organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Methyl­sulfan­yl)-2-(p-toluene­sulfonamido)butanoic acid

aKey Laboratory of Non-ferrous Metal Materials and Processing Technology, Department of Materials and Chemical Engineering, Ministry of Education, Guilin University of Technology, Guilin 541004, People's Republic of China
*Correspondence e-mail: lisa4.6@163.com

(Received 21 December 2007; accepted 22 February 2008; online 12 March 2008)

In the title compound, C12H17NO4S2, the carboxyl groups link the mol­ecules into centrosymmetric dimers through O—H⋯O hydrogen bonds. An N—H⋯O hydrogen bond between the NH group of the L-methio­nine unit and a neighbouring carboxyl group, together with a complementary C—H⋯O contact to one O atom of the sulfonyl group, link the dimers into one-dimensional chains along the crystallographic b axis.

Related literature

The title compound is closely related to the previously reported N-tosyl-L-glutamic acid (Zachara et al., 2005[Zachara, J., Madura, I., Hajmowicz, H. & Synoradzki, L. (2005). Acta Cryst. C61, o181-o184.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17NO4S2

  • Mr = 303.39

  • Monoclinic, C 2/c

  • a = 33.121 (7) Å

  • b = 5.6531 (11) Å

  • c = 17.278 (4) Å

  • β = 116.62 (3)°

  • V = 2892.2 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 293 (2) K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.855, Tmax = 0.922

  • 6139 measured reflections

  • 2689 independent reflections

  • 2055 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.00

  • 2689 reflections

  • 179 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3i 0.82 1.85 2.672 (3) 174
N1—H1⋯O4ii 0.81 (3) 2.62 (3) 3.405 (3) 163 (2)
C4—H4⋯O1iii 0.98 2.25 3.165 (3) 155
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y+1, z; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (Fig. 1) was synthesized from 4-toluenesulfonyl chloride and L-methionine. It is closely related to the previously reported N-tosyl-L-glutamic acid (Zachara et al., 2005).

Related literature top

The title compound is closely related to the previously reported N-tosyl-L-glutamic acid (Zachara et al., 2005).

Experimental top

A solution of L-methionine (0.005 mmol) and NaOH (0.015 mmol) in water (15 ml) was added to an ethanol solution of 4-toluenesulfonyl chloride (0.005 mmol). After stirring at 348 K for 40 min, crystals of the title compound were obtained by slow evaporation of the reaction mixture at room temperature.

Refinement top

H atoms bound to C or O atoms were placed geometrically with C—H = 0.93–0.97 Å or O—H = 0.82 Å and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C/O). The H atom of the NH group was located in a difference Fourier map and refined with an isotropic displacement parameter, without restraint.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. H atoms bound to C and N are omitted.
[Figure 2] Fig. 2. Partial packing diagram showing a hydrogen-bonded chain running along the b axis.
4-(Methylsulfanyl)-2-(p-toluenesulfonamido)butanoic acid top
Crystal data top
C12H17NO4S2F(000) = 1280
Mr = 303.39Dx = 1.394 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2689 reflections
a = 33.121 (7) Åθ = 2.8–25.5°
b = 5.6531 (11) ŵ = 0.38 mm1
c = 17.278 (4) ÅT = 293 K
β = 116.62 (3)°Block, colorless
V = 2892.2 (10) Å30.43 × 0.28 × 0.22 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2689 independent reflections
Radiation source: fine-focus sealed tube2055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 4030
Tmin = 0.855, Tmax = 0.922k = 56
6139 measured reflectionsl = 1720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0619P)2 + 2.0643P]
where P = (Fo2 + 2Fc2)/3
2689 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H17NO4S2V = 2892.2 (10) Å3
Mr = 303.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.121 (7) ŵ = 0.38 mm1
b = 5.6531 (11) ÅT = 293 K
c = 17.278 (4) Å0.43 × 0.28 × 0.22 mm
β = 116.62 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2689 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2055 reflections with I > 2σ(I)
Tmin = 0.855, Tmax = 0.922Rint = 0.028
6139 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.30 e Å3
2689 reflectionsΔρmin = 0.25 e Å3
179 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05669 (12)0.1441 (6)0.2992 (2)0.0798 (10)
H1A0.08140.06950.25160.120*
H1B0.05140.06550.35210.120*
H1C0.03000.13430.29060.120*
C20.09539 (9)0.5313 (5)0.19259 (17)0.0532 (7)
H2A0.11860.41700.15960.064*
H2B0.10980.68430.18600.064*
C30.06194 (8)0.5443 (5)0.15563 (16)0.0500 (7)
H3A0.04770.39090.16190.060*
H3B0.03850.65730.18900.060*
C40.08314 (7)0.6170 (4)0.05971 (14)0.0386 (5)
H40.10990.51900.02730.046*
C50.04899 (8)0.5711 (4)0.02597 (14)0.0392 (5)
C60.16839 (7)0.8595 (4)0.11546 (15)0.0405 (5)
C70.19182 (8)0.6522 (5)0.14801 (16)0.0480 (6)
H70.19670.54720.11170.058*
C80.16108 (9)1.0154 (5)0.17034 (18)0.0512 (7)
H80.14521.15540.14880.061*
C90.20788 (9)0.6019 (5)0.23483 (18)0.0538 (7)
H90.22350.46120.25630.065*
C100.17754 (9)0.9604 (5)0.25668 (18)0.0586 (7)
H100.17241.06440.29300.070*
C110.20148 (8)0.7549 (5)0.29100 (17)0.0526 (7)
C120.22040 (10)0.7014 (7)0.38595 (19)0.0769 (10)
H12A0.22420.53360.39480.115*
H12B0.20000.75800.40740.115*
H12C0.24910.77830.41640.115*
N10.09655 (7)0.8649 (4)0.04861 (13)0.0429 (5)
H10.0819 (9)0.958 (5)0.0360 (18)0.051 (8)*
O10.15126 (6)1.1856 (3)0.00061 (12)0.0545 (5)
O20.17393 (5)0.7911 (3)0.02689 (11)0.0520 (5)
O30.02802 (6)0.7289 (3)0.01265 (11)0.0479 (4)
O40.04342 (6)0.3447 (3)0.01734 (12)0.0499 (5)
H4A0.02040.32490.01150.075*
S10.149864 (19)0.93464 (11)0.00597 (4)0.0414 (2)
S20.07010 (3)0.44879 (15)0.30518 (4)0.0630 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.100 (3)0.073 (2)0.069 (2)0.007 (2)0.0400 (19)0.0020 (17)
C20.0484 (14)0.072 (2)0.0443 (14)0.0011 (13)0.0249 (12)0.0054 (13)
C30.0437 (14)0.0659 (18)0.0441 (14)0.0064 (12)0.0231 (11)0.0046 (12)
C40.0380 (12)0.0417 (14)0.0382 (12)0.0031 (10)0.0190 (10)0.0019 (10)
C50.0424 (13)0.0435 (15)0.0326 (12)0.0045 (11)0.0175 (10)0.0006 (10)
C60.0353 (12)0.0368 (13)0.0474 (13)0.0032 (10)0.0167 (10)0.0014 (11)
C70.0503 (14)0.0377 (14)0.0509 (15)0.0017 (12)0.0182 (12)0.0033 (11)
C80.0529 (15)0.0439 (16)0.0607 (17)0.0093 (12)0.0290 (13)0.0011 (12)
C90.0474 (15)0.0459 (16)0.0599 (17)0.0045 (12)0.0168 (13)0.0079 (13)
C100.0564 (16)0.068 (2)0.0570 (17)0.0012 (14)0.0301 (14)0.0105 (14)
C110.0374 (13)0.0666 (19)0.0518 (15)0.0045 (13)0.0182 (11)0.0017 (13)
C120.0579 (18)0.116 (3)0.0528 (18)0.0025 (18)0.0210 (14)0.0104 (18)
N10.0386 (11)0.0409 (13)0.0508 (12)0.0019 (10)0.0214 (10)0.0059 (10)
O10.0543 (11)0.0385 (11)0.0688 (12)0.0036 (8)0.0259 (9)0.0097 (8)
O20.0434 (9)0.0596 (12)0.0605 (11)0.0002 (8)0.0300 (9)0.0021 (9)
O30.0552 (10)0.0449 (11)0.0555 (11)0.0038 (8)0.0353 (9)0.0017 (8)
O40.0556 (11)0.0447 (11)0.0633 (11)0.0053 (8)0.0391 (9)0.0012 (8)
S10.0362 (3)0.0394 (4)0.0498 (4)0.0030 (2)0.0202 (3)0.0023 (3)
S20.0773 (5)0.0750 (6)0.0407 (4)0.0063 (4)0.0300 (4)0.0059 (3)
Geometric parameters (Å, º) top
C1—S21.793 (4)C6—S11.760 (3)
C1—H1A0.960C7—C91.378 (4)
C1—H1B0.960C7—H70.930
C1—H1C0.960C8—C101.375 (4)
C2—C31.508 (3)C8—H80.930
C2—S21.801 (3)C9—C111.385 (4)
C2—H2A0.970C9—H90.930
C2—H2B0.970C10—C111.381 (4)
C3—C41.538 (3)C10—H100.930
C3—H3A0.970C11—C121.501 (4)
C3—H3B0.970C12—H12A0.960
C4—N11.457 (3)C12—H12B0.960
C4—C51.509 (3)C12—H12C0.960
C4—H40.980N1—S11.634 (2)
C5—O31.214 (3)N1—H10.81 (3)
C5—O41.311 (3)O1—S11.4238 (19)
C6—C71.378 (4)O2—S11.4216 (18)
C6—C81.393 (4)O4—H4A0.820
S2—C1—H1A109.5C9—C7—H7120.3
S2—C1—H1B109.5C6—C7—H7120.3
H1A—C1—H1B109.5C10—C8—C6119.3 (3)
S2—C1—H1C109.5C10—C8—H8120.3
H1A—C1—H1C109.5C6—C8—H8120.3
H1B—C1—H1C109.5C7—C9—C11121.9 (3)
C3—C2—S2113.29 (18)C7—C9—H9119.1
C3—C2—H2A108.9C11—C9—H9119.1
S2—C2—H2A108.9C8—C10—C11121.9 (3)
C3—C2—H2B108.9C8—C10—H10119.1
S2—C2—H2B108.9C11—C10—H10119.0
H2A—C2—H2B107.7C10—C11—C9117.6 (3)
C2—C3—C4113.7 (2)C10—C11—C12121.1 (3)
C2—C3—H3A108.8C9—C11—C12121.3 (3)
C4—C3—H3A108.8C11—C12—H12A109.5
C2—C3—H3B108.8C11—C12—H12B109.5
C4—C3—H3B108.8H12A—C12—H12B109.5
H3A—C3—H3B107.7C11—C12—H12C109.5
N1—C4—C5110.6 (2)H12A—C12—H12C109.5
N1—C4—C3111.3 (2)H12B—C12—H12C109.5
C5—C4—C3108.11 (18)C4—N1—S1119.67 (17)
N1—C4—H4108.9C4—N1—H1119 (2)
C5—C4—H4108.9S1—N1—H1108 (2)
C3—C4—H4108.9C5—O4—H4A109.5
O3—C5—O4125.0 (2)O2—S1—O1120.15 (11)
O3—C5—C4122.6 (2)O2—S1—N1106.62 (12)
O4—C5—C4112.3 (2)O1—S1—N1105.14 (11)
C7—C6—C8119.9 (2)O2—S1—C6107.68 (11)
C7—C6—S1120.36 (19)O1—S1—C6107.74 (12)
C8—C6—S1119.7 (2)N1—S1—C6109.16 (11)
C9—C7—C6119.5 (2)C1—S2—C2101.15 (15)
S2—C2—C3—C4179.45 (19)C7—C9—C11—C101.1 (4)
C2—C3—C4—N170.7 (3)C7—C9—C11—C12178.1 (3)
C2—C3—C4—C5167.6 (2)C5—C4—N1—S1123.41 (19)
N1—C4—C5—O317.0 (3)C3—C4—N1—S1116.39 (19)
C3—C4—C5—O3105.1 (3)C4—N1—S1—O248.6 (2)
N1—C4—C5—O4166.15 (18)C4—N1—S1—O1177.16 (17)
C3—C4—C5—O471.7 (3)C4—N1—S1—C667.5 (2)
C8—C6—C7—C90.1 (4)C7—C6—S1—O216.2 (2)
S1—C6—C7—C9176.96 (19)C8—C6—S1—O2160.89 (19)
C7—C6—C8—C100.2 (4)C7—C6—S1—O1147.2 (2)
S1—C6—C8—C10177.0 (2)C8—C6—S1—O129.9 (2)
C6—C7—C9—C110.5 (4)C7—C6—S1—N199.2 (2)
C6—C8—C10—C110.4 (4)C8—C6—S1—N183.7 (2)
C8—C10—C11—C91.0 (4)C3—C2—S2—C170.4 (3)
C8—C10—C11—C12178.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.821.852.672 (3)174
N1—H1···O4ii0.81 (3)2.62 (3)3.405 (3)163 (2)
C4—H4···O1iii0.982.253.165 (3)155
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H17NO4S2
Mr303.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)33.121 (7), 5.6531 (11), 17.278 (4)
β (°) 116.62 (3)
V3)2892.2 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.855, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
6139, 2689, 2055
Rint0.028
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.119, 1.00
No. of reflections2689
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.821.852.672 (3)174.4
N1—H1···O4ii0.81 (3)2.62 (3)3.405 (3)163 (2)
C4—H4···O1iii0.982.253.165 (3)154.5
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z; (iii) x, y1, z.
 

Acknowledgements

The authors acknowledge financial support by the Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry of Education, People's Republic of China.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZachara, J., Madura, I., Hajmowicz, H. & Synoradzki, L. (2005). Acta Cryst. C61, o181–o184.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds