organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-Di­benzoyl-1,1′-(butane-1,4-diyl)­di­thio­urea

aDepartment of Biochemical Engineering, Anhui University of Technology and Science, Wuhu 241000, People's Republic of China, bQinghai Saltlake Industry Group Limited Company, Technological Center of Chemical Engineering, Geermu 81600, People's Republic of China, and cSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 1 February 2008; accepted 13 February 2008; online 5 March 2008)

In the centrosymmetric title compound, C20H22N4O2S2, the carbonyl group forms an intra­molecular hydrogen bond with the NH group attached to the butanediyl linker, resulting in a six-membered ring. There are also inter­molecular C—H⋯S inter­actions in the crystal structure, and ππ inter­actions between phenyl groups [2.425 (3) Å].

Related literature

For related literature, see: Breuzard et al. (2000[Breuzard, J. A. J., Tommasino, M. L. & Toucard, F. (2000). J. Mol. Catal. A Chem. 156, 223-232.]); Burrows et al. (1997[Burrows, A. D., Menzer, S. & Michael, D. (1997). J. Chem. Soc. Dalton Trans. pp. 4237-4240.]); Dong et al. (2006[Dong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459-o3460.]); Foss et al. (2004[Foss, O., Husebye, S. & Törnroos, K. (2004). Polyhedron, 23, 3021-3032.]); Huang et al., 2006[Huang, J., Song, J.-R. & Ren, Y.-H. (2006). Chin. J. Struct. Chem. 25, 168-172.]; Nan et al. (2000[Nan, Y., Miao, H. & Yang, Z. (2000). Org. Lett. 2, 297-299.]); Teoh et al. (1999[Teoh, S.-G., Ang, S.-H. & Fun, H.-K. (1999). J. Organomet. Chem. 580, 17-21.]); Valdés-Martínez et al. (2004[Valdés-Martínez, J., Hernández-Ortega, S., Rubio, M., Li, D. T., Swearingen, J. K., Kaminsky, W., Kelman, D. R. & West, D. X. (2004). J. Chem. Crystallogr. 34, 533-540.]); Zhang et al. (2006[Zhang, Y.-M., Xu, W.-X. & Zhou, Y.-Q. (2006). Acta Chim. Sin. 64, 79-84.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N4O2S2

  • Mr = 414.54

  • Monoclinic, P 21 /c

  • a = 6.0405 (11) Å

  • b = 23.358 (2) Å

  • c = 7.2877 (13) Å

  • β = 104.018 (2)°

  • V = 997.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 (2) K

  • 0.22 × 0.16 × 0.07 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.939, Tmax = 0.980

  • 4845 measured reflections

  • 1735 independent reflections

  • 1044 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.106

  • S = 1.02

  • 1735 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.06 2.717 (3) 133
C2—H2A⋯S1 0.97 2.68 3.060 (3) 103
C2—H2B⋯S1i 0.97 2.72 3.468 (3) 134
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Version 5.1; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Acylthioureas have been the subject of extensive investigation because of their biological activity and their ability to coordinate strongly with metal ions (Teoh et al., 1999; Huang et al., 2006; Foss et al., 2004). Some thioureas are organic catalysts in the metal-catalyzed asymmetric reduction of carbonyl compounds and carbonylative cyclization of o-hydroxyarylacetylenes (Nan et al., 2000; Breuzard et al., 2000). In recent years, thiourea derivatives have been studied because they are excellent H bonding donors and acceptors (Zhang et al., 2006; Valdés-Martínez et al., 2004), and readily form an intramolecular hydrogen bonding between the benzoyl (CO) and the N—H group (Dong et al., 2006). They also easily form intermolecular hydrogen bonds, which can be applied in the design and synthesis of three-dimension supramolecular structure (Burrows et al., 1997). Here we report synthesis and crystal structure of N, N'-(1, 4-tetramethylene)bisbenzoylthiourea (I), C20H22N4O2S2.

The crystal structure of (I) consists of discrete molecules. The carbonyl group forms an intramolecular hydrogen bond with the N2—H2 group, which forms a six-membered ring (C4/N1/C1/N2/H2/O1) structure, the H2···O1 bond length is 2.055 (3) Å. This is similar to the situation found in the structure of N-benzoyl-N'-(3-pyridyl)thiourea (Dong et al., 2006). There is intermolecular hydrogen bonding between N2—H2 and the C?S group of another molecule, the H2···S1(x + 1, y, z) bond length is 2.906 (3) Å. The C?O bond length of 1.223 (3) Å is longer than the average C?O bond length (1.200 Å), which is due to intramolecular hydrogen bonding. The torsion angles of C2—N2—C1—N1 and C2—N2—C1—S1 are 178.3 (2) and -0.9 (4)°. There are ππ interactions between phenyl groups in the crystal lattice.

Related literature top

For related literature, see: Breuzard et al. (2000); Burrows et al. (1997); Dong et al. (2006); Foss et al. (2004); Huang et al., 2006; Nan et al. (2000); Teoh et al. (1999); Valdés-Martínez et al. (2004); Zhang et al. (2006).

Experimental top

Benzoyl chloride (1.41 g, 10 mmol) was reacted with ammonium thiocyanate (1.14 g, 15 mmol) in CH2Cl2 (25 ml) solution under solid–liquid phase transfer catalysis, using polyethylene glycol-400 (0.18 g) as the catalyst, to give the corresponding benzoyl isothiocyanate. Then a solution of 1,4-butylenediamine (0.40 g, 4.5 mmol) in CH2Cl2 (15 ml) was added dropwise to benzoyl isothiocyanate, to give the title compound. Yield, 81.8%. m.p. 196–198 °C. Anal. Calc. for C20H22N4O2S2 (%): C, 57.97; H, 5.31; N, 13.53. Found: C, 57.90; H, 5.45; N, 13.35. Selected IR data (cm-1, KBr pellet): 3416, 3222 (ν NH), 1672 (ν C?O), 1146 (ν C?S). 1H NMR (200 MHz, DMSO-d6, δ, p.p.m.): 1.71 (t, 4H, CH2); 3.69 (t, 4H, CH2); 7.48–7.93 (m, 10H, C6H5); 10.95 (s, 1H, NH); 11.06 (s, 1H, NH). A DMF solution of the title compound was placed in a diethyl ether atmosphere, after several days, along with diffusion of diethyl ether into the DMF solution of the title compound, colorless block-shaped single crystals suitable for X-ray crystallographic analysis were obtained.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), or 0.93 Å (CH), N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(N).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Version 5.1; Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Version 5.1; Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I)
3,3'-Dibenzoyl-1,1'-(butane-1,4-diyl)dithiourea top
Crystal data top
C20H22N4O2S2F(000) = 436
Mr = 414.54Dx = 1.380 Mg m3
Monoclinic, P21/cMelting point = 469–471 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 6.0405 (11) ÅCell parameters from 1545 reflections
b = 23.358 (2) Åθ = 2.9–27.5°
c = 7.2877 (13) ŵ = 0.29 mm1
β = 104.018 (2)°T = 298 K
V = 997.6 (3) Å3Block, colourless
Z = 20.22 × 0.16 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1735 independent reflections
Radiation source: fine-focus sealed tube1044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.939, Tmax = 0.980k = 2721
4845 measured reflectionsl = 87
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.093P]
where P = (Fo2 + 2Fc2)/3
1735 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H22N4O2S2V = 997.6 (3) Å3
Mr = 414.54Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.0405 (11) ŵ = 0.29 mm1
b = 23.358 (2) ÅT = 298 K
c = 7.2877 (13) Å0.22 × 0.16 × 0.07 mm
β = 104.018 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1735 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1044 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.980Rint = 0.058
4845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
1735 reflectionsΔρmin = 0.21 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6333 (4)0.33193 (10)0.2464 (3)0.0436 (7)
H10.49960.31740.23420.052*
N20.8393 (4)0.41571 (9)0.2530 (3)0.0378 (6)
H20.95880.39440.27470.045*
O11.0080 (4)0.30751 (8)0.3060 (3)0.0556 (7)
S10.39076 (13)0.42652 (4)0.19513 (14)0.0579 (3)
C10.6387 (5)0.39150 (12)0.2345 (4)0.0367 (7)
C20.8669 (5)0.47772 (12)0.2383 (4)0.0403 (8)
H2A0.73510.49310.14820.048*
H2B1.00040.48530.19020.048*
C30.8930 (4)0.50817 (12)0.4263 (4)0.0415 (8)
H3A0.89460.54910.40510.050*
H3B0.76120.49960.47550.050*
C40.8082 (5)0.29268 (13)0.2746 (4)0.0395 (8)
C50.7380 (5)0.23119 (12)0.2626 (4)0.0383 (8)
C60.5157 (6)0.21226 (13)0.1896 (5)0.0530 (9)
H60.39970.23870.14620.064*
C70.4663 (6)0.15458 (15)0.1811 (5)0.0617 (10)
H70.31710.14250.13160.074*
C80.6341 (6)0.11496 (14)0.2445 (5)0.0557 (10)
H80.59930.07610.23940.067*
C90.8531 (6)0.13299 (14)0.3154 (5)0.0555 (9)
H90.96810.10620.35810.067*
C100.9057 (5)0.19086 (13)0.3241 (4)0.0462 (9)
H101.05580.20260.37200.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0352 (14)0.0346 (15)0.060 (2)0.0048 (12)0.0101 (13)0.0022 (13)
N20.0309 (14)0.0340 (14)0.0476 (17)0.0051 (11)0.0077 (12)0.0024 (12)
O10.0374 (13)0.0408 (13)0.0810 (18)0.0008 (10)0.0005 (12)0.0001 (12)
S10.0363 (5)0.0507 (5)0.0883 (8)0.0062 (4)0.0181 (5)0.0070 (5)
C10.0325 (17)0.0413 (18)0.036 (2)0.0030 (14)0.0078 (14)0.0004 (15)
C20.0375 (17)0.0373 (18)0.047 (2)0.0039 (14)0.0125 (15)0.0036 (16)
C30.0386 (17)0.0299 (17)0.055 (2)0.0042 (13)0.0102 (16)0.0017 (16)
C40.043 (2)0.0399 (19)0.033 (2)0.0048 (15)0.0035 (16)0.0001 (15)
C50.0455 (19)0.0358 (18)0.034 (2)0.0012 (15)0.0108 (16)0.0009 (15)
C60.047 (2)0.042 (2)0.065 (3)0.0019 (16)0.0047 (18)0.0009 (19)
C70.056 (2)0.049 (2)0.075 (3)0.0142 (18)0.007 (2)0.005 (2)
C80.074 (3)0.039 (2)0.057 (3)0.0035 (19)0.021 (2)0.0001 (18)
C90.071 (3)0.043 (2)0.054 (3)0.0150 (19)0.018 (2)0.0049 (18)
C100.044 (2)0.044 (2)0.048 (2)0.0045 (16)0.0070 (17)0.0015 (17)
Geometric parameters (Å, º) top
N1—C41.376 (3)C3—H3B0.9700
N1—C11.395 (3)C4—C51.494 (4)
N1—H10.8600C5—C101.376 (4)
N2—C11.314 (3)C5—C61.391 (4)
N2—C21.465 (3)C6—C71.378 (4)
N2—H20.8600C6—H60.9300
O1—C41.223 (3)C7—C81.368 (4)
S1—C11.669 (3)C7—H70.9300
C2—C31.518 (4)C8—C91.365 (4)
C2—H2A0.9700C8—H80.9300
C2—H2B0.9700C9—C101.387 (4)
C3—C3i1.516 (5)C9—H90.9300
C3—H3A0.9700C10—H100.9300
C4—N1—C1130.2 (2)O1—C4—N1121.8 (3)
C4—N1—H1114.9O1—C4—C5122.4 (3)
C1—N1—H1114.9N1—C4—C5115.8 (3)
C1—N2—C2122.4 (2)C10—C5—C6118.2 (3)
C1—N2—H2118.8C10—C5—C4117.6 (3)
C2—N2—H2118.8C6—C5—C4124.2 (3)
N2—C1—N1117.2 (2)C7—C6—C5120.4 (3)
N2—C1—S1125.0 (2)C7—C6—H6119.8
N1—C1—S1117.8 (2)C5—C6—H6119.8
N2—C2—C3112.7 (2)C8—C7—C6120.8 (3)
N2—C2—H2A109.1C8—C7—H7119.6
C3—C2—H2A109.1C6—C7—H7119.6
N2—C2—H2B109.1C9—C8—C7119.3 (3)
C3—C2—H2B109.1C9—C8—H8120.3
H2A—C2—H2B107.8C7—C8—H8120.3
C3i—C3—C2114.0 (3)C8—C9—C10120.6 (3)
C3i—C3—H3A108.8C8—C9—H9119.7
C2—C3—H3A108.8C10—C9—H9119.7
C3i—C3—H3B108.8C5—C10—C9120.7 (3)
C2—C3—H3B108.8C5—C10—H10119.7
H3A—C3—H3B107.7C9—C10—H10119.7
C2—N2—C1—N1178.3 (2)O1—C4—C5—C6166.1 (3)
C2—N2—C1—S10.9 (4)N1—C4—C5—C613.4 (4)
C4—N1—C1—N20.3 (4)C10—C5—C6—C70.5 (5)
C4—N1—C1—S1179.0 (2)C4—C5—C6—C7179.0 (3)
C1—N2—C2—C388.5 (3)C5—C6—C7—C80.2 (5)
N2—C2—C3—C3i64.4 (4)C6—C7—C8—C90.6 (5)
C1—N1—C4—O14.7 (5)C7—C8—C9—C100.3 (5)
C1—N1—C4—C5174.8 (3)C6—C5—C10—C90.8 (5)
O1—C4—C5—C1012.4 (4)C4—C5—C10—C9179.4 (3)
N1—C4—C5—C10168.1 (3)C8—C9—C10—C50.4 (5)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.062.717 (3)133
C2—H2A···S10.972.683.060 (3)103
C2—H2B···S1ii0.972.723.468 (3)134
Symmetry code: (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H22N4O2S2
Mr414.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.0405 (11), 23.358 (2), 7.2877 (13)
β (°) 104.018 (2)
V3)997.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.22 × 0.16 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.939, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
4845, 1735, 1044
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.106, 1.02
No. of reflections1735
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Version 5.1; Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.86002.06002.717 (3)133.00
C2—H2A···S10.97002.68003.060 (3)103.00
C2—H2B···S1i0.97002.72003.468 (3)134.00
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This work was supported by the Foundation of the Education Department of Gansu Province (grant No. 0604-01) and the Qing Lan Talent Engineering Fund of Lanzhou Jiaotong University (grant No. QL-03-01A), which are gratefully acknowledged.

References

First citationBreuzard, J. A. J., Tommasino, M. L. & Toucard, F. (2000). J. Mol. Catal. A Chem. 156, 223–232.  Web of Science CrossRef CAS Google Scholar
First citationBurrows, A. D., Menzer, S. & Michael, D. (1997). J. Chem. Soc. Dalton Trans. pp. 4237–4240.  CSD CrossRef Web of Science Google Scholar
First citationDong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459–o3460.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFoss, O., Husebye, S. & Törnroos, K. (2004). Polyhedron, 23, 3021–3032.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, J., Song, J.-R. & Ren, Y.-H. (2006). Chin. J. Struct. Chem. 25, 168–172.  CAS Google Scholar
First citationNan, Y., Miao, H. & Yang, Z. (2000). Org. Lett. 2, 297–299.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTeoh, S.-G., Ang, S.-H. & Fun, H.-K. (1999). J. Organomet. Chem. 580, 17–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationValdés-Martínez, J., Hernández-Ortega, S., Rubio, M., Li, D. T., Swearingen, J. K., Kaminsky, W., Kelman, D. R. & West, D. X. (2004). J. Chem. Crystallogr. 34, 533–540.  Google Scholar
First citationZhang, Y.-M., Xu, W.-X. & Zhou, Y.-Q. (2006). Acta Chim. Sin. 64, 79–84.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds