

trans-Diaguabis{1,3-bis[5-(2-pyridyl)-2Htetrazol-2-yl]propane}zinc(II) bis(perchlorate)

Hugo Gallardo,* Fernando Molin, Adailton J. Bortoluzzi and Ademir Neves

Depto. de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil Correspondence e-mail: hugo@qmc.ufsc.br

Received 1 March 2008; accepted 10 March 2008

Acta Crystallographica Section E **Structure Reports**

Online ISSN 1600-5368

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.036; wR factor = 0.098; data-to-parameter ratio = 11.7.

The Zn^{II} ion in the title compound, $[Zn(C_{15}H_{14}N_{10})(H_2O)_2]$ - $(ClO_4)_2$, lies on a centre of symmetry. The distorted N₄O₂ octahedral coordination environment around the Zn atom is composed of two 1,3-bis[5-(2-pyridyl)-2H-tetrazol-2-yl]propane ligands (L1) and two water molecules, coordinated in trans positions. The ligand acts as a typical bidentate chelating ligand through one of its 2-pyridyl-2*H*-tetrazole units, forming a five-membered Zn-N-C-C-N metallacycle with a small N-Zn-N bite angle [77.40 (8)°]. The other 2-pyridyl-2Htetrazole unit remains uncoordinated. The average Zn-N distance (2.156 Å) is somewhat longer than the distance between the Zn^{II} center and the aqua ligand [2.108 (2) Å]. The coordinated pyridyl-tetrazoyl rings are quasi-coplanar, making a dihedral angle of $1.9 (2)^\circ$, while the uncoordinated rings show a larger interplanar angle of 21.3 (2) $^{\circ}$. The flexible propane spacer displays a zigzag chain. Intermolecular O- $H \cdots N$ and $O - H \cdots O$ interactions result in two-dimensional polymeric structures parallel to (100). Two C atoms of the spacer are disordered over two positions, with site occupancy factors of ca 0.85 and 0.15.

Related literature

For related literature, see: Fan et al. (2005); Gallardo et al. (2001, 2004); Gong et al. (2004); Mizukami et al. (2005); Rodríguez-Diéguez et al. (2007); Wang et al. (2005).

V = 2019.2 (10) Å³

Mo $K\alpha$ radiation

 $0.50 \times 0.46 \times 0.20$ mm

3 standard reflections

every 200 reflections

intensity decay: 1%

3576 independent reflections 2826 reflections with $I > 2\sigma(I)$

 $\mu = 0.82 \text{ mm}^-$

T = 293 (2) K

 $R_{\rm int} = 0.016$

Z = 2

Experimental

Crvstal data $[Zn(C_{15}H_{14}N_{10})(H_2O)_2](ClO_4)_2$ $M_r = 969.03$ Monoclinic, $P2_1/c$ a = 7.378 (3) Å b = 13.354 (3) Å c = 20.764 (4) Å $\beta = 99.25 \ (2)^{\circ}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.682, \ T_{\max} = 0.853$
3873 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	3 restraints
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$
3576 reflections	$\Delta \rho_{\rm min} = -0.41 \text{ e} \text{ Å}^{-3}$
305 parameters	

Table 1

Selected bond lengths (Å).

$Z_{p1} = O1W$	2 1079 (18)	7n1_N11	2170(2)
Zn1-N17	2.149 (2)		2.170 (2)

Table 2

Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$D1W-H1WA\cdots O11$ $D1W-H1WB\cdots N21^{i}$	0.86 0.86	2.01 1.97	2.869 (3) 2.833 (3)	172 178
	1 1	1177	21000 (0)	110

Symmetry code: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: SET4 in CAD-4 EXPRESS; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2008).

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC), Financiadora de Estudos e Projetos (FINEP) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2168).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
- Fan, R., Zhu, D., Ding, H., Mu, Y., Su, Q. & Xia, H. (2005). Synth. Met. 149, 135–141.
- Gallardo, H., Magnago, R. & Bortoluzzi, A. J. (2001). *Liq. Cryst.* 28, 1343–1352.

- Gallardo, H., Meyer, E., Bortoluzzi, A. J., Molin, F. & Mangrich, A. S. (2004). *Inorg. Chim. Acta*, **357**, 505–512.
- Gong, Y.-Q., Wang, R.-H., Zhou, Y.-F., Yuan, D.-Q. & Hong, M.-C. (2004). J. Mol. Struct. 705, 29–34.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Mizukami, S., Houjou, H., Sugaya, K., Koyama, E., Tokuhisa, H., Sasaki, T. & Kanesato, M. (2005). *Chem. Mater.* **17**, 50–56.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Rodríguez-Diéguez, A., Salinas Castillo, A., Galli, S., Masciocchi, N., Gutiérrez-Zorrilla, J. M., Vitoria, P. & Colacio, E. (2007). *Dalton Trans.* pp. 1821–1828.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (1996). HELENA. University of Utrecht, The Netherlands.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Wang, X., Tang, Y., Huang, X., Qu, Z., Che, C., Chan, P. W. H. & Xiong, R. (2005). Inorg. Chem. 44, 5278–5285.
- Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, m541-m542 [doi:10.1107/S1600536808006703]

trans-Diaquabis{1,3-bis[5-(2-pyridyl)-2*H*-tetrazol-2-yl]propane}zinc(II) bis-(perchlorate)

Hugo Gallardo, Fernando Molin, Adailton J. Bortoluzzi and Ademir Neves

S1. Comment

New compounds for the research of supramolecular chemistry and crystal engineering have been extensively described in the literature in the last few years (Wang *et al.*, 2005; Fan *et al.*, 2005; Rodríguez-Diéguez *et al.*, 2007). Self-assembly processes involving organic ligands and metal ions have attracted much attention from the point of view of the development of novel functional materials with unique electronic, magnetic, catalytic and optical properties. However, while an accurate prediction of the overall crystal structure of such materials is not often an easy task, the introduction of rational organic ligands acting as building blocks has been recognized as a crucial synthetic strategy to overcome such difficulties. The syntheses of aromatic molecules containing nitrogen donor groups and which are interconnected by different type of spacers, such as conformationally rigid or flexible molecular skeletons, have been widely utilized as building blocks (Mizukami *et al.*, 2005; Gallardo *et al.*, 2001; Gong *et al.*, 2004).

The synthesis and X-ray crystal structure of the ligand 1,3-Bis-[(2-pyridyl)-2*H*-tetrazol-5-yl]propane (L1) has been described previously (Gallardo *et al.*, 2004). We report herein the title cation complex $[Zn(L1)_2(H_2O)_2]^{2+}$. The Zn^{II} atom lies on a center of symmetry and its distorted octahedral coordination is achieved through the interaction with four nitrogen atoms of two *trans* L1 ligands, defining the equatorial plane and two water molecules in apical positions (Fig. 1). The basal Zn1—N17 (2.149 (2) Å) and Zn1—N11 (2.170 (2) Å) distances are somewhat larger than the apical ones (Zn1—O1W: (2.108 (2) Å). Some conformational differences in the structure of the two 2-pyridyl-2*H*-tetrazoyl units in the L1 ligand can be observed: the coordination of the pyridyl and tetrazoyl rings of one of the units to the metal center imposes structural rigidity in this moiety, and the rings become rings quasi coplanar with an interplanar angle of 1.9 (2)°. The N11—C10—C16 angle (113.5 (2)°) is smaller than the expected value due to the restriction of the five-membered chelate ring. On the other hand, in the uncoordinated unit the bond the corresponding rings are free to rotate around C20—C26 and the interplanar angle between angle climbs up to 21.3 (2)°. Besides, the N21—C20—C26 angle (116.6 (2)°) is significantly larger than the one in the coordinated unit. A two-dimensional polymeric structure parallel to (100) is formed by intermolecular O—H···N interactions (Fig. 2). Finally, the perchlorate counterion is also connected to the polymeric structure by a O—H···O interaction.

S2. Experimental

Ligand L1 (obtained as described in Gallardo *et al.*, 2004) was added to a suspension of $Zn(ClO)_{4.}6H_2O$ in Ethanol and stirred at 50°C for 30 min. The white product was filtered off and recrystallized from isopropyl alcohol/water (1:1) affording white crystals. Yield: 61%. Elemental analysis. Calc. $C_{30}H_{32}Cl_2N_{20}O_{10}Zn$: C 37.18, H 3.33, N 28.91%. Found: C 37.27, H 3.29, N 28.98%.

S3. Refinement

H atoms attached to carbon atoms were added at their calculated positions and allowed to ride, with C— $H_{Ar} = 0.93$ Å and 0.97 Å for methylene groups and $U_{iso}(H) = 1.2U_{eq}(C)$. H atoms of the water ligand were located from Fourier the difference map and treated in the riding model aproximation with $U_{iso}(H)$ fixed at 1.2 times of $U_{iso}(O)$. C2 and C3 atoms are disordered over two alternative positions which determine two different conformations for the propylene group. The occupancies for disordered atoms were refined and the respective values are 0.848 (8) and 0.152 (8).

Figure 1

The molecular structure of the cation complex showing the labeling scheme. Displacement ellipsoids are shown at the 40% probability level. Symmetry code: (i) -x, -y, -z

Figure 2

A detail of the two-dimensional polymeric strucuture formed by hydrogen bonding.

trans-Diaquabis{1,3-bis[5-(2-pyridyl)-2H-tetrazol-2-yl]propane}zinc(II) bis(perchlorate)

F(000) = 992

 $\theta = 9.6 - 15.4^{\circ}$

 $\mu = 0.82 \text{ mm}^{-1}$

T = 293 K

 $D_{\rm x} = 1.594 {\rm Mg} {\rm m}^{-3}$

Prismatic, colorless

 $0.50 \times 0.46 \times 0.20 \text{ mm}$

Mo *K* α radiation, $\lambda = 0.71069$ Å Cell parameters from 25 reflections

Crystal data

 $[Zn(C_{15}H_{14}N_{10})(H_2O)_2](ClO_4)_2$ $M_r = 969.03$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.378 (3) Å b = 13.354 (3) Å c = 20.764 (4) Å $\beta = 99.25$ (2)° V = 2019.2 (10) Å³ Z = 2

Data collection

Enraf-Nonius CAD-4	3576 independent reflections
diffractometer	2826 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.016$
Graphite monochromator	$\theta_{\rm max} = 25.1^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$
ω –2 θ scans	$h = 0 \rightarrow 8$
Absorption correction: ψ scan	$k = 0 \rightarrow 15$
(North <i>et al.</i> , 1968)	$l = -24 \rightarrow 24$
$T_{\min} = 0.682, \ T_{\max} = 0.853$	3 standard reflections every 200 reflections
3873 measured reflections	intensity decay: 1%

Refinement

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.035$ Hydrogen site location: inferred from $wR(F^2) = 0.097$ neighbouring sites S = 1.06H-atom parameters constrained 3576 reflections $w = 1/[\sigma^2(F_0^2) + (0.0463P)^2 + 1.2496P]$ 305 parameters where $P = (F_0^2 + 2F_c^2)/3$ 3 restraints $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant direct methods $\Delta \rho_{\rm min} = -0.41 \ {\rm e} \ {\rm \AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Zn1	0.0000	0.5000	0.5000	0.03313 (13)	
O1W	0.1357 (3)	0.37083 (13)	0.54150 (8)	0.0414 (4)	
H1WA	0.2079	0.3821	0.5779	0.050*	
H1WB	0.0630	0.3224	0.5479	0.050*	
C1	0.2499 (4)	0.4082 (2)	0.26479 (13)	0.0525 (8)	
H1C	0.3610	0.4474	0.2763	0.063*	0.848 (8)
H1B	0.2857	0.3387	0.2618	0.063*	0.848 (8)
H1A'	0.3789	0.4082	0.2838	0.063*	0.152 (8)
H1B'	0.2230	0.3455	0.2416	0.063*	0.152 (8)
C2	0.1502 (6)	0.4409 (3)	0.19841 (17)	0.0478 (12)	0.848 (8)
H2A	0.0335	0.4063	0.1884	0.057*	0.848 (8)
H2B	0.2233	0.4235	0.1652	0.057*	0.848 (8)

C2'	0.212(2)	0 5004 (19)	0.2178(0)	0.062 (0)	0 152 (8)
H2A'	0.212(2) 0.3042	0.3004 (17)	0.1803	0.002 ())	0.152(0) 0.152(8)
H2R'	0.3042	0.4990	0.1895	0.075*	0.152(8) 0.152(8)
C3	0.2302 0.1102 (7)	0.5522 (3)	0.2426	0.075	0.132(0) 0.848(8)
НЗА	0.1192(7)	0.5522 (5)	0.19700 (10)	0.0473 (11)	0.040(0)
	0.0221	0.5060	0.2224	0.057*	0.040(0)
	0.2299	0.5805	0.2177	0.037°	0.040(0) 0.152(2)
	0.031(2)	0.3010 (10)	0.1744 (9)	0.048 (0)	0.152(0)
HJA	-0.0017	0.4382	0.1521	0.058*	0.152(8)
H3B ^r	-0.0640	0.5198	0.1994	0.058*	0.152 (8)
C10	-0.2250(3)	0.30570(18)	0.40158(11)	0.0336 (5)	
NII G12	-0.2337(3)	0.40794 (15)	0.46025 (9)	0.0330 (5)	
C12	-0.3779 (4)	0.3837 (2)	0.48910 (13)	0.0407 (6)	
H12	-0.3880	0.4129	0.5290	0.049*	
C13	-0.5122 (4)	0.3170 (2)	0.46167 (15)	0.0488 (7)	
H13	-0.6099	0.3013	0.4831	0.059*	
C14	-0.4989(4)	0.2741 (2)	0.40210 (15)	0.0505 (7)	
H14	-0.5869	0.2285	0.3831	0.061*	
C15	-0.3538 (4)	0.2996 (2)	0.37130 (13)	0.0433 (6)	
H15	-0.3432	0.2727	0.3308	0.052*	
C16	-0.0630 (3)	0.39652 (18)	0.37349 (11)	0.0333 (5)	
N17	0.0622 (3)	0.45884 (16)	0.40591 (10)	0.0351 (5)	
N18	0.1900 (3)	0.47270 (17)	0.36914 (10)	0.0404 (5)	
N19	0.1370 (3)	0.41780 (17)	0.31670 (10)	0.0395 (5)	
N20	-0.0198 (3)	0.36842 (17)	0.31667 (10)	0.0414 (5)	
C20	0.1645 (4)	0.6352 (2)	-0.02723 (13)	0.0393 (6)	
N21	0.1096 (3)	0.71610 (16)	-0.06368 (11)	0.0429 (5)	
C22	0.1892 (4)	0.7317 (2)	-0.11638 (14)	0.0534 (8)	
H22	0.1536	0.7876	-0.1420	0.064*	
C23	0.3205 (5)	0.6698 (3)	-0.13475 (16)	0.0654 (9)	
H23	0.3741	0.6845	-0.1712	0.078*	
C24	0.3713 (5)	0.5852 (3)	-0.09787 (17)	0.0697 (10)	
H24	0.4573	0.5409	-0.1098	0.084*	
C25	0.2923 (4)	0.5676 (2)	-0.04327 (15)	0.0552 (8)	
H25	0.3242	0.5113	-0.0176	0.066*	
C26	0.0884 (4)	0.62351 (19)	0.03362 (13)	0.0394 (6)	
N27	-0.0628(3)	0.66990 (18)	0.04770 (12)	0.0485 (6)	
N28	-0.0761(4)	0.64443 (19)	0.10824 (12)	0.0540 (6)	
N29	0.0649 (4)	0.58592 (19)	0.12805 (12)	0.0539 (6)	
N30	0.1722 (3)	0.56958 (19)	0.08358 (11)	0.0513 (6)	
Cl1	0.34362(10)	0.38846 (6)	0.71439(3)	0.0497(2)	
011	0.3975 (4)	0.4197 (2)	0.65481 (12)	0.0874 (8)	
012	0 4636 (4)	0.3152(2)	0 74296 (16)	0 1075 (11)	
013	0 1623 (4)	0.3525(2)	0 70176 (15)	0 1099 (11)	
014	0.1025(4) 0.3557(5)	0.3323(3)	0.75703 (10)	0.10774(13)	
017	0.5557 (5)	0.7/22 (3)	0.75705 (17)	0.1277(13)	

supporting information

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0396 (2)	0.0337 (2)	0.0263 (2)	-0.00564 (18)	0.00595 (16)	-0.00305 (17)
O1W	0.0500 (11)	0.0362 (10)	0.0370 (10)	-0.0037 (8)	0.0033 (8)	0.0006 (8)
C1	0.0586 (18)	0.066 (2)	0.0379 (15)	0.0157 (16)	0.0229 (14)	0.0050 (14)
C2	0.067 (3)	0.048 (2)	0.0299 (19)	-0.006 (2)	0.0123 (19)	-0.0028 (16)
C2′	0.028 (10)	0.13 (3)	0.028 (10)	0.024 (15)	0.012 (8)	0.024 (15)
C3	0.061 (3)	0.050 (2)	0.0314 (19)	0.004 (2)	0.0107 (19)	-0.0017 (16)
C3′	0.038 (11)	0.067 (15)	0.042 (11)	0.008 (11)	0.009 (9)	0.025 (11)
C10	0.0382 (14)	0.0300 (13)	0.0308 (12)	0.0017 (11)	0.0003 (10)	0.0012 (10)
N11	0.0355 (11)	0.0312 (11)	0.0319 (11)	-0.0005 (9)	0.0043 (9)	0.0027 (9)
C12	0.0395 (14)	0.0410 (15)	0.0422 (14)	0.0031 (12)	0.0087 (12)	0.0041 (12)
C13	0.0338 (14)	0.0504 (17)	0.0623 (19)	-0.0011 (13)	0.0082 (13)	0.0105 (15)
C14	0.0404 (15)	0.0460 (17)	0.0608 (19)	-0.0081 (13)	-0.0045 (14)	-0.0024 (14)
C15	0.0445 (15)	0.0411 (15)	0.0420 (15)	-0.0022(12)	0.0000 (12)	-0.0062 (12)
C16	0.0401 (14)	0.0293 (12)	0.0294 (12)	0.0008 (11)	0.0026 (11)	0.0015 (10)
N17	0.0405 (12)	0.0364 (11)	0.0295 (11)	-0.0032(10)	0.0088 (9)	0.0005 (9)
N18	0.0467 (13)	0.0425 (13)	0.0332 (12)	0.0003 (10)	0.0102 (10)	0.0000 (9)
N19	0.0478 (13)	0.0429 (12)	0.0291 (11)	0.0050 (11)	0.0099 (10)	0.0025 (9)
N20	0.0505 (14)	0.0447 (13)	0.0287 (11)	0.0032 (11)	0.0060 (10)	-0.0049 (10)
C20	0.0429 (15)	0.0370 (14)	0.0373 (14)	-0.0021 (12)	0.0045 (12)	0.0000 (11)
N21	0.0537 (14)	0.0359 (12)	0.0386 (12)	-0.0020(11)	0.0054 (11)	0.0000 (10)
C22	0.067 (2)	0.0500 (18)	0.0426 (16)	-0.0033 (15)	0.0075 (15)	0.0075 (14)
C23	0.069 (2)	0.086 (3)	0.0469 (17)	-0.0004 (19)	0.0247 (16)	0.0100 (18)
C24	0.068 (2)	0.081 (2)	0.066 (2)	0.0221 (19)	0.0282 (18)	0.0054 (19)
C25	0.0602 (19)	0.0541 (19)	0.0534 (18)	0.0129 (16)	0.0153 (15)	0.0094 (15)
C26	0.0448 (15)	0.0314 (14)	0.0418 (15)	0.0009 (12)	0.0066 (12)	-0.0003 (11)
N27	0.0533 (15)	0.0432 (13)	0.0511 (14)	0.0121 (11)	0.0145 (12)	0.0072 (11)
N28	0.0587 (16)	0.0535 (15)	0.0535 (15)	0.0171 (13)	0.0207 (13)	0.0091 (12)
N29	0.0618 (16)	0.0559 (15)	0.0484 (14)	0.0193 (13)	0.0228 (12)	0.0112 (12)
N30	0.0565 (15)	0.0568 (15)	0.0440 (13)	0.0168 (12)	0.0189 (12)	0.0100 (12)
C11	0.0474 (4)	0.0528 (4)	0.0465 (4)	0.0002 (3)	0.0006 (3)	0.0051 (3)
011	0.0928 (19)	0.109 (2)	0.0586 (15)	-0.0223 (17)	0.0069 (14)	0.0235 (15)
012	0.104 (2)	0.095 (2)	0.113 (2)	0.0239 (18)	-0.0123 (19)	0.0464 (19)
013	0.0612 (17)	0.168 (3)	0.098 (2)	-0.0375 (19)	0.0047 (15)	-0.009(2)
014	0.141 (3)	0.111 (2)	0.137 (3)	-0.016 (2)	0.042 (3)	-0.068 (2)
			× /			× /

Geometric parameters (Å, °)

Zn1—O1W ⁱ	2.1079 (18)	C12—H12	0.9300	
Zn1—O1W	2.1079 (18)	C13—C14	1.381 (4)	
Zn1—N17 ⁱ	2.149 (2)	C13—H13	0.9300	
Zn1—N17	2.149 (2)	C14—C15	1.375 (4)	
Zn1—N11 ⁱ	2.170 (2)	C14—H14	0.9300	
Zn1—N11	2.170 (2)	C15—H15	0.9300	
O1W—H1WA	0.8646	C16—N20	1.325 (3)	
O1W—H1WB	0.8638	C16—N17	1.341 (3)	

C1—N19	1.470 (3)	N17—N18	1.319 (3)
C1—C2	1.519 (4)	N18—N19	1.319 (3)
C1—C2′	1.569 (17)	N19—N20	1.331 (3)
C1—H1C	0.9700	C20—N21	1.343 (3)
C1—H1B	0.9700	C20—C25	1.385 (4)
C1—H1A′	0.9700	C20—C26	1.471 (4)
C1—H1B′	0.9700	N21—C22	1.339 (4)
C2—C3	1.503 (5)	C22—C23	1.373 (5)
C2—H2A	0.9700	C22—H22	0.9300
C2—H2B	0.9699	C23—C24	1.383 (5)
C2'—C3'	1.485 (17)	C23—H23	0.9300
C2'—H2A'	0.9700	C24—C25	1 375 (4)
C2' = H2R'	0.9700	C24—H24	0.9300
C3—N29	1 505 (4)	C25—H25	0.9300
C3—H3A	0.9701	$C_{26} = N_{30}$	1331(3)
C3—H3B	0.9700	$C_{26} = N_{27}$	1.331(3) 1 348(3)
C3' = N29	1.534(14)	N27_N28	1.346(5) 1.321(3)
C3' - H3A'	0.9699	N28—N29	1.321(3)
C3' - H3R'	0.9700	N29_N30	1.315(5) 1.327(3)
C10N11	1 353 (3)	C11-O12	1.327(3)
C10-C15	1.333(3) 1.373(4)	C11-O13	1.307(3)
C10-C16	1.375(4) 1 470(3)	C11	1.400(3)
N11 C12	1.470(3)		1.420(3)
C12 $C13$	1.342(3) 1 385(4)	011-011	1.421 (5)
012-013	1.565 (4)		
$O1W^{i}$ $Zn1$ $O1W$	180.00 (0)	C10 N11 7n1	115 /11 (16)
$O1W^{i}$ Zn1 N17 ⁱ	100.00(9)	$\frac{C10-M11-2M1}{M11-C12-C13}$	113.41(10) 122.5(3)
$O1W = Zn1 = N17^{i}$	90.32 (8) 80.68 (8)	N11 C12 H12	122.5 (5)
O1Wi Zn1 N17	89.08 (8) 80.68 (8)	N11 - C12 - H12	110.7
O1W = Zn1 = N17	09.00 (8) 00.22 (8)	C13 - C12 - H12	110.7
$V_1 W = Z_{111} = N_17$	90.32 (8)	C14 - C13 - C12	119.1 (5)
N1/-Z111-N1/	180.00 (4)	C14 - C13 - H13	120.5
O1W = ZIII = N11i	09.32 (0) 00.68 (8)	C12 - C13 - H13	120.3
VIW = ZIII = NIII	90.08 (8) 77.40 (8)	C15 - C14 - C13	119.1 (5)
N17 - Zn1 - N11	//.40 (8)	C13 - C14 - H14	120.5
NI / Z I NII	102.00(8)	C13 - C14 - H14	120.5
O1W = Zn1 = N11	90.08 (8)	C10 - C15 - C14	118.7 (5)
OIW - ZnI - NII	89.32 (8)	C10-C15-H15	120.7
NI/-ZnI-NII	102.60 (8)	C14—C15—H15	120.7
NI/—ZnI—NII	//.40(8)	N20-C16-N17	112.2 (2)
NII ¹ —ZnI—NII	180.00 (9)	N20-C16-C10	127.0 (2)
Zn1—OIW—HIWA	113.6	N1/C16C10	120.9 (2)
Znl—OIW—HIWB	114.1	N18—N17—C16	107.2 (2)
HIWA—OIW—HIWB	107.9	N18 - N17 - Zn1	140.15 (17)
N19—C1—C2	113.0 (3)	C16—N17—Znl	112.61 (16)
N19—C1—C2′	108.8 (8)	N17—N18—N19	104.8 (2)
N19—C1—H1C	109.1	N18—N19—N20	114.7 (2)
C2—C1—H1C	109.6	N18—N19—C1	121.8 (2)
N19—C1—H1B	108.9	N20-N19-C1	123.4 (2)

C2—C1—H1B	108.3	C16—N20—N19	101.1 (2)
H1C—C1—H1B	107.8	N21—C20—C25	123.0 (3)
N19—C1—H1A′	109.6	N21—C20—C26	116.6 (2)
C2'—C1—H1A'	108.6	C25—C20—C26	120.4 (2)
C2'—C1—H1B'	111.6	C22—N21—C20	116.9 (2)
H1A'—C1—H1B'	108.1	N21—C22—C23	123.8 (3)
C3—C2—C1	110.2 (3)	N21—C22—H22	118.1
C3—C2—H2A	109.9	C23—C22—H22	118.1
C1—C2—H2A	110.0	C22—C23—C24	118.6 (3)
C3—C2—H2B	109.3	С22—С23—Н23	120.7
C1—C2—H2B	109.4	C24—C23—H23	120.7
H2A—C2—H2B	108.0	C25—C24—C23	118.9 (3)
C3'—C2'—C1	115.7 (15)	C25—C24—H24	120.6
C3'—C2'—H2A'	106.3	C23—C24—H24	120.6
C1—C2'—H2A'	106.9	C24—C25—C20	118.8 (3)
C3'—C2'—H2B'	110.7	С24—С25—Н25	120.6
C1—C2′—H2B′	109.7	С20—С25—Н25	120.6
H2A'—C2'—H2B'	107.1	N30-C26-N27	112.1 (2)
C2—C3—N29	108.8 (3)	N30-C26-C20	122.2 (2)
С2—С3—НЗА	109.5	N27—C26—C20	125.5 (2)
N29—C3—H3A	109.8	N28—N27—C26	106.2 (2)
С2—С3—Н3В	110.3	N29—N28—N27	106.0 (2)
N29—C3—H3B	110.2	N28—N29—N30	114.3 (2)
НЗА—СЗ—НЗВ	108.2	N28—N29—C3	123.6 (3)
C2'—C3'—N29	99.4 (12)	N30—N29—C3	121.5 (3)
C2'—C3'—H3A'	114.6	N28—N29—C3′	115.9 (7)
N29—C3'—H3A'	113.1	N30—N29—C3′	119.4 (9)
C2'—C3'—H3B'	109.5	N29—N30—C26	101.5 (2)
N29—C3'—H3B'	110.4	O12-Cl1-O13	111.2 (2)
H3A'—C3'—H3B'	109.4	O12-Cl1-O14	108.5 (2)
N11—C10—C15	123.4 (2)	O13—Cl1—O14	110.3 (2)
N11—C10—C16	113.5 (2)	O12—C11—O11	109.3 (2)
C15—C10—C16	123.0 (2)	O13—Cl1—O11	109.19 (18)
C12—N11—C10	117.2 (2)	O14—Cl1—O11	108.3 (2)
C12—N11—Zn1	127.24 (17)		

Symmetry code: (i) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
01 <i>W</i> —H1 <i>WA</i> ···O11	0.86	2.01	2.869 (3)	172
O1 <i>W</i> —H1 <i>WB</i> ···N21 ⁱⁱ	0.86	1.97	2.833 (3)	178

Symmetry code: (ii) -x, y-1/2, -z+1/2.