metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m595-m596

Dioxidobis(2-oxo-1,2-di­hydropyridin-3-olato)­molybdenum(VI)

aDepartment of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005, India, and bDepartment of Chemistry and Biochemistry and Center for Nanoscience, University of Missouri-St Louis, One University Boulevard, St Louis, MO 63121-4499, USA
*Correspondence e-mail: manojtri@gmail.com

(Received 21 February 2008; accepted 21 March 2008; online 29 March 2008)

In the title compound, [Mo(C5H4NO2)2O2], the MoVI atom exhibits a distorted octa­hedral coordination geometry formed by two terminal oxo ligands and two monoanionic O,O-bidentate pyridinone ligands. The two terminal oxo ligands lie in a cis arrangement, the ketonic O atoms of the pyridinone ligands are coordinated trans to the oxo ligands and the deprotonated hydroxyl O atoms are located trans to each other. The crystal structure contains inter­molecular N—H⋯O hydrogen bonds, C—H⋯O contacts and face-to-face ππ stacking inter­actions with an inter­planar separation of 3.25 (1) Å.

Related literature

For general background, see: Veiros et al. (2006[Veiros, L. F., Prazeres, Â., Costa, P. J., Romão, C. C., Kühn, F. E. & Calhorda, M. J. (2006). Dalton Trans. pp. 1383-1389.]); Tucci et al. (1998[Tucci, G. C., Donahue, J. P. & Holm, R. H. (1998). Inorg. Chem. 37, 1602-1608.]); Collison et al. (1996[Collison, D., Garner, C. D. & Joule, J. A. (1996). Chem. Soc. Rev. 25, 25-32.]); Hille (1996[Hille, R. (1996). Chem. Rev. 96, 2757-2816.]). For related structures, see: Brown et al. (2004[Brown, E. J., Whitwood, A. C., Walton, P. H. & Duhme-Klair, A.-K. (2004). Dalton Trans. pp. 2458-2462.]); Hanna et al. (2000[Hanna, T. A., Incarvito, C. D. & Rheingold, A. L. (2000). Inorg. Chem. 39, 630-631.]); Thompson et al. (1999[Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561-2572.]); Zhang et al. (1992[Zhang, Z., Rettig, S. J. & Orvig, C. (1992). Can. J. Chem. 70, 763-770.]). For related literature, see: Braga et al. (1997[Braga, D., Grepioni, F. & Desiraju, G. R. (1997). J. Organomet. Chem. 548, 33-43.]); Grasselli (1999[Grasselli, R. K. (1999). Catal. Today, 49, 141-153.]); Hozba et al. (1997[Hozba, P., Kabelac, M., Sponer, J., Mejzlik, P. & Vondrasek, J. (1997). J. Comput. Chem. 18, 1136-1150.]); Ranganathan et al. (1998[Ranganathan, D., Haridas, V., Gilardi, R. & Karle, I. L. (1998). J. Am. Chem. Soc. 120, 10793-10800.]); Schrock (1998[Schrock, R. R. (1998). Topics in Organometallic Chemistry, Vol. 1, pp. 1-36. Berlin: Springer.]); Schultz et al. (1993[Schultz, B. E., Gheller, S. F., Muetterties, M. C., Scott, M. J. & Holm, R. H. (1993). J. Am. Chem. Soc. 115, 2714-2722.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo(C5H4NO2)2O2]

  • Mr = 348.12

  • Monoclinic, P 21 /c

  • a = 13.263 (3) Å

  • b = 7.2470 (14) Å

  • c = 13.264 (3) Å

  • β = 118.540 (9)°

  • V = 1120.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.20 mm−1

  • T = 100 (2) K

  • 0.29 × 0.16 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.723, Tmax = 0.899

  • 37847 measured reflections

  • 3123 independent reflections

  • 2772 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.058

  • S = 1.08

  • 3123 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mo1—O1 1.9972 (14)
Mo1—O2 2.1886 (15)
Mo1—O3 1.9790 (14)
Mo1—O4 2.1882 (15)
Mo1—O5 1.7062 (15)
Mo1—O6 1.7124 (16)
O5—Mo1—O6 103.48 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O5i 0.88 2.16 2.900 (2) 142
N2—H2N⋯O6ii 0.88 1.91 2.776 (3) 167
C3—H3⋯O6iii 0.95 2.51 3.428 (3) 162
C9—H9⋯O2iv 0.95 2.38 3.235 (3) 150
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There has been growing interest in the study of MoVI complexes because of their biochemical significance (Collison et al., 1996; Hille, 1996). For example, dioxomolybdenum(VI) complexes are studied as models for oxidized forms of molybdoenzymes, e.g. aldehyde oxidase and sulfite oxidase which are supposed to contain cis-MoX2 units (X = O,S) coordinated to S, N and O donor atoms of the protein structure (Tucci et al., 1998; Schultz et al., 1993). The present view of these enzymes indicates that the formal oxidation state of Mo cycles between +4 and +6 in reactions with substrate and oxidant. The two electron O atom transfer seems to be the relevant mechanism in understanding the chemical role of enzymatic reactions. A large number of important chemical reactions are catalysed by MoVI complexes. Several industrial processes such as ammoxidation of propene to acrylonitrile (Grasselli, 1999), olefin epoxidation (Veiros et al., 2006) and olefin metathesis (Schrock, 1998) reactions are carried out over Mo catalysts.

In the title compound, the coordination sphere about the MoVI atom consists of six O atoms arranged in a distorted octahedral geometry (Fig. 1 and Table 1). There is a cis arrangement of dioxo ligands, as predicted by spectroscopic and other structural data. The O=Mo=O angle is 103.48 (7) and the Mo=O distances are 1.706 (15) and 1.712 (16) Å [average 1.709 (15) Å], comparable to those found in other cis-dioxomolybdenum(VI) complexes (Hanna et al., 2000; Brown et al., 2004). The two ketonic O atoms of the pyridinone ligands are trans to the oxo ligands and the stronger field hydroxyl O atoms are trans to one another. As expected, a slight lengthening of the ketone C=O bond is observed upon complexation, with a mean distance of 1.272 (2) Å, and the Mo—O(ketone) bonds [average 2.188 (15) Å] are somewhat longer than the Mo—O(hydroxyl) distances [average 1.988 (14) Å]. A pronounced localization of the formal double bonds in the pyridinone rings is clearly indicated by the short C1—C2 and C9—C10 bonds [average 1.360 (3) Å], long C4—C5 and C6—C7 bonds [average 1.425 (3) Å], and short ketone C5—O2 and C6—O4 [average 1.272 (2) Å] bonds. Resonance forms for pyridinone ligands have been described in detail elsewhere (Thompson et al., 1999; Zhang et al., 1992).

The NH and CH groups of the pyridinone ligands form a hydrogen bond with an oxo ligand attached to Mo in a neighbouring molecule (Table 2) (Braga et al., 1997). Repetition of this hydrogen bond generates parallel chains along the b axis (Fig. 2). There are face-to-face ππ stacking interactions involving the pyridinone rings of adjacent pyridinone molecules, with ππ distances of 3.295–3.389 Å (Fig. 3) (Ranganathan et al., 1998; Hozba et al., 1997). One potential driving force for alignment of the motifs might be the N···O interactions (N···O distance = 2.904 Å) that exists between adjacent motifs, resulting in a columnar architecture with a dimension of 7.2 × 6.7 Å (Fig. 4).

Related literature top

For general background, see: Veiros et al. (2006); Tucci et al. (1998); Collison et al. (1996); Hille (1996). For related structures, see: Brown et al. (2004); Hanna et al. (2000); Thompson et al. (1999); Zhang et al. (1992). For related literature, see: Braga et al. (1997); Grasselli (1999); Hozba et al. (1997); Ranganathan et al. (1998); Schrock (1998); Schultz et al. (1993).

Experimental top

The title compound was prepared by suspension of 2,3-pyridinediol (0.111 g, 1 mmol) in methanol (30 ml), followed by addition of KOH (0.112 g, 2 mmol). Stirring at room temperature for 30 min gave a clear red solution. This solution was treated with (NH4)2Mo2O7 (0.170 g, 0.50 mmol) and stirred overnight. The resulting orange-red solution was filtered and allowed to cool at room temperature. Over a couple of days, orange irregular needle-shaped diffraction-quality crystals separated, which were isolated and dried in air.

Refinement top

All H atoms were added in calculated positions and were refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level for non-H atoms
[Figure 2] Fig. 2. Parallel chains made through intermolecular N—H···O and C—H···O hydrogen-bond interactions (dashed lines)
[Figure 3] Fig. 3. Face-to-face π-π interactions
[Figure 4] Fig. 4. Views along the a axis
Dioxidobis(2-oxo-1,2-dihydropyridin-3-olato)molybdenum(VI) top
Crystal data top
[Mo(C5H4NO2)2O2]F(000) = 688
Mr = 348.12Dx = 2.065 Mg m3
Dm = no Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9899 reflections
a = 13.263 (3) Åθ = 1.8–29.6°
b = 7.2470 (14) ŵ = 1.20 mm1
c = 13.264 (3) ÅT = 100 K
β = 118.540 (9)°Needle, orange
V = 1120.0 (4) Å30.29 × 0.16 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3123 independent reflections
Radiation source: fine-focus sealed tube2772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 29.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1818
Tmin = 0.723, Tmax = 0.899k = 1010
37847 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0224P)2 + 1.1984P]
where P = (Fo2 + 2Fc2)/3
3123 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Mo(C5H4NO2)2O2]V = 1120.0 (4) Å3
Mr = 348.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.263 (3) ŵ = 1.20 mm1
b = 7.2470 (14) ÅT = 100 K
c = 13.264 (3) Å0.29 × 0.16 × 0.09 mm
β = 118.540 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
3123 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2772 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.899Rint = 0.045
37847 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.08Δρmax = 0.70 e Å3
3123 reflectionsΔρmin = 0.52 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.248605 (14)0.91497 (2)0.414412 (14)0.01513 (6)
O10.08144 (11)0.8541 (2)0.33241 (11)0.0172 (3)
O20.20602 (12)0.8648 (2)0.55242 (12)0.0176 (3)
O30.40951 (12)0.8995 (2)0.53830 (12)0.0173 (3)
O40.27660 (12)0.6185 (2)0.44705 (12)0.0177 (3)
O50.25461 (12)0.8903 (2)0.28946 (12)0.0196 (3)
O60.25285 (12)1.1491 (2)0.43339 (12)0.0204 (3)
N10.06163 (14)0.7521 (2)0.58314 (14)0.0166 (3)
H1N0.10750.75160.65780.020*
N20.41302 (15)0.4130 (2)0.56670 (15)0.0181 (3)
H2N0.36550.32010.53470.022*
C10.04904 (17)0.6950 (3)0.54263 (18)0.0185 (4)
H10.07540.65480.59420.022*
C20.12129 (17)0.6964 (3)0.42750 (18)0.0206 (4)
H20.19890.65940.39870.025*
C30.08198 (17)0.7519 (3)0.35098 (17)0.0189 (4)
H30.13250.75260.27060.023*
C40.02965 (17)0.8049 (3)0.39344 (16)0.0160 (4)
C50.10352 (16)0.8086 (3)0.51457 (16)0.0148 (4)
C60.37661 (17)0.5850 (3)0.52910 (16)0.0157 (4)
C70.45352 (17)0.7346 (3)0.58207 (16)0.0166 (4)
C80.56213 (17)0.7023 (3)0.66842 (17)0.0203 (4)
H80.61400.80160.70370.024*
C90.59590 (18)0.5190 (3)0.70425 (18)0.0231 (5)
H90.67100.49410.76450.028*
C100.52126 (18)0.3776 (3)0.65289 (18)0.0218 (4)
H100.54440.25420.67700.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01552 (9)0.01402 (9)0.01085 (9)0.00111 (6)0.00226 (6)0.00057 (6)
O10.0157 (6)0.0197 (7)0.0102 (6)0.0007 (6)0.0014 (5)0.0007 (5)
O20.0159 (6)0.0189 (7)0.0120 (6)0.0009 (6)0.0019 (5)0.0005 (5)
O30.0148 (6)0.0167 (7)0.0146 (7)0.0010 (5)0.0023 (5)0.0004 (5)
O40.0166 (6)0.0152 (7)0.0150 (7)0.0016 (5)0.0025 (5)0.0001 (5)
O50.0200 (7)0.0226 (8)0.0122 (7)0.0020 (6)0.0045 (6)0.0012 (6)
O60.0233 (7)0.0158 (7)0.0198 (7)0.0012 (6)0.0084 (6)0.0010 (6)
N10.0181 (8)0.0156 (8)0.0113 (7)0.0011 (7)0.0031 (6)0.0005 (7)
N20.0213 (8)0.0172 (8)0.0168 (8)0.0037 (7)0.0099 (7)0.0026 (7)
C10.0205 (10)0.0137 (9)0.0201 (10)0.0017 (8)0.0086 (8)0.0009 (8)
C20.0162 (9)0.0193 (10)0.0217 (10)0.0000 (8)0.0053 (8)0.0043 (8)
C30.0155 (9)0.0184 (10)0.0143 (9)0.0021 (8)0.0003 (7)0.0031 (8)
C40.0183 (9)0.0122 (9)0.0120 (9)0.0028 (7)0.0028 (7)0.0011 (7)
C50.0166 (9)0.0089 (8)0.0131 (9)0.0017 (7)0.0025 (7)0.0016 (7)
C60.0168 (9)0.0183 (10)0.0117 (9)0.0024 (8)0.0066 (7)0.0016 (7)
C70.0172 (9)0.0209 (10)0.0112 (9)0.0016 (8)0.0065 (7)0.0003 (8)
C80.0168 (9)0.0312 (12)0.0114 (9)0.0001 (8)0.0055 (8)0.0001 (8)
C90.0178 (9)0.0384 (13)0.0115 (9)0.0088 (9)0.0057 (8)0.0072 (9)
C100.0236 (10)0.0270 (11)0.0158 (10)0.0114 (9)0.0103 (8)0.0091 (8)
Geometric parameters (Å, º) top
Mo1—O11.9972 (14)N2—H2N0.880
Mo1—O22.1886 (15)C1—C21.361 (3)
Mo1—O31.9790 (14)C1—H10.950
Mo1—O42.1882 (15)C2—C31.403 (3)
Mo1—O51.7062 (15)C2—H20.950
Mo1—O61.7124 (16)C3—C41.364 (3)
O1—C41.336 (3)C3—H30.950
O2—C51.270 (2)C4—C51.427 (3)
O3—C71.335 (2)C6—C71.423 (3)
O4—C61.274 (2)C7—C81.366 (3)
N1—C51.337 (3)C8—C91.410 (3)
N1—C11.364 (3)C8—H80.950
N1—H1N0.880C9—C101.360 (3)
N2—C61.344 (3)C9—H90.950
N2—C101.366 (3)C10—H100.950
O5—Mo1—O6103.48 (7)C1—C2—C3120.52 (19)
O5—Mo1—O3105.57 (7)C1—C2—H2119.7
O6—Mo1—O389.27 (6)C3—C2—H2119.7
O5—Mo1—O190.16 (6)C4—C3—C2119.16 (18)
O6—Mo1—O1104.40 (6)C4—C3—H3120.4
O3—Mo1—O1156.33 (6)C2—C3—H3120.4
O5—Mo1—O490.40 (6)O1—C4—C3126.57 (18)
O6—Mo1—O4162.43 (6)O1—C4—C5113.69 (17)
O3—Mo1—O476.49 (6)C3—C4—C5119.74 (19)
O1—Mo1—O486.00 (6)O2—C5—N1122.93 (17)
O5—Mo1—O2161.00 (6)O2—C5—C4118.70 (18)
O6—Mo1—O292.59 (6)N1—C5—C4118.37 (18)
O3—Mo1—O284.43 (6)O4—C6—N2122.44 (19)
O1—Mo1—O275.87 (6)O4—C6—C7119.02 (18)
O4—Mo1—O276.04 (5)N2—C6—C7118.53 (18)
C4—O1—Mo1119.16 (12)O3—C7—C8125.8 (2)
C5—O2—Mo1112.20 (12)O3—C7—C6113.95 (17)
C7—O3—Mo1119.05 (12)C8—C7—C6120.3 (2)
C6—O4—Mo1111.40 (13)C7—C8—C9118.8 (2)
C5—N1—C1122.94 (17)C7—C8—H8120.6
C5—N1—H1N118.5C9—C8—H8120.6
C1—N1—H1N118.5C10—C9—C8120.20 (19)
C6—N2—C10122.19 (19)C10—C9—H9119.9
C6—N2—H2N118.9C8—C9—H9119.9
C10—N2—H2N118.9C9—C10—N2120.0 (2)
C2—C1—N1119.2 (2)C9—C10—H10120.0
C2—C1—H1120.4N2—C10—H10120.0
N1—C1—H1120.4
O5—Mo1—O1—C4162.99 (15)C2—C3—C4—O1177.13 (19)
O6—Mo1—O1—C493.04 (15)C2—C3—C4—C51.9 (3)
O3—Mo1—O1—C430.6 (2)Mo1—O2—C5—N1173.36 (15)
O4—Mo1—O1—C472.60 (14)Mo1—O2—C5—C46.4 (2)
O2—Mo1—O1—C43.99 (13)C1—N1—C5—O2178.72 (18)
O5—Mo1—O2—C538.2 (3)C1—N1—C5—C41.5 (3)
O6—Mo1—O2—C5109.76 (14)O1—C4—C5—O23.4 (3)
O3—Mo1—O2—C5161.22 (14)C3—C4—C5—O2177.45 (18)
O1—Mo1—O2—C55.55 (13)O1—C4—C5—N1176.45 (17)
O4—Mo1—O2—C583.79 (13)C3—C4—C5—N12.7 (3)
O5—Mo1—O3—C788.95 (15)Mo1—O4—C6—N2178.53 (15)
O6—Mo1—O3—C7167.25 (15)Mo1—O4—C6—C72.4 (2)
O1—Mo1—O3—C741.0 (2)C10—N2—C6—O4178.42 (19)
O4—Mo1—O3—C72.36 (14)C10—N2—C6—C70.6 (3)
O2—Mo1—O3—C774.58 (14)Mo1—O3—C7—C8179.11 (16)
O5—Mo1—O4—C6108.44 (14)Mo1—O3—C7—C61.9 (2)
O6—Mo1—O4—C634.2 (3)O4—C6—C7—O30.6 (3)
O3—Mo1—O4—C62.52 (13)N2—C6—C7—O3179.69 (17)
O1—Mo1—O4—C6161.43 (14)O4—C6—C7—C8178.48 (19)
O2—Mo1—O4—C685.01 (14)N2—C6—C7—C80.6 (3)
C5—N1—C1—C20.6 (3)O3—C7—C8—C9179.41 (19)
N1—C1—C2—C31.4 (3)C6—C7—C8—C90.4 (3)
C1—C2—C3—C40.1 (3)C7—C8—C9—C100.3 (3)
Mo1—O1—C4—C3177.08 (16)C8—C9—C10—N20.3 (3)
Mo1—O1—C4—C52.0 (2)C6—N2—C10—C90.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.882.162.900 (2)142
N2—H2N···O6ii0.881.912.776 (3)167
C3—H3···O6iii0.952.513.428 (3)162
C9—H9···O2iv0.952.383.235 (3)150
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1, z; (iii) x, y1/2, z+1/2; (iv) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mo(C5H4NO2)2O2]
Mr348.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.263 (3), 7.2470 (14), 13.264 (3)
β (°) 118.540 (9)
V3)1120.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.20
Crystal size (mm)0.29 × 0.16 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.723, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
37847, 3123, 2772
Rint0.045
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.058, 1.08
No. of reflections3123
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.52

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mo1—O11.9972 (14)Mo1—O42.1882 (15)
Mo1—O22.1886 (15)Mo1—O51.7062 (15)
Mo1—O31.9790 (14)Mo1—O61.7124 (16)
O5—Mo1—O6103.48 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O5i0.882.162.900 (2)141.6
N2—H2N···O6ii0.881.912.776 (3)166.8
C3—H3···O6iii0.952.513.428 (3)162.2
C9—H9···O2iv0.952.383.235 (3)150.0
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1, z; (iii) x, y1/2, z+1/2; (iv) x+1, y1/2, z+3/2.
 

Acknowledgements

This work was supported by the Council of Scientific and Industrial Research, New Delhi. We also thank the Head, Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi. We acknowledge funding from the National Science Foundation (CHE0420497) for the purchase of the APEXII diffractometer.

References

First citationBraga, D., Grepioni, F. & Desiraju, G. R. (1997). J. Organomet. Chem. 548, 33–43.  Web of Science CrossRef CAS Google Scholar
First citationBrown, E. J., Whitwood, A. C., Walton, P. H. & Duhme-Klair, A.-K. (2004). Dalton Trans. pp. 2458–2462.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCollison, D., Garner, C. D. & Joule, J. A. (1996). Chem. Soc. Rev. 25, 25–32.  CrossRef CAS Web of Science Google Scholar
First citationGrasselli, R. K. (1999). Catal. Today, 49, 141–153.  Web of Science CrossRef CAS Google Scholar
First citationHanna, T. A., Incarvito, C. D. & Rheingold, A. L. (2000). Inorg. Chem. 39, 630–631.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHille, R. (1996). Chem. Rev. 96, 2757–2816.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHozba, P., Kabelac, M., Sponer, J., Mejzlik, P. & Vondrasek, J. (1997). J. Comput. Chem. 18, 1136–1150.  Google Scholar
First citationRanganathan, D., Haridas, V., Gilardi, R. & Karle, I. L. (1998). J. Am. Chem. Soc. 120, 10793–10800.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchrock, R. R. (1998). Topics in Organometallic Chemistry, Vol. 1, pp. 1–36. Berlin: Springer.  Google Scholar
First citationSchultz, B. E., Gheller, S. F., Muetterties, M. C., Scott, M. J. & Holm, R. H. (1993). J. Am. Chem. Soc. 115, 2714–2722.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561–2572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTucci, G. C., Donahue, J. P. & Holm, R. H. (1998). Inorg. Chem. 37, 1602–1608.  Web of Science CrossRef CAS Google Scholar
First citationVeiros, L. F., Prazeres, Â., Costa, P. J., Romão, C. C., Kühn, F. E. & Calhorda, M. J. (2006). Dalton Trans. pp. 1383–1389.  Web of Science CrossRef Google Scholar
First citationZhang, Z., Rettig, S. J. & Orvig, C. (1992). Can. J. Chem. 70, 763–770.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m595-m596
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds