organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydr­­oxy-2,2,6,6-tetra­methyl­piperidinium perchlorate

aSchool of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: flyingyting@yahoo.com.cn

(Received 15 January 2008; accepted 28 January 2008; online 5 March 2008)

In the title salt, C9H20NO+·ClO4, inter­molecular hydrogen bonds are observed, which determine the crystal packing.

Related literature

For general background, see Borzatta & Carrozza (1991[Borzatta, V. & Carrozza, P. (1991). Eur. Patent No. EP 0 462 069.]).

[Scheme 1]

Experimental

Crystal data
  • C9H20NO+·ClO4

  • Mr = 257.71

  • Monoclinic, P 21 /n

  • a = 7.5712 (15) Å

  • b = 13.927 (3) Å

  • c = 12.007 (2) Å

  • β = 100.71 (3)°

  • V = 1244.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 113 (2) K

  • 0.12 × 0.04 × 0.04 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.963, Tmax = 0.988

  • 7480 measured reflections

  • 2183 independent reflections

  • 1797 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.127

  • S = 1.10

  • 2183 reflections

  • 157 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.92 (3) 2.05 (3) 2.914 (3) 157 (2)
N1—H1B⋯O1ii 0.88 (3) 1.97 (3) 2.847 (3) 173 (2)
O1—H1⋯O2iii 0.82 2.09 2.896 (2) 167
O1—H1⋯Cl1iii 0.82 2.93 3.6985 (16) 158
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2,2,6,6-Tetramethyl-4-hydroxy-piperidin-4-ol is a very important intermediate in the synthesis of hindered light stabilizers (Borzatta & Carrozza, 1991). We report here the crystal structure (2,2,6,6-tetramethyl-4-hydroxypiperidinium perchlorate) (Fig. 1).

Intermolecular N—H···O, O—H···O, O—H···Cl hydrogen bonds are observed which help to establish the crystal packing. The piperidine ring adopts chair conformation.

Related literature top

For general background, see Borzatta & Carrozza (1991).

Experimental top

2,2,6,6-tetramethylpiperidin-4-ol (3.2 mmol,0.5 g) was dissolved in perchloric acid solution(2.5 mol/l, 3 ml). Block shaped colorless crystals grew with slow evaporation of solvent.

Refinement top

All H atoms were constrained; positioned geometrically (C—H = 0.99–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5eq(methyl groups).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
4-Hydroxy-2,2,6,6-tetramethylpiperidinium perchlorate top
Crystal data top
C9H20NO+·ClO4F(000) = 552
Mr = 257.71Dx = 1.376 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2824 reflections
a = 7.5712 (15) Åθ = 2.3–28.1°
b = 13.927 (3) ŵ = 0.31 mm1
c = 12.007 (2) ÅT = 113 K
β = 100.71 (3)°Block, colorless
V = 1244.0 (4) Å30.12 × 0.04 × 0.04 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
2183 independent reflections
Radiation source: rotating anode1797 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.046
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.3°
ω and ϕ scansh = 97
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1116
Tmin = 0.963, Tmax = 0.988l = 1314
7480 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0763P)2 + 0.0376P]
where P = (Fo2 + 2Fc2)/3
2183 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C9H20NO+·ClO4V = 1244.0 (4) Å3
Mr = 257.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5712 (15) ŵ = 0.31 mm1
b = 13.927 (3) ÅT = 113 K
c = 12.007 (2) Å0.12 × 0.04 × 0.04 mm
β = 100.71 (3)°
Data collection top
Rigaku Saturn
diffractometer
2183 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1797 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.988Rint = 0.046
7480 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.60 e Å3
2183 reflectionsΔρmin = 0.48 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8859 (2)0.66280 (10)0.28774 (12)0.0224 (4)
H10.91650.61180.26310.034*
N10.6419 (2)0.74364 (13)0.04347 (15)0.0172 (4)
H1A0.694 (4)0.6951 (17)0.078 (2)0.027 (6)*
H1B0.570 (4)0.7733 (17)0.099 (2)0.029 (7)*
C10.7957 (3)0.80834 (14)0.01410 (18)0.0200 (5)
C20.8982 (3)0.75325 (14)0.11605 (18)0.0216 (5)
H2A0.96520.70010.08820.026*
H2B0.98740.79690.16090.026*
C30.7796 (3)0.71199 (14)0.19322 (16)0.0184 (5)
H30.71500.76610.22300.022*
C40.6403 (3)0.64456 (14)0.12660 (17)0.0187 (5)
H4A0.56460.61810.17820.022*
H4B0.70300.59020.09770.022*
C50.5198 (3)0.69386 (14)0.02718 (17)0.0188 (5)
C60.3909 (3)0.76627 (15)0.06528 (19)0.0240 (5)
H6A0.33640.80600.00060.036*
H6B0.45740.80730.12500.036*
H6C0.29630.73180.09460.036*
C70.4117 (3)0.62072 (15)0.05253 (19)0.0248 (5)
H7A0.49400.57590.07970.037*
H7B0.33970.65420.11720.037*
H7C0.33190.58510.01180.037*
C80.9141 (3)0.82429 (17)0.0744 (2)0.0292 (6)
H8A1.01640.86510.04220.044*
H8B0.84370.85570.14120.044*
H8C0.95820.76230.09650.044*
C90.7249 (3)0.90544 (15)0.0458 (2)0.0277 (5)
H9A0.66070.89700.10880.042*
H9B0.64270.93200.01970.042*
H9C0.82590.94960.06850.042*
Cl10.15810 (8)0.46849 (3)0.19458 (5)0.0256 (2)
O20.0091 (3)0.47048 (12)0.23547 (17)0.0431 (5)
O30.2067 (3)0.56462 (12)0.17449 (16)0.0423 (5)
O40.1359 (3)0.41692 (15)0.08989 (19)0.0627 (7)
O50.2955 (3)0.42562 (16)0.2770 (2)0.0603 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0226 (9)0.0236 (8)0.0180 (7)0.0044 (6)0.0039 (7)0.0023 (6)
N10.0133 (10)0.0196 (9)0.0184 (9)0.0023 (7)0.0026 (8)0.0006 (7)
C10.0124 (11)0.0205 (11)0.0266 (12)0.0036 (8)0.0023 (10)0.0006 (8)
C20.0135 (11)0.0233 (11)0.0262 (11)0.0014 (8)0.0012 (10)0.0017 (8)
C30.0153 (12)0.0205 (10)0.0173 (10)0.0024 (8)0.0021 (9)0.0012 (8)
C40.0159 (11)0.0203 (10)0.0191 (11)0.0012 (8)0.0009 (9)0.0001 (8)
C50.0146 (12)0.0202 (10)0.0218 (11)0.0040 (8)0.0040 (10)0.0013 (8)
C60.0141 (12)0.0292 (12)0.0300 (12)0.0026 (9)0.0075 (10)0.0034 (9)
C70.0222 (13)0.0248 (11)0.0240 (12)0.0065 (9)0.0043 (10)0.0025 (9)
C80.0194 (13)0.0350 (13)0.0344 (13)0.0002 (10)0.0081 (11)0.0099 (10)
C90.0241 (13)0.0215 (12)0.0365 (13)0.0024 (9)0.0030 (11)0.0001 (9)
Cl10.0215 (4)0.0218 (3)0.0361 (4)0.0047 (2)0.0119 (3)0.0035 (2)
O20.0254 (11)0.0522 (12)0.0575 (13)0.0051 (8)0.0223 (10)0.0141 (8)
O30.0465 (13)0.0299 (10)0.0501 (11)0.0063 (8)0.0079 (10)0.0074 (8)
O40.0644 (16)0.0566 (13)0.0694 (15)0.0081 (11)0.0189 (13)0.0359 (11)
O50.0340 (12)0.0705 (15)0.0760 (15)0.0229 (10)0.0091 (12)0.0437 (12)
Geometric parameters (Å, º) top
O1—C31.437 (2)C5—C61.532 (3)
O1—H10.8199C6—H6A0.9800
N1—C11.532 (3)C6—H6B0.9800
N1—C51.532 (3)C6—H6C0.9800
N1—H1A0.92 (3)C7—H7A0.9800
N1—H1B0.88 (3)C7—H7B0.9800
C1—C91.528 (3)C7—H7C0.9800
C1—C21.529 (3)C8—H8A0.9800
C1—C81.529 (3)C8—H8B0.9800
C2—C31.518 (3)C8—H8C0.9800
C2—H2A0.9900C9—H9A0.9800
C2—H2B0.9900C9—H9B0.9800
C3—C41.523 (3)C9—H9C0.9800
C3—H31.0000Cl1—O31.4210 (18)
C4—C51.524 (3)Cl1—O51.427 (2)
C4—H4A0.9900Cl1—O41.430 (2)
C4—H4B0.9900Cl1—O21.4408 (18)
C5—C71.527 (3)
C3—O1—H1106.4C4—C5—N1107.61 (17)
C1—N1—C5120.17 (16)C7—C5—N1105.26 (16)
C1—N1—H1A106.5 (16)C6—C5—N1110.57 (16)
C5—N1—H1A105.7 (15)C5—C6—H6A109.5
C1—N1—H1B112.1 (16)C5—C6—H6B109.5
C5—N1—H1B106.2 (16)H6A—C6—H6B109.5
H1A—N1—H1B105 (2)C5—C6—H6C109.5
C9—C1—C2113.22 (18)H6A—C6—H6C109.5
C9—C1—C8108.82 (17)H6B—C6—H6C109.5
C2—C1—C8110.68 (18)C5—C7—H7A109.5
C9—C1—N1111.14 (18)C5—C7—H7B109.5
C2—C1—N1107.24 (16)H7A—C7—H7B109.5
C8—C1—N1105.46 (17)C5—C7—H7C109.5
C3—C2—C1114.12 (18)H7A—C7—H7C109.5
C3—C2—H2A108.7H7B—C7—H7C109.5
C1—C2—H2A108.7C1—C8—H8A109.5
C3—C2—H2B108.7C1—C8—H8B109.5
C1—C2—H2B108.7H8A—C8—H8B109.5
H2A—C2—H2B107.6C1—C8—H8C109.5
O1—C3—C2110.75 (17)H8A—C8—H8C109.5
O1—C3—C4110.62 (16)H8B—C8—H8C109.5
C2—C3—C4110.06 (16)C1—C9—H9A109.5
O1—C3—H3108.4C1—C9—H9B109.5
C2—C3—H3108.4H9A—C9—H9B109.5
C4—C3—H3108.4C1—C9—H9C109.5
C3—C4—C5112.87 (16)H9A—C9—H9C109.5
C3—C4—H4A109.0H9B—C9—H9C109.5
C5—C4—H4A109.0O3—Cl1—O5109.47 (13)
C3—C4—H4B109.0O3—Cl1—O4108.40 (13)
C5—C4—H4B109.0O5—Cl1—O4110.53 (14)
H4A—C4—H4B107.8O3—Cl1—O2108.16 (11)
C4—C5—C7111.31 (16)O5—Cl1—O2110.23 (11)
C4—C5—C6112.63 (16)O4—Cl1—O2110.00 (13)
C7—C5—C6109.21 (18)
C5—N1—C1—C976.1 (2)O1—C3—C4—C5178.28 (15)
C5—N1—C1—C248.2 (2)C2—C3—C4—C559.0 (2)
C5—N1—C1—C8166.19 (18)C3—C4—C5—C7167.26 (17)
C9—C1—C2—C372.5 (2)C3—C4—C5—C669.7 (2)
C8—C1—C2—C3165.05 (17)C3—C4—C5—N152.4 (2)
N1—C1—C2—C350.5 (2)C1—N1—C5—C449.6 (2)
C1—C2—C3—O1179.04 (15)C1—N1—C5—C7168.37 (17)
C1—C2—C3—C458.3 (2)C1—N1—C5—C673.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.92 (3)2.05 (3)2.914 (3)157 (2)
N1—H1B···O1ii0.88 (3)1.97 (3)2.847 (3)173 (2)
O1—H1···O2iii0.822.092.896 (2)167
O1—H1···Cl1iii0.822.933.6985 (16)158
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H20NO+·ClO4
Mr257.71
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)7.5712 (15), 13.927 (3), 12.007 (2)
β (°) 100.71 (3)
V3)1244.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.12 × 0.04 × 0.04
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.963, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
7480, 2183, 1797
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.127, 1.10
No. of reflections2183
No. of parameters157
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.48

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.92 (3)2.05 (3)2.914 (3)157 (2)
N1—H1B···O1ii0.88 (3)1.97 (3)2.847 (3)173 (2)
O1—H1···O2iii0.822.092.896 (2)167.4
O1—H1···Cl1iii0.822.933.6985 (16)157.9
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+1, y, z.
 

References

First citationBorzatta, V. & Carrozza, P. (1991). Eur. Patent No. EP 0 462 069.
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds