)0.0159 (17)0.0014 (15)0.0200 (15)
C70.0358 (12)0.0406 (14)0.0353 (13)0.0038 (11)0.0005 (10)0.0071 (11)
C80.0514 (17)0.0513 (16)0.0401 (15)0.0151 (13)0.0032 (12)0.0059 (13)
C90.0509 (17)0.0573 (18)0.0412 (15)0.0139 (14)0.0008 (12)0.0010 (13)
C100.0366 (13)0.0590 (18)0.0348 (13)0.0037 (13)0.0005 (10)0.0077 (13)
C110.0507 (16)0.0540 (17)0.0442 (15)0.0076 (14)0.0091 (12)0.0118 (14)
C120.0539 (17)0.0430 (16)0.0459 (16)0.0101 (13)0.0007 (12)0.0029 (13)
C130.0421 (14)0.0354 (13)0.0408 (14)0.0015 (11)0.0089 (11)0.0062 (11)
C140.0502 (15)0.0343 (13)0.0389 (14)0.0081 (12)0.0109 (11)0.0037 (11)
C150.0432 (14)0.0338 (13)0.0323 (12)0.0020 (11)0.0119 (10)0.0033 (10)
C160.0475 (15)0.0235 (11)0.0367 (13)0.0017 (10)0.0119 (10)0.0020 (10)
C170.0478 (15)0.0318 (13)0.0437 (14)0.0003 (12)0.0201 (12)0.0017 (11)
C180.074 (2)0.0503 (19)0.086 (3)0.0198 (17)0.0460 (19)0.0148 (17)
C190.0458 (14)0.0382 (14)0.0411 (14)0.0006 (12)0.0115 (11)0.0042 (12)
C200.0394 (14)0.0477 (16)0.0538 (17)0.0025 (12)0.0113 (12)0.0008 (13)
C210.0503 (16)0.0457 (16)0.0484 (17)0.0041 (13)0.0019 (13)0.0022 (13)
C220.0608 (17)0.0393 (15)0.0409 (15)0.0055 (13)0.0072 (13)0.0002 (12)
C230.0504 (16)0.0579 (18)0.0456 (15)0.0014 (14)0.0151 (13)0.0103 (14)
C240.0417 (14)0.0628 (18)0.0443 (15)0.0049 (14)0.0075 (12)0.0069 (14)
Geometric parameters (Å, º) top
O1—C11.398 (3)C5—H50.9800
O1—C51.435 (3)C6—H6A0.9600
O2—C21.417 (3)C6—H6B0.9600
O2—H2A0.87 (4)C6—H6C0.9600
O3—C31.423 (3)C7—C121.382 (4)
O3—H3A0.87 (4)C7—C81.382 (4)
O4—C41.430 (3)C8—C91.380 (4)
O4—H4A0.829 (19)C8—H80.9300
O5—C71.365 (3)C9—C101.360 (4)
O5—C11.425 (3)C9—H90.9300
O6—N11.208 (4)C10—C111.370 (4)
O7—N11.216 (3)C11—C121.368 (4)
O8—C131.385 (3)C11—H110.9300
O8—C171.439 (3)C12—H120.9300
O9—C141.416 (4)C13—C141.530 (4)
O9—H9A0.80 (4)C13—H130.9800
O10—C151.434 (3)C14—C151.512 (4)
O10—H100.828 (19)C14—H140.9800
O11—C161.420 (3)C15—C161.510 (4)
O11—H11A0.816 (19)C15—H150.9800
O12—C191.363 (3)C16—C171.511 (4)
O12—C131.425 (3)C16—H160.9800
O13—N21.221 (4)C17—C181.494 (4)
O14—N21.211 (4)C17—H170.9800
O15—H15A0.89 (2)C18—H18A0.9600
O15—H15B0.88 (2)C18—H18B0.9600
N1—C101.462 (3)C18—H18C0.9600
N2—C221.458 (4)C19—C201.387 (4)
C1—C21.525 (4)C19—C241.390 (4)
C1—H10.9800C20—C211.366 (4)
C2—C31.517 (3)C20—H200.9300
C2—H20.9800C21—C221.378 (4)
C3—C41.506 (3)C21—H210.9300
C3—H30.9800C22—C231.375 (4)
C4—C51.523 (3)C23—C241.371 (4)
C4—H40.9800C23—H230.9300
C5—C61.495 (4)C24—H240.9300
C1—O1—C5114.34 (18)C9—C10—N1119.7 (3)
C2—O2—H2A111 (3)C11—C10—N1118.6 (3)
C3—O3—H3A111 (2)C12—C11—C10119.1 (3)
C4—O4—H4A110 (2)C12—C11—H11120.5
C7—O5—C1119.09 (19)C10—C11—H11120.5
C13—O8—C17115.16 (19)C11—C12—C7120.2 (3)
C14—O9—H9A106 (2)C11—C12—H12119.9
C15—O10—H10104 (3)C7—C12—H12119.9
C16—O11—H11A105 (2)O8—C13—O12113.1 (2)
C19—O12—C13119.4 (2)O8—C13—C14111.9 (2)
H15A—O15—H15B107 (5)O12—C13—C14105.2 (2)
O6—N1—O7123.2 (3)O8—C13—H13108.8
O6—N1—C10118.4 (3)O12—C13—H13108.8
O7—N1—C10118.4 (3)C14—C13—H13108.8
O14—N2—O13123.0 (3)O9—C14—C15109.3 (2)
O14—N2—C22118.3 (3)O9—C14—C13108.9 (2)
O13—N2—C22118.7 (3)C15—C14—C13109.0 (2)
O1—C1—O5111.6 (2)O9—C14—H14109.9
O1—C1—C2112.4 (2)C15—C14—H14109.9
O5—C1—C2105.4 (2)C13—C14—H14109.9
O1—C1—H1109.1O10—C15—C16112.8 (2)
O5—C1—H1109.1O10—C15—C14108.3 (2)
C2—C1—H1109.1C16—C15—C14110.1 (2)
O2—C2—C3108.7 (2)O10—C15—H15108.5
O2—C2—C1109.0 (2)C16—C15—H15108.5
C3—C2—C1109.3 (2)C14—C15—H15108.5
O2—C2—H2109.9O11—C16—C15111.1 (2)
C3—C2—H2109.9O11—C16—C17107.17 (19)
C1—C2—H2109.9C15—C16—C17109.4 (2)
O3—C3—C4109.06 (19)O11—C16—H16109.7
O3—C3—C2109.38 (19)C15—C16—H16109.7
C4—C3—C2111.9 (2)C17—C16—H16109.7
O3—C3—H3108.8O8—C17—C18107.1 (2)
C4—C3—H3108.8O8—C17—C16108.83 (19)
C2—C3—H3108.8C18—C17—C16113.4 (2)
O4—C4—C3110.61 (19)O8—C17—H17109.1
O4—C4—C5110.74 (19)C18—C17—H17109.1
C3—C4—C5111.57 (19)C16—C17—H17109.1
O4—C4—H4107.9C17—C18—H18A109.5
C3—C4—H4107.9C17—C18—H18B109.5
C5—C4—H4107.9H18A—C18—H18B109.5
O1—C5—C6107.1 (2)C17—C18—H18C109.5
O1—C5—C4108.70 (19)H18A—C18—H18C109.5
C6—C5—C4113.6 (2)H18B—C18—H18C109.5
O1—C5—H5109.1O12—C19—C20114.9 (2)
C6—C5—H5109.1O12—C19—C24124.8 (2)
C4—C5—H5109.1C20—C19—C24120.3 (3)
C5—C6—H6A109.5C21—C20—C19120.3 (3)
C5—C6—H6B109.5C21—C20—H20119.8
H6A—C6—H6B109.5C19—C20—H20119.8
C5—C6—H6C109.5C20—C21—C22118.8 (2)
H6A—C6—H6C109.5C20—C21—H21120.6
H6B—C6—H6C109.5C22—C21—H21120.6
O5—C7—C12115.2 (2)C23—C22—C21121.6 (3)
O5—C7—C8124.7 (2)C23—C22—N2119.2 (3)
C12—C7—C8120.1 (2)C21—C22—N2119.1 (3)
C9—C8—C7119.2 (3)C24—C23—C22119.7 (3)
C9—C8—H8120.4C24—C23—H23120.1
C7—C8—H8120.4C22—C23—H23120.1
C10—C9—C8119.7 (3)C23—C24—C19119.2 (3)
C10—C9—H9120.2C23—C24—H24120.4
C8—C9—H9120.2C19—C24—H24120.4
C9—C10—C11121.7 (3)
C5—O1—C1—O557.9 (3)C17—O8—C13—O1261.2 (3)
C5—O1—C1—C260.3 (3)C17—O8—C13—C1457.4 (3)
C7—O5—C1—O156.9 (3)C19—O12—C13—O870.4 (3)
C7—O5—C1—C2179.1 (2)C19—O12—C13—C14167.2 (2)
O1—C1—C2—O265.7 (3)O8—C13—C14—O965.8 (3)
O5—C1—C2—O2172.55 (19)O12—C13—C14—O9171.1 (2)
O1—C1—C2—C353.0 (3)O8—C13—C14—C1553.4 (3)
O5—C1—C2—C368.7 (2)O12—C13—C14—C1569.8 (3)
O2—C2—C3—O351.8 (3)O9—C14—C15—O1059.1 (3)
C1—C2—C3—O3170.7 (2)C13—C14—C15—O10178.1 (2)
O2—C2—C3—C469.2 (2)O9—C14—C15—C1664.5 (3)
C1—C2—C3—C449.7 (3)C13—C14—C15—C1654.4 (3)
O3—C3—C4—O462.8 (2)O10—C15—C16—O1162.7 (3)
C2—C3—C4—O4176.03 (18)C14—C15—C16—O11176.24 (19)
O3—C3—C4—C5173.46 (19)O10—C15—C16—C17179.1 (2)
C2—C3—C4—C552.3 (3)C14—C15—C16—C1758.1 (3)
C1—O1—C5—C6177.2 (2)C13—O8—C17—C18177.8 (2)
C1—O1—C5—C459.7 (2)C13—O8—C17—C1659.2 (3)
O4—C4—C5—O1178.34 (19)O11—C16—C17—O8178.5 (2)
C3—C4—C5—O154.7 (2)C15—C16—C17—O857.9 (3)
O4—C4—C5—C662.5 (3)O11—C16—C17—C1862.4 (3)
C3—C4—C5—C6173.8 (2)C15—C16—C17—C18177.0 (2)
C1—O5—C7—C12172.6 (2)C13—O12—C19—C20161.3 (2)
C1—O5—C7—C88.9 (4)C13—O12—C19—C2419.7 (4)
O5—C7—C8—C9179.0 (3)O12—C19—C20—C21179.2 (2)
C12—C7—C8—C90.6 (4)C24—C19—C20—C210.2 (4)
C7—C8—C9—C101.1 (4)C19—C20—C21—C220.3 (4)
C8—C9—C10—C111.7 (5)C20—C21—C22—C230.2 (4)
C8—C9—C10—N1178.5 (3)C20—C21—C22—N2179.5 (3)
O6—N1—C10—C913.4 (4)O14—N2—C22—C230.8 (5)
O7—N1—C10—C9167.3 (3)O13—N2—C22—C23179.8 (3)
O6—N1—C10—C11166.4 (3)O14—N2—C22—C21179.5 (4)
O7—N1—C10—C1113.0 (4)O13—N2—C22—C210.5 (4)
C9—C10—C11—C120.6 (4)C21—C22—C23—C240.0 (5)
N1—C10—C11—C12179.6 (3)N2—C22—C23—C24179.7 (3)
C10—C11—C12—C71.1 (4)C22—C23—C24—C190.1 (4)
O5—C7—C12—C11179.7 (3)O12—C19—C24—C23179.0 (3)
C8—C7—C12—C111.7 (4)C20—C19—C24—C230.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O15i0.87 (4)1.83 (4)2.697 (3)171 (4)
O3—H3A···O4ii0.87 (4)1.78 (4)2.652 (3)179 (3)
O4—H4A···O100.83 (2)1.98 (2)2.799 (3)168 (3)
O9—H9A···O11iii0.80 (4)1.96 (4)2.724 (3)161 (3)
O10—H10···O3ii0.83 (2)2.18 (2)2.993 (3)166 (3)
O11—H11A···O3ii0.82 (2)1.92 (2)2.668 (3)153 (3)
O15—H15A···O90.89 (2)2.04 (2)2.909 (3)165 (5)
O15—H15B···O2ii0.88 (2)1.96 (2)2.820 (3)167 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H15NO7·0.5H2O
Mr294.26
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)10.6189 (10), 6.9002 (7), 18.9318 (18)
β (°) 100.909 (2)
V3)1362.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.51 × 0.49 × 0.31
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.802, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8073, 3220, 2745
Rint0.087
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.092, 0.97
No. of reflections3220
No. of parameters405
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21
Absolute structureFlack (1983)

Computer programs: SMART (Bruker, 2003), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O15i0.87 (4)1.83 (4)2.697 (3)171 (4)
O3—H3A···O4ii0.87 (4)1.78 (4)2.652 (3)179 (3)
O4—H4A···O100.829 (19)1.98 (2)2.799 (3)168 (3)
O9—H9A···O11iii0.80 (4)1.96 (4)2.724 (3)161 (3)
O10—H10···O3ii0.828 (19)2.18 (2)2.993 (3)166 (3)
O11—H11A···O3ii0.816 (19)1.92 (2)2.668 (3)153 (3)
O15—H15A···O90.89 (2)2.04 (2)2.909 (3)165 (5)
O15—H15B···O2ii0.88 (2)1.96 (2)2.820 (3)167 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1; (iii) x, y+1, z.
 

Footnotes

Dedicated to Professor Yongzheng Hui on the occasion of his 70th birthday.

Acknowledgements

The X-ray data were collected at Shanghai Institute of Organic Chemistry with the kind help of Dr Jie Sun. Financial support from the Shanghai Rising Star Program (grant No. 06QA14018), Shanghai Pujiang Program (grant No. 05PJ14315), Natural Science Foundation of Shanghai (grant No. 04ZR14042) and DAXIA Science Research Foundation of East China Normal University (grant No. KY2005-017) is gratefully acknowledged

References

First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaregg, P. J., Hultberg, H. & Iversen, T. (1978). Carbohydr. Res. 62, 173–174.  CrossRef CAS Web of Science Google Scholar
First citationGaregg, P. J. & Norberg, T. (1983). Carbohydr. Res. 116, 308–311.  CrossRef CAS Web of Science Google Scholar
First citationMartearena, M. R., Blanco, S. & Ellenrieder, G. (2003). Bioresour. Technol. 90, 297–303.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishio, T., Hoshino, S. & Kondo, A. (2004). Carbohydr. Res. 339, 1389–1393.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTemeriusz, A., Gubica, T., Rogowska, P., Paradowskab, K. & Cyranski, M. K. (2005). Carbohydr. Res. 340, 1175–1184.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds