metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m579-m580

Di-μ-chlorido-bis­­[bis­­(η2-cyclo­octene)iridium(I)]

aDepartment of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, 1-3, Toyonaka, Osaka 560-8531, Japan, and bHigashiosaka College, Nishitutumi Gakuen-chou 3-1-1, Higashiosaka, Osaka 577-8567, Japan
*Correspondence e-mail: tyama@chem.es.osaka-u.ac.jp

(Received 15 January 2008; accepted 17 March 2008; online 29 March 2008)

The title complex, [Ir2(μ-Cl)2(C8H14)4], has a dinuclear structure with bridging Cl atoms, a hinge angle of 179.44 (7)° between the two IrCl2 planes, and an Ir⋯Ir distance of 3.7254 (3) Å. Regarding the coordinating C=C bonds as occupying a single coordination site each, the geometry around each Ir atom is square-planar.

Related literature

For related literature, see: Cotton et al. (1986[Cotton, F. A., Lahuerta, P., Sanau, M. & Schwotzer, W. (1986). Inorg. Chim. Acta, 120, 153-157.]); De Ridder & Imhoff (1994[De Ridder, D. J. A. & Imhoff, P. (1994). Acta Cryst. C50, 1569-1572.]); Dorta et al. (1997[Dorta, R., Egli, P., Zücher, E. & Togni, A. (1997). J. Am. Chem. Soc. 119, 10857-10858.]); Herde et al. (1974[Herde, J. L., Lambert, J. C. & Senoff, C. V. (1974). Inorg. Synth. 15, 18-20.]); Pettinari et al. (2002[Pettinari, C., Marchetti, F., Cingolani, A., Bianchini, G., Drozdov, A., Vertlib, V. & Troyanov, S. (2002). J. Organomet. Chem. 651, 5-14.]); Tani et al. (1985[Tani, K., Yamagata, T., Tatsuno, Y., Yamagata, Y., Tomita, K., Akutagawa, S., Kumobayashi, H. & Otsuka, S. (1985). Angew. Chem. Int. Ed. Engl. 24, 217-219.], 1995[Tani, K., Onouchi, J., Yamagata, T. & Kataoka, Y. (1995). Chem. Lett. pp. 955-956.]); Yamagata et al. (1997[Yamagata, T., Iseki, A. & Tani, K. (1997). Chem. Lett. pp. 1255-1256.], 2007a[Yamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007a). Acta Cryst. E63, m1498.],b[Yamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007b). Acta Cryst. E63, m2402.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir2Cl2(C8H14)4]

  • Mr = 896.07

  • Monoclinic, P 21 /c

  • a = 12.3410 (5) Å

  • b = 10.7713 (3) Å

  • c = 23.6450 (6) Å

  • β = 91.7873 (13)°

  • V = 3141.57 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.65 mm−1

  • T = 100 (1) K

  • 0.19 × 0.09 × 0.05 mm

Data collection
  • Rigaku R-AXIS RAPID Imaging Plate diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.585, Tmax = 0.830

  • 39295 measured reflections

  • 7172 independent reflections

  • 6321 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.068

  • S = 1.08

  • 7172 reflections

  • 349 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.46 e Å−3

  • Δρmin = −1.67 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ir1—C10 2.113 (5)
Ir1—C2 2.123 (5)
Ir1—C1 2.138 (6)
Ir1—C9 2.139 (5)
Ir1—Cl1 2.3980 (12)
Ir1—Cl2 2.4188 (12)
Ir1⋯Ir2 3.7254 (3)
Ir2—C26 2.117 (5)
Ir2—C18 2.117 (5)
Ir2—C25 2.139 (5)
Ir2—C17 2.153 (5)
Ir2—Cl1 2.4036 (12)
Ir2—Cl2 2.4203 (12)
Cl1—Ir1—Cl2 78.84 (4)
Cl1—Ir2—Cl2 78.70 (4)
Ir1—Cl1—Ir2 101.77 (5)
Ir1—Cl2—Ir2 100.69 (4)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku, (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: TEXSAN (Rigaku/MSC, 2004[Rigaku/MSC, (2004). TEXSAN. Rigaku/MSC, The Woodlands, Teaxs, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,5-Cyclooctadiene (cod) or cyclooctene (coe) complexes of rhodium(I) and iridium(I) with general formulae [MX(cod)]2 or [MX(coe)2]2 (M = IrI or RhI; X = Cl or Br or I) have been used as key starting compounds for various rhodium and iridium complexes. For example, an excellent asymmetric catalyst precursor, [Rh{(R)-binap}2]ClO4 (Tani et al., 1985) or [Ir(µ-Cl){(R)-binap}]2 (Yamagata et al., 1997; Dorta, et al., 1997; Tani et al., 1995), has been prepared from the reaction of [RhCl(cod)]2 or the title compound, [Ir(µ-Cl)(C8H14)2]2 (I), respectively, with (R)-BINAP {(R)-(+)-2,2'-bis(diphenylphosphino)-1–1'-binaphthyl}. The X-ray structure analyses of a series of the cod complexes have been reported. However, the crystal structures of the coe complexes have not been determined. Thus, we report here the preparation and the crystal structure of the title complex (I), which reveals also a dinuclear iridium complex (Fig. 1). The coordination geometry defined by bridging chlorine atoms and centroids of double bonds around Ir1 and Ir2 is essentially square planar. The hinge angle ((Ir1 Cl1 Cl2)/(Ir2 Cl1 Cl2) = 179.44 (7)°) is nearly 180° and the Ir···Ir distance is 3.7254 (3) Å. All the cod complexes have an analogous halogen-bridged dinuclear structure. The rhodium complex, [Rh(µ-Cl)(cod)]2 (De Ridder & Imhoff, 1994), showed an almost planar structure (the hinge angle is 169.1 (3)°), whereas [Ir(µ-I)(cod)]2 (Yamagata, et al., 2007a), [Ir(µ-Br)(cod)]2 (Yamagata et al., 2007b), [Ir(µ-Cl)(cod)]2 (Cotton et al., 1986), and [Rh(µ-Br)(cod)]2 (Pettinari et al., 2002) show bent structures, with hinge angles of 95.26 (1)°, 101.58 (3)°, 109.4 (3)°, and 148.7 (3)°, respectively. The M···M distances in [Ir(µ-I)(cod)]2, [Ir(µ-Br)(cod)]2, [Ir(µ-Cl)(cod)]2, and [Rh(µ-Br)(cod)]2 are 2.9228 (6) Å, 2.9034 (5) Å, 2.910 (1) Å, and 3.565 Å, respectively. The degree of bending is Ir > Rh and I > Br > Cl. By replacing a cod ligand with two coe ligands the coordination geometries change considerably.

Related literature top

For related literature, see: Cotton et al. (1986); De Ridder & Imhoff (1994); Dorta et al. (1997); Herde et al. (1974); Pettinari et al. (2002); Tani et al. (1985, 1995); Yamagata et al. (1997, 2007a,b).

Experimental top

The title compound was prepared according to a modified literature method (Herde et al., 1974). All manipulations of air-sensitive materials were performed under argon using standard Schlenk and vacuum techniques (8 x 10 -2 Torr). IrCl3.3H2O (2.0 g, 5.67 mmol) was placed in a 100 ml round-bottomed flask. To this were added water (12 ml) and 2-propanol (22 ml). After addition of cyclooctene (3.5 ml), the reaction mixture was refluxed at 353 K for 3 hr. The colour of the reaction mixture turned from dark red to orange-yellow and a yellow suspension was formed. The reaction mixture was cooled to ambient temperature. The yellow precipitate was collected, washed with ice-cooled methanol (20 ml x 2), and then dried in vacuo to afford 2.04 g (2.28 mmol, 80%) of the pure product. NMR (270.05 MHz, CDCl3, 308 K, δ, p.p.m.): 2.17–2.08 (m, 4H), 1.92–1.85 (m, 2H), 1.67–1.60 (m, 2H), 1.53–1.32 (m, 6H). Orange single crystals for X-ray analysis were grown from a solution in THF under argon.

Refinement top

The C12—C13 and C13—C14 bond lengths and C12···C14 distance were restrained to 1.53 (2) Å and 2.50 (2) Å, respectively. All H atoms were located in a difference Fourier map. H atoms except the olefinic H atoms were included with a riding model (C—H = 0.99 Å, Uiso(H) = 1.2Ueq(C)). The atomic coordinates of the olefinic H atoms were refined, with C1—H1 and C2—H2 restrained to 0.95 (2) Å. The final difference Fourier map gave a maximum peak (2.463 e Å-3), which was present near the atom C13 (1.10 Å). The deepest hole of the final difference Fourier map was -1.668 e Å-3 (0.78 Å from Ir1).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: TEXSAN (Rigaku/MSC, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. All H atoms are omitted. Ca, Cb, Cc and Cd are the centroids of the coordinated C?C bonds.
Di-µ-chlorido-bis[bis(η2-cyclooctene)iridium(I)] top
Crystal data top
[Ir2Cl2(C8H14)4]F(000) = 1744
Mr = 896.07Dx = 1.895 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 78044 reflections
a = 12.3410 (5) Åθ = 2.1–31.6°
b = 10.7713 (3) ŵ = 8.65 mm1
c = 23.6450 (6) ÅT = 100 K
β = 91.7873 (13)°Block, orange
V = 3141.57 (16) Å30.19 × 0.09 × 0.05 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
7172 independent reflections
Radiation source: normal-focus sealed tube6321 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 2.5°
ω scansh = 1615
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 1313
Tmin = 0.585, Tmax = 0.830l = 3030
39295 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0182P)2 + 25.7043P]
where P = (Fo2 + 2Fc2)/3
7172 reflections(Δ/σ)max = 0.001
349 parametersΔρmax = 2.46 e Å3
5 restraintsΔρmin = 1.67 e Å3
Crystal data top
[Ir2Cl2(C8H14)4]V = 3141.57 (16) Å3
Mr = 896.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3410 (5) ŵ = 8.65 mm1
b = 10.7713 (3) ÅT = 100 K
c = 23.6450 (6) Å0.19 × 0.09 × 0.05 mm
β = 91.7873 (13)°
Data collection top
Rigaku R-AXIS RAPID Imaging Plate
diffractometer
7172 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
6321 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 0.830Rint = 0.055
39295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0335 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0182P)2 + 25.7043P]
where P = (Fo2 + 2Fc2)/3
7172 reflectionsΔρmax = 2.46 e Å3
349 parametersΔρmin = 1.67 e Å3
Special details top

Experimental. Indexing was performed from 2 oscillations which were exposed for 500 s. The camera radiuswas 127.40 mm. Readout performed in the 0.100 mm pixel mode. #1 Phi= 90.0, chi=55.0, omega=50.0 to 230.0 with 3.0deg step #2 Phi=300.0, chi=40.0, omega=70.0 to 250.0 with 3.0deg step

A total of 120 images, corresponding to 360.0 °. osillation angles, were collected with 2 different goniometer setting. Exposure time was 100 s per degree. The camera radiuswas 127.40 mm. Readout performed in the 0.100 mm pixel mode.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

2.1389 (0.0071) x + 3.6982 (0.0062) y + 21.6879 (0.0063) z = 3.5218 (0.0013)

* 0.0000 (0.0000) Ir1 * 0.0000 (0.0000) Cl1 * 0.0000 (0.0000) Cl2 0.0181 (0.0020) Ir2

Rms deviation of fitted atoms = 0.0000

2.0283 (0.0066) x + 3.7376 (0.0066) y + 21.7009 (0.0061) z = 3.4830 (0.0032)

Angle to previous plane (with approximate e.s.d.) = 0.56 (0.07)

* 0.0000 (0.0000) Ir2 * 0.0000 (0.0000) Cl1 * 0.0000 (0.0000) Cl2 0.0180 (0.0020) Ir1

Rms deviation of fitted atoms = 0.0000

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.230075 (15)0.075614 (17)0.126802 (8)0.01383 (5)
Ir20.509155 (15)0.055152 (17)0.122410 (8)0.01382 (5)
Cl10.40939 (10)0.13086 (12)0.09970 (6)0.0223 (3)
Cl20.32842 (10)0.11317 (11)0.14929 (6)0.0189 (2)
C10.0736 (4)0.0096 (6)0.1264 (3)0.0243 (12)
H10.025 (4)0.031 (6)0.101 (2)0.029*
C20.1000 (4)0.0349 (5)0.1804 (2)0.0191 (11)
H20.064 (5)0.109 (4)0.192 (3)0.023*
C30.1213 (5)0.0501 (6)0.2304 (2)0.0277 (13)
H3A0.17520.01130.25680.033*
H3B0.15180.12960.21720.033*
C40.0165 (5)0.0750 (6)0.2613 (3)0.0286 (13)
H4A0.00350.00130.28180.034*
H4B0.03080.14060.28990.034*
C50.0811 (5)0.1151 (6)0.2238 (3)0.0280 (13)
H5A0.14260.13250.24840.034*
H5B0.10230.04460.19900.034*
C60.0632 (6)0.2276 (6)0.1870 (3)0.0376 (16)
H6A0.12740.28220.18950.045*
H6B0.00020.27390.20300.045*
C70.0436 (6)0.2035 (7)0.1243 (3)0.0421 (18)
H7A0.10150.14770.10930.050*
H7B0.05070.28320.10370.050*
C80.0669 (6)0.1457 (7)0.1110 (3)0.0413 (18)
H8A0.12490.19140.13210.050*
H8B0.07970.15530.07010.050*
C90.1533 (5)0.2178 (5)0.0768 (2)0.0221 (11)
H90.075 (6)0.202 (6)0.071 (3)0.027*
C100.1791 (5)0.2624 (5)0.1318 (3)0.0217 (11)
H100.120 (6)0.270 (6)0.154 (3)0.026*
C110.2647 (5)0.3610 (5)0.1432 (3)0.0283 (13)
H11A0.32380.35100.11610.034*
H11B0.29610.35030.18190.034*
C120.2155 (6)0.4936 (6)0.1370 (3)0.0365 (16)
H12A0.27560.55430.13590.044*
H12B0.17380.51190.17110.044*
C130.1382 (7)0.5137 (7)0.0825 (4)0.067 (3)
H13A0.07510.45760.08550.081*
H13B0.11040.59990.08330.081*
C140.1858 (9)0.4931 (8)0.0281 (4)0.067 (3)
H14A0.26570.49560.03350.080*
H14B0.16490.56320.00300.080*
C150.1567 (6)0.3761 (7)0.0015 (3)0.0381 (16)
H15A0.17820.38310.04140.046*
H15B0.07700.36640.00160.046*
C160.2089 (6)0.2587 (6)0.0241 (3)0.0327 (14)
H16A0.20510.19090.00420.039*
H16B0.28630.27520.03350.039*
C170.5778 (4)0.2077 (5)0.1702 (2)0.0178 (10)
H170.641 (5)0.177 (6)0.185 (3)0.021*
C180.5765 (5)0.2340 (5)0.1113 (2)0.0198 (11)
H180.637 (6)0.223 (6)0.093 (3)0.024*
C190.5016 (5)0.3272 (5)0.0825 (2)0.0221 (11)
H19A0.49160.30380.04220.027*
H19B0.42990.32280.10000.027*
C200.5427 (6)0.4622 (6)0.0858 (3)0.0321 (14)
H20A0.50050.51260.05790.039*
H20B0.61940.46380.07480.039*
C210.5347 (6)0.5229 (6)0.1440 (3)0.0385 (16)
H21A0.54440.61360.13950.046*
H21B0.46060.50900.15760.046*
C220.6160 (6)0.4773 (6)0.1896 (3)0.0377 (16)
H22A0.67610.43520.17060.045*
H22B0.64690.55090.20940.045*
C230.5727 (5)0.3885 (5)0.2345 (3)0.0248 (12)
H23A0.63480.35800.25800.030*
H23B0.52510.43610.25950.030*
C240.5088 (5)0.2753 (5)0.2112 (2)0.0229 (11)
H24A0.44070.30320.19190.027*
H24B0.49000.21940.24260.027*
C250.6372 (4)0.0087 (5)0.0709 (2)0.0174 (10)
H250.665 (5)0.068 (6)0.052 (3)0.021*
C260.6671 (4)0.0212 (5)0.1290 (2)0.0173 (10)
H260.714 (5)0.046 (6)0.143 (3)0.021*
C270.6759 (4)0.1413 (5)0.1608 (2)0.0207 (11)
H27A0.66630.12420.20150.025*
H27B0.61580.19630.14780.025*
C280.7842 (5)0.2112 (5)0.1542 (2)0.0232 (11)
H28A0.78780.27910.18240.028*
H28B0.84420.15300.16370.028*
C290.8044 (5)0.2672 (5)0.0956 (3)0.0261 (12)
H29A0.74120.31920.08440.031*
H29B0.86830.32260.09900.031*
C300.8236 (5)0.1735 (6)0.0481 (2)0.0252 (12)
H30A0.84260.09250.06560.030*
H30B0.88700.20150.02680.030*
C310.7280 (4)0.1540 (6)0.0061 (2)0.0227 (11)
H31A0.71740.23110.01620.027*
H31B0.74740.08730.02060.027*
C320.6204 (4)0.1200 (5)0.0324 (2)0.0192 (10)
H32A0.59340.19110.05430.023*
H32B0.56580.10010.00220.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01035 (9)0.01310 (9)0.01811 (10)0.00069 (7)0.00157 (7)0.00070 (7)
Ir20.01052 (9)0.01305 (9)0.01793 (10)0.00124 (7)0.00105 (7)0.00185 (7)
Cl10.0112 (6)0.0164 (6)0.0395 (8)0.0024 (4)0.0046 (5)0.0088 (5)
Cl20.0111 (5)0.0150 (5)0.0308 (7)0.0018 (4)0.0035 (5)0.0038 (5)
C10.013 (3)0.034 (3)0.026 (3)0.004 (2)0.002 (2)0.007 (2)
C20.011 (2)0.016 (2)0.031 (3)0.0025 (19)0.009 (2)0.002 (2)
C30.024 (3)0.034 (3)0.025 (3)0.013 (2)0.001 (2)0.006 (2)
C40.022 (3)0.039 (3)0.025 (3)0.009 (3)0.004 (2)0.007 (2)
C50.021 (3)0.034 (3)0.030 (3)0.002 (2)0.004 (2)0.007 (2)
C60.024 (3)0.029 (3)0.060 (5)0.011 (3)0.010 (3)0.003 (3)
C70.025 (3)0.047 (4)0.054 (5)0.021 (3)0.008 (3)0.020 (3)
C80.032 (4)0.054 (4)0.038 (4)0.026 (3)0.016 (3)0.027 (3)
C90.017 (3)0.022 (3)0.027 (3)0.005 (2)0.001 (2)0.007 (2)
C100.016 (3)0.017 (3)0.033 (3)0.004 (2)0.005 (2)0.008 (2)
C110.023 (3)0.016 (3)0.047 (4)0.007 (2)0.008 (3)0.005 (2)
C120.042 (4)0.017 (3)0.051 (4)0.001 (3)0.019 (3)0.002 (3)
C130.053 (5)0.028 (4)0.121 (9)0.019 (4)0.020 (5)0.025 (5)
C140.082 (7)0.045 (5)0.072 (6)0.002 (5)0.024 (5)0.021 (4)
C150.041 (4)0.039 (4)0.034 (4)0.006 (3)0.003 (3)0.018 (3)
C160.033 (4)0.037 (3)0.028 (3)0.013 (3)0.004 (3)0.014 (3)
C170.012 (2)0.016 (2)0.025 (3)0.0028 (19)0.004 (2)0.0051 (19)
C180.017 (3)0.017 (2)0.025 (3)0.002 (2)0.001 (2)0.008 (2)
C190.026 (3)0.016 (2)0.024 (3)0.004 (2)0.002 (2)0.002 (2)
C200.042 (4)0.023 (3)0.032 (3)0.010 (3)0.001 (3)0.005 (2)
C210.042 (4)0.017 (3)0.056 (5)0.000 (3)0.008 (3)0.002 (3)
C220.041 (4)0.022 (3)0.050 (4)0.005 (3)0.013 (3)0.006 (3)
C230.020 (3)0.023 (3)0.032 (3)0.003 (2)0.002 (2)0.011 (2)
C240.023 (3)0.023 (3)0.023 (3)0.004 (2)0.003 (2)0.008 (2)
C250.011 (2)0.019 (2)0.022 (3)0.0007 (19)0.0032 (19)0.000 (2)
C260.011 (2)0.015 (2)0.026 (3)0.0004 (19)0.0008 (19)0.003 (2)
C270.015 (3)0.022 (3)0.024 (3)0.000 (2)0.002 (2)0.002 (2)
C280.021 (3)0.021 (3)0.027 (3)0.003 (2)0.002 (2)0.002 (2)
C290.019 (3)0.025 (3)0.034 (3)0.007 (2)0.002 (2)0.005 (2)
C300.016 (3)0.031 (3)0.028 (3)0.006 (2)0.001 (2)0.008 (2)
C310.016 (3)0.032 (3)0.020 (3)0.005 (2)0.002 (2)0.008 (2)
C320.016 (3)0.019 (2)0.023 (3)0.0026 (19)0.001 (2)0.002 (2)
Geometric parameters (Å, º) top
Ir1—C102.113 (5)C14—H14B0.990
Ir1—C22.123 (5)C15—C161.536 (8)
Ir1—C12.138 (6)C15—H15A0.990
Ir1—C92.139 (5)C15—H15B0.990
Ir1—Cl12.3980 (12)C16—H16A0.990
Ir1—Cl22.4188 (12)C16—H16B0.990
Ir1—Ir23.7254 (3)C17—C181.420 (8)
Ir2—C262.117 (5)C17—C241.499 (7)
Ir2—C182.117 (5)C17—H170.91 (7)
Ir2—C252.139 (5)C18—C191.512 (8)
Ir2—C172.153 (5)C18—H180.88 (7)
Ir2—Cl12.4036 (12)C19—C201.541 (8)
Ir2—Cl22.4203 (12)C19—H19A0.990
C1—C21.395 (8)C19—H19B0.990
C1—C81.512 (9)C20—C211.529 (9)
C1—H10.94 (2)C20—H20A0.990
C2—C31.512 (8)C20—H20B0.990
C2—H20.96 (2)C21—C221.531 (9)
C3—C41.530 (8)C21—H21A0.990
C3—H3A0.990C21—H21B0.990
C3—H3B0.990C22—C231.536 (9)
C4—C51.535 (8)C22—H22A0.990
C4—H4A0.990C22—H22B0.990
C4—H4B0.990C23—C241.545 (7)
C5—C61.511 (9)C23—H23A0.990
C5—H5A0.990C23—H23B0.990
C5—H5B0.990C24—H24A0.990
C6—C71.531 (10)C24—H24B0.990
C6—H6A0.990C25—C261.418 (8)
C6—H6B0.990C25—C321.515 (7)
C7—C81.541 (8)C25—H251.01 (6)
C7—H7A0.990C26—C271.499 (7)
C7—H7B0.990C26—H260.98 (6)
C8—H8A0.990C27—C281.546 (7)
C8—H8B0.990C27—H27A0.990
C9—C101.414 (8)C27—H27B0.990
C9—C161.506 (8)C28—C291.539 (8)
C9—H90.98 (7)C28—H28A0.990
C10—C111.516 (8)C28—H28B0.990
C10—H100.92 (7)C29—C301.533 (9)
C11—C121.557 (8)C29—H29A0.990
C11—H11A0.990C29—H29B0.990
C11—H11B0.990C30—C311.534 (8)
C12—C131.594 (11)C30—H30A0.990
C12—H12A0.990C30—H30B0.990
C12—H12B0.990C31—C321.527 (7)
C13—C141.449 (11)C31—H31A0.990
C13—H13A0.990C31—H31B0.990
C13—H13B0.990C32—H32A0.990
C14—C151.480 (12)C32—H32B0.990
C14—H14A0.990
C10—Ir1—C286.1 (2)C15—C14—H14A108.1
C10—Ir1—C198.0 (2)C13—C14—H14B108.1
C2—Ir1—C138.2 (2)C15—C14—H14B108.1
C10—Ir1—C938.9 (2)H14A—C14—H14B107.3
C2—Ir1—C998.5 (2)C14—C15—C16114.9 (6)
C1—Ir1—C985.4 (2)C14—C15—H15A108.5
C10—Ir1—Cl193.30 (16)C16—C15—H15A108.5
C2—Ir1—Cl1158.83 (16)C14—C15—H15B108.5
C1—Ir1—Cl1161.11 (17)C16—C15—H15B108.5
C9—Ir1—Cl194.08 (16)H15A—C15—H15B107.5
C10—Ir1—Cl2159.49 (17)C9—C16—C15111.8 (5)
C2—Ir1—Cl294.51 (15)C9—C16—H16A109.3
C1—Ir1—Cl295.00 (17)C15—C16—H16A109.3
C9—Ir1—Cl2159.14 (16)C9—C16—H16B109.3
Cl1—Ir1—Cl278.84 (4)C15—C16—H16B109.3
C26—Ir2—C1889.9 (2)H16A—C16—H16B107.9
C26—Ir2—C2538.9 (2)C18—C17—C24123.2 (5)
C18—Ir2—C2585.5 (2)C18—C17—Ir269.2 (3)
C26—Ir2—C1784.9 (2)C24—C17—Ir2119.2 (4)
C18—Ir2—C1738.8 (2)C18—C17—H17115 (4)
C25—Ir2—C17105.0 (2)C24—C17—H17115 (4)
C26—Ir2—Cl199.00 (14)Ir2—C17—H17104 (4)
C18—Ir2—Cl1158.57 (16)C17—C18—C19124.2 (5)
C25—Ir2—Cl189.26 (14)C17—C18—Ir271.9 (3)
C17—Ir2—Cl1160.74 (15)C19—C18—Ir2115.1 (4)
C26—Ir2—Cl2159.24 (15)C17—C18—H18118 (4)
C18—Ir2—Cl299.55 (15)C19—C18—H18113 (4)
C25—Ir2—Cl2159.37 (15)Ir2—C18—H18106 (4)
C17—Ir2—Cl290.91 (15)C18—C19—C20114.1 (5)
Cl1—Ir2—Cl278.70 (4)C18—C19—H19A108.7
Ir1—Cl1—Ir2101.77 (5)C20—C19—H19A108.7
Ir1—Cl2—Ir2100.69 (4)C18—C19—H19B108.7
C2—C1—C8124.3 (6)C20—C19—H19B108.7
C2—C1—Ir170.3 (3)H19A—C19—H19B107.6
C8—C1—Ir1117.4 (4)C21—C20—C19114.8 (5)
C2—C1—H1123 (4)C21—C20—H20A108.6
C8—C1—H1106 (4)C19—C20—H20A108.6
Ir1—C1—H1111 (4)C21—C20—H20B108.6
C1—C2—C3122.6 (5)C19—C20—H20B108.6
C1—C2—Ir171.5 (3)H20A—C20—H20B107.5
C3—C2—Ir1118.4 (4)C20—C21—C22116.0 (6)
C1—C2—H2116 (4)C20—C21—H21A108.3
C3—C2—H2111 (4)C22—C21—H21A108.3
Ir1—C2—H2111 (4)C20—C21—H21B108.3
C2—C3—C4110.5 (5)C22—C21—H21B108.3
C2—C3—H3A109.6H21A—C21—H21B107.4
C4—C3—H3A109.6C21—C22—C23116.9 (6)
C2—C3—H3B109.6C21—C22—H22A108.1
C4—C3—H3B109.6C23—C22—H22A108.1
H3A—C3—H3B108.1C21—C22—H22B108.1
C3—C4—C5115.7 (5)C23—C22—H22B108.1
C3—C4—H4A108.4H22A—C22—H22B107.3
C5—C4—H4A108.4C22—C23—C24115.5 (5)
C3—C4—H4B108.4C22—C23—H23A108.4
C5—C4—H4B108.4C24—C23—H23A108.4
H4A—C4—H4B107.4C22—C23—H23B108.4
C6—C5—C4115.6 (5)C24—C23—H23B108.4
C6—C5—H5A108.4H23A—C23—H23B107.5
C4—C5—H5A108.4C17—C24—C23108.7 (5)
C6—C5—H5B108.4C17—C24—H24A110.0
C4—C5—H5B108.4C23—C24—H24A110.0
H5A—C5—H5B107.4C17—C24—H24B110.0
C5—C6—C7116.8 (6)C23—C24—H24B110.0
C5—C6—H6A108.1H24A—C24—H24B108.3
C7—C6—H6A108.1C26—C25—C32122.2 (5)
C5—C6—H6B108.1C26—C25—Ir269.7 (3)
C7—C6—H6B108.1C32—C25—Ir2120.5 (4)
H6A—C6—H6B107.3C26—C25—H25116 (4)
C6—C7—C8115.7 (6)C32—C25—H25115 (4)
C6—C7—H7A108.3Ir2—C25—H25105 (3)
C8—C7—H7A108.3C25—C26—C27125.6 (5)
C6—C7—H7B108.3C25—C26—Ir271.4 (3)
C8—C7—H7B108.3C27—C26—Ir2115.1 (4)
H7A—C7—H7B107.4C25—C26—H26113 (4)
C1—C8—C7112.6 (6)C27—C26—H26116 (4)
C1—C8—H8A109.1Ir2—C26—H26106 (4)
C7—C8—H8A109.1C26—C27—C28114.7 (4)
C1—C8—H8B109.1C26—C27—H27A108.6
C7—C8—H8B109.1C28—C27—H27A108.6
H8A—C8—H8B107.8C26—C27—H27B108.6
C10—C9—C16124.5 (6)C28—C27—H27B108.6
C10—C9—Ir169.6 (3)H27A—C27—H27B107.6
C16—C9—Ir1117.5 (4)C29—C28—C27116.5 (5)
C10—C9—H9113 (4)C29—C28—H28A108.2
C16—C9—H9113 (4)C27—C28—H28A108.2
Ir1—C9—H9112 (4)C29—C28—H28B108.2
C9—C10—C11122.4 (5)C27—C28—H28B108.2
C9—C10—Ir171.6 (3)H28A—C28—H28B107.3
C11—C10—Ir1118.0 (4)C30—C29—C28115.7 (5)
C9—C10—H10113 (4)C30—C29—H29A108.4
C11—C10—H10114 (4)C28—C29—H29A108.4
Ir1—C10—H10111 (4)C30—C29—H29B108.4
C10—C11—C12111.0 (5)C28—C29—H29B108.4
C10—C11—H11A109.4H29A—C29—H29B107.4
C12—C11—H11A109.4C29—C30—C31115.5 (5)
C10—C11—H11B109.4C29—C30—H30A108.4
C12—C11—H11B109.4C31—C30—H30A108.4
H11A—C11—H11B108.0C29—C30—H30B108.4
C11—C12—C13114.9 (5)C31—C30—H30B108.4
C11—C12—H12A108.5H30A—C30—H30B107.5
C13—C12—H12A108.5C32—C31—C30115.5 (5)
C11—C12—H12B108.5C32—C31—H31A108.4
C13—C12—H12B108.5C30—C31—H31A108.4
H12A—C12—H12B107.5C32—C31—H31B108.4
C14—C13—C12116.7 (7)C30—C31—H31B108.4
C14—C13—H13A108.1H31A—C31—H31B107.5
C12—C13—H13A108.1C25—C32—C31109.3 (4)
C14—C13—H13B108.1C25—C32—H32A109.8
C12—C13—H13B108.1C31—C32—H32A109.8
H13A—C13—H13B107.3C25—C32—H32B109.8
C13—C14—C15116.9 (8)C31—C32—H32B109.8
C13—C14—H14A108.1H32A—C32—H32B108.3
C10—Ir1—Ir2—C264.6 (3)C1—Ir1—C9—C16132.1 (5)
C2—Ir1—Ir2—C26122.4 (3)Cl1—Ir1—C9—C1629.0 (5)
C1—Ir1—Ir2—C26174.4 (3)Cl2—Ir1—C9—C1640.1 (8)
C9—Ir1—Ir2—C2656.2 (3)Ir2—Ir1—C9—C1613.0 (6)
Cl1—Ir1—Ir2—C2630.4 (2)C16—C9—C10—C112.1 (8)
Cl2—Ir1—Ir2—C26150.3 (2)Ir1—C9—C10—C11112.0 (5)
C10—Ir1—Ir2—C18174.3 (3)C16—C9—C10—Ir1110.0 (5)
C2—Ir1—Ir2—C1858.6 (3)C2—Ir1—C10—C9108.8 (3)
C1—Ir1—Ir2—C186.7 (3)C1—Ir1—C10—C972.4 (4)
C9—Ir1—Ir2—C18122.8 (3)Cl1—Ir1—C10—C992.4 (3)
Cl1—Ir1—Ir2—C18148.6 (2)Cl2—Ir1—C10—C9158.9 (4)
Cl2—Ir1—Ir2—C1830.8 (2)Ir2—Ir1—C10—C9108.4 (3)
C10—Ir1—Ir2—C2546.3 (3)C2—Ir1—C10—C11133.6 (5)
C2—Ir1—Ir2—C25173.4 (3)C1—Ir1—C10—C11170.0 (5)
C1—Ir1—Ir2—C25134.7 (3)C9—Ir1—C10—C11117.6 (6)
C9—Ir1—Ir2—C255.2 (3)Cl1—Ir1—C10—C1125.2 (5)
Cl1—Ir1—Ir2—C2520.58 (19)Cl2—Ir1—C10—C1141.3 (8)
Cl2—Ir1—Ir2—C25158.75 (18)Ir2—Ir1—C10—C119.2 (6)
C10—Ir1—Ir2—C17133.3 (3)C9—C10—C11—C1286.9 (7)
C2—Ir1—Ir2—C176.2 (3)Ir1—C10—C11—C12172.0 (4)
C1—Ir1—Ir2—C1745.7 (3)C10—C11—C12—C1345.3 (8)
C9—Ir1—Ir2—C17175.2 (3)C11—C12—C13—C1459.2 (9)
Cl1—Ir1—Ir2—C17159.0 (2)C12—C13—C14—C15104.1 (9)
Cl2—Ir1—Ir2—C1721.6 (2)C13—C14—C15—C1672.8 (10)
C10—Ir1—Ir2—Cl125.7 (2)C10—C9—C16—C1586.5 (7)
C2—Ir1—Ir2—Cl1152.8 (2)Ir1—C9—C16—C15169.6 (5)
C1—Ir1—Ir2—Cl1155.3 (2)C14—C15—C16—C977.0 (9)
C9—Ir1—Ir2—Cl125.8 (2)C26—Ir2—C17—C1896.2 (3)
Cl2—Ir1—Ir2—Cl1179.32 (8)C25—Ir2—C17—C1862.5 (3)
C10—Ir1—Ir2—Cl2154.9 (2)Cl1—Ir2—C17—C18160.9 (4)
C2—Ir1—Ir2—Cl227.9 (2)Cl2—Ir2—C17—C18104.2 (3)
C1—Ir1—Ir2—Cl224.0 (2)Ir1—Ir2—C17—C18117.8 (3)
C9—Ir1—Ir2—Cl2153.5 (2)C26—Ir2—C17—C24146.5 (5)
Cl1—Ir1—Ir2—Cl2179.32 (8)C18—Ir2—C17—C24117.3 (6)
C10—Ir1—Cl1—Ir2160.45 (17)C25—Ir2—C17—C24179.9 (4)
C2—Ir1—Cl1—Ir272.9 (4)Cl1—Ir2—C17—C2443.6 (7)
C1—Ir1—Cl1—Ir272.8 (5)Cl2—Ir2—C17—C2413.2 (4)
C9—Ir1—Cl1—Ir2160.62 (17)Ir1—Ir2—C17—C240.5 (5)
Cl2—Ir1—Cl1—Ir20.44 (5)C24—C17—C18—C193.6 (8)
C26—Ir2—Cl1—Ir1158.60 (15)Ir2—C17—C18—C19108.5 (5)
C18—Ir2—Cl1—Ir187.8 (4)C24—C17—C18—Ir2112.0 (5)
C25—Ir2—Cl1—Ir1163.58 (15)C26—Ir2—C18—C1782.0 (3)
C17—Ir2—Cl1—Ir158.1 (5)C25—Ir2—C18—C17120.7 (3)
Cl2—Ir2—Cl1—Ir10.44 (5)Cl1—Ir2—C18—C17162.8 (3)
C10—Ir1—Cl2—Ir268.5 (4)Cl2—Ir2—C18—C1779.4 (3)
C2—Ir1—Cl2—Ir2159.26 (16)Ir1—Ir2—C18—C1798.8 (3)
C1—Ir1—Cl2—Ir2162.39 (17)C26—Ir2—C18—C19158.0 (4)
C9—Ir1—Cl2—Ir272.1 (5)C25—Ir2—C18—C19119.3 (4)
Cl1—Ir1—Cl2—Ir20.44 (5)C17—Ir2—C18—C19120.0 (5)
C26—Ir2—Cl2—Ir185.2 (4)Cl1—Ir2—C18—C1942.8 (7)
C18—Ir2—Cl2—Ir1158.71 (16)Cl2—Ir2—C18—C1940.6 (4)
C25—Ir2—Cl2—Ir155.8 (4)Ir1—Ir2—C18—C1921.3 (5)
C17—Ir2—Cl2—Ir1163.23 (15)C17—C18—C19—C2083.5 (7)
Cl1—Ir2—Cl2—Ir10.43 (5)Ir2—C18—C19—C20168.0 (4)
C10—Ir1—C1—C273.1 (4)C18—C19—C20—C2173.4 (7)
C9—Ir1—C1—C2110.0 (4)C19—C20—C21—C2272.6 (8)
Cl1—Ir1—C1—C2160.8 (4)C20—C21—C22—C23103.7 (7)
Cl2—Ir1—C1—C290.9 (3)C21—C22—C23—C2450.8 (8)
Ir2—Ir1—C1—C2106.1 (3)C18—C17—C24—C2390.5 (6)
C10—Ir1—C1—C8167.7 (5)Ir2—C17—C24—C23173.7 (4)
C2—Ir1—C1—C8119.2 (6)C22—C23—C24—C1754.3 (7)
C9—Ir1—C1—C8130.8 (5)C18—Ir2—C25—C2695.4 (3)
Cl1—Ir1—C1—C841.6 (8)C17—Ir2—C25—C2661.5 (3)
Cl2—Ir1—C1—C828.3 (5)Cl1—Ir2—C25—C26105.4 (3)
Ir2—Ir1—C1—C813.1 (6)Cl2—Ir2—C25—C26159.2 (3)
C8—C1—C2—C32.1 (9)Ir1—Ir2—C25—C26118.2 (3)
Ir1—C1—C2—C3112.4 (5)C26—Ir2—C25—C32116.2 (5)
C8—C1—C2—Ir1110.3 (6)C18—Ir2—C25—C32148.3 (4)
C10—Ir1—C2—C1108.2 (4)C17—Ir2—C25—C32177.7 (4)
C9—Ir1—C2—C171.3 (4)Cl1—Ir2—C25—C3210.9 (4)
Cl1—Ir1—C2—C1162.9 (3)Cl2—Ir2—C25—C3243.0 (7)
Cl2—Ir1—C2—C192.4 (3)Ir1—Ir2—C25—C321.9 (5)
Ir2—Ir1—C2—C1109.8 (3)C32—C25—C26—C275.9 (8)
C10—Ir1—C2—C3134.1 (5)Ir2—C25—C26—C27108.0 (5)
C1—Ir1—C2—C3117.7 (6)C32—C25—C26—Ir2114.0 (5)
C9—Ir1—C2—C3171.0 (4)C18—Ir2—C26—C2583.0 (3)
Cl1—Ir1—C2—C345.1 (7)C17—Ir2—C26—C25121.5 (3)
Cl2—Ir1—C2—C325.4 (4)Cl1—Ir2—C26—C2577.5 (3)
Ir2—Ir1—C2—C37.9 (5)Cl2—Ir2—C26—C25159.3 (3)
C1—C2—C3—C490.9 (7)Ir1—Ir2—C26—C2596.3 (3)
Ir1—C2—C3—C4176.1 (4)C18—Ir2—C26—C27155.7 (4)
C2—C3—C4—C549.5 (7)C25—Ir2—C26—C27121.3 (5)
C3—C4—C5—C655.4 (8)C17—Ir2—C26—C27117.1 (4)
C4—C5—C6—C7102.3 (7)Cl1—Ir2—C26—C2743.9 (4)
C5—C6—C7—C871.4 (9)Cl2—Ir2—C26—C2738.0 (7)
C2—C1—C8—C783.8 (8)Ir1—Ir2—C26—C2725.1 (5)
Ir1—C1—C8—C7167.7 (5)C25—C26—C27—C2882.6 (7)
C6—C7—C8—C174.2 (9)Ir2—C26—C27—C28166.9 (4)
C2—Ir1—C9—C1072.7 (3)C26—C27—C28—C2969.1 (7)
C1—Ir1—C9—C10108.7 (4)C27—C28—C29—C3069.2 (7)
Cl1—Ir1—C9—C1090.2 (3)C28—C29—C30—C31104.2 (6)
Cl2—Ir1—C9—C10159.2 (4)C29—C30—C31—C3253.8 (7)
Ir2—Ir1—C9—C10106.2 (3)C26—C25—C32—C3189.4 (6)
C10—Ir1—C9—C16119.2 (6)Ir2—C25—C32—C31173.4 (4)
C2—Ir1—C9—C16168.1 (5)C30—C31—C32—C2553.2 (6)

Experimental details

Crystal data
Chemical formula[Ir2Cl2(C8H14)4]
Mr896.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.3410 (5), 10.7713 (3), 23.6450 (6)
β (°) 91.7873 (13)
V3)3141.57 (16)
Z4
Radiation typeMo Kα
µ (mm1)8.65
Crystal size (mm)0.19 × 0.09 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID Imaging Plate
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.585, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
39295, 7172, 6321
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.068, 1.08
No. of reflections7172
No. of parameters349
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0182P)2 + 25.7043P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.46, 1.67

Computer programs: RAPID-AUTO (Rigaku, 1998), TEXSAN (Rigaku/MSC, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Ir1—C102.113 (5)Ir2—C262.117 (5)
Ir1—C22.123 (5)Ir2—C182.117 (5)
Ir1—C12.138 (6)Ir2—C252.139 (5)
Ir1—C92.139 (5)Ir2—C172.153 (5)
Ir1—Cl12.3980 (12)Ir2—Cl12.4036 (12)
Ir1—Cl22.4188 (12)Ir2—Cl22.4203 (12)
Ir1—Ir23.7254 (3)
Cl1—Ir1—Cl278.84 (4)Ir1—Cl1—Ir2101.77 (5)
Cl1—Ir2—Cl278.70 (4)Ir1—Cl2—Ir2100.69 (4)
 

Acknowledgements

This research was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals
First citationCotton, F. A., Lahuerta, P., Sanau, M. & Schwotzer, W. (1986). Inorg. Chim. Acta, 120, 153–157.  CSD CrossRef CAS Web of Science
First citationDe Ridder, D. J. A. & Imhoff, P. (1994). Acta Cryst. C50, 1569–1572.  CSD CrossRef CAS Web of Science IUCr Journals
First citationDorta, R., Egli, P., Zücher, E. & Togni, A. (1997). J. Am. Chem. Soc. 119, 10857–10858.  CSD CrossRef CAS Web of Science
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationHerde, J. L., Lambert, J. C. & Senoff, C. V. (1974). Inorg. Synth. 15, 18–20.  CrossRef CAS
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
First citationPettinari, C., Marchetti, F., Cingolani, A., Bianchini, G., Drozdov, A., Vertlib, V. & Troyanov, S. (2002). J. Organomet. Chem. 651, 5–14.  Web of Science CSD CrossRef CAS
First citationRigaku, (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
First citationRigaku/MSC, (2004). TEXSAN. Rigaku/MSC, The Woodlands, Teaxs, USA.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationTani, K., Onouchi, J., Yamagata, T. & Kataoka, Y. (1995). Chem. Lett. pp. 955–956.  CrossRef Web of Science
First citationTani, K., Yamagata, T., Tatsuno, Y., Yamagata, Y., Tomita, K., Akutagawa, S., Kumobayashi, H. & Otsuka, S. (1985). Angew. Chem. Int. Ed. Engl. 24, 217–219.  CSD CrossRef Web of Science
First citationYamagata, T., Iseki, A. & Tani, K. (1997). Chem. Lett. pp. 1255–1256.
First citationYamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007a). Acta Cryst. E63, m1498.  Web of Science CSD CrossRef IUCr Journals
First citationYamagata, T., Nagata, M., Mashima, K. & Tani, K. (2007b). Acta Cryst. E63, m2402.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m579-m580
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds