metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m509-m510

trans-Di­aqua­bis­(ethyl­enedi­amine-κ2N,N′)copper(II) bis­[3-(3-pyrid­yl)propionate] dihydrate

aDepartment of Inorganic Chemistry, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovakia, and bInorganic Chemistry, Royal Institute of Technology, 100 44 Stockholm, Sweden
*Correspondence e-mail: jan.moncol@stuba.sk

(Received 11 February 2008; accepted 26 February 2008; online 5 March 2008)

The asymmetric unit of the title complex, [Cu(C2H8N2)2(H2O)2](C8H8NO2)2·2H2O, contains one anion, one half-cation and one water mol­ecule. The CuII atom in the [Cu(en)2(H2O)2]2+ cation (en is ethyl­enediamine) lies on an inversion centre. The four N atoms of the en ligands in the equatorial plane around the CuII atom form a slightly distorted square-planar arrangement, while the slightly distorted Jahn–Teller octa­hedral coordination is completed by two water O atoms in axial positions. In the crystal structure, intra- and inter­molecular N—H⋯O and O—H⋯O hydrogen bonds form a three-dimensional network.

Related literature

For general background, see: Hathaway & Hodgson (1973[Hathaway, B. J. & Hodgson, P. G. (1973). J. Inorg. Nucl. Chem. 35, 4071-4081.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]). For similar structures, see: Jašková et al. (2007[Jašková, J., Mikloš, D., Korabik, M., Jorík, V., Segla, P., Kaliňáková, B., Hudecová, D., Švorec, J., Fischer, A., Mrozinski, J., Lis, T. & Melník, M. (2007). Inorg. Chim. Acta, 360, 2711-2720.]); Mimino­shvili et al. (2005[Miminoshvili, K. E., Sobolev, A. N., Miminoshvili, E. B., Beridze, L. A. & Kutelia, E. R. (2005). J. Struct. Chem. 46, 560-565.]); Carballo et al. (2005[Carballo, R., Covelo, B., Garcia-Matinez, E. & Vazquez-Lopez, E. M. (2005). Appl. Organomet. Chem. 19, 394-395.]); Segla et al. (2000[Segla, P., Palicová, M., Koman, M., Mikloš, D. & Melník, M. (2000). Inorg. Chem. Commun. 3, 120-125.]); Liu et al. (2004[Liu, Z.-D., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m1081-m1083.]); Sharma et al. (2005[Sharma, R. P., Sharma, R., Bala, R., Rychlewska, U. & Warzajtis, B. (2005). J. Mol. Struct. 738, 291-298.]); Anacona et al. (2002[Anacona, J. R., Ramos, N. & de Delgado, G. D. (2002). J. Coord. Chem. 55, 901-908.]); Emsley et al. (1988[Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1988). Chem. Commun. pp. 1387-1388.], 1990[Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1990). J. Mol. Struct. 220, 1-12.]); Li et al. (2005[Li, M.-T., Wang, C.-G., Wu, Y. & Fu, X.-C. (2005). Acta Cryst. E61, m1660-m1661.]); Gonzalez-Alvarez et al. (2003[Gonzalez-Alvarez, M., Alzuet, G., Borras, J., Macias, B., Montejo-Bernardo, J. M. & Garcia-Granda, S. (2003). Z. Anorg. Allg. Chem. 629, 239-243.]); Lee et al. (2005[Lee, J.-C., Takahashi, H. & Matsui, Y. (2005). Z. Kristallogr. New Cryst. Struct. 220, 491-492.]); Mahadevan et al. (1986[Mahadevan, C., Rout, G. C., Seshasayee, M. & Sastry, S. (1986). J. Crystallogr. Spectrosc. Res. 16, 799-805.]); Kovbasyuk et al. (1997[Kovbasyuk, L. A., Fritsky, I. O., Kokozay, V. N. & Iskenderov, T. S. (1997). Polyhedron, 16, 1723-1729.]); Harrison et al. (2007[Harrison, W. T. A., Slawin, A. M. Z., Sharma, R. P., Sharma, B. & Bhama, S. (2007). Acta Cryst. E63, m178-m180.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H8N2)2(H2O)2](C8H8NO2)2·2H2O

  • Mr = 556.13

  • Triclinic, [P \overline 1]

  • a = 6.2620 (1) Å

  • b = 8.5660 (2) Å

  • c = 13.3550 (4) Å

  • α = 75.271 (1)°

  • β = 83.809 (1)°

  • γ = 70.863 (1)°

  • V = 654.30 (3) Å3

  • Z = 1

  • Ag Kα radiation

  • μ = 0.47 mm−1

  • T = 153 (2) K

  • 0.45 × 0.25 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: numerical (HABITUS; Herrendorf & Bärnighausen, 1997[Herrendorf, W. & Bärnighausen, H. (1997). HABITUS. Universities of Giessen and Karlsruhe, Germany.]) Tmin = 0.808, Tmax = 0.915

  • 15039 measured reflections

  • 2989 independent reflections

  • 2644 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.086

  • S = 1.07

  • 2989 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.92 2.32 3.130 (3) 147
N1—H1A⋯O1i 0.92 2.41 3.247 (2) 152
N1—H1B⋯O2W 0.92 2.11 2.944 (3) 151
N2—H2A⋯O1ii 0.92 2.29 3.150 (3) 155
N2—H2B⋯O1 0.92 2.12 3.019 (2) 164
O1W—H1W⋯O2i 0.84 2.06 2.873 (3) 164
O1W—H2W⋯O1 0.84 2.00 2.814 (2) 164
O2W—H3W⋯N3iii 0.84 2.08 2.899 (3) 163
O2W—H4W⋯O2iv 0.84 2.03 2.859 (3) 169
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) x+1, y, z-1; (iv) -x, -y+2, -z+1.

Data collection: KappaCCD Software (Nonius, 1997[Nonius (1997). Kappa-CCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

It is well known that copper(II) complexes having ethylenediamine (en) ligands show flexible coordination environment and adopt semi-coordation with tetragonal distortion. As part of our efforts to investigate metal(II) complexes based on pyridyl-carboxylic acids, we report herein the crystal structure of the title compound, (I).

The asymmetric unit of (I), (Fig. 1), contains one anion, one half-cation and one water molecule. The CuII atom in the centrosymmetric [Cu(en)2(H2O)2]2+ cation lies on the inversion centre. The four N atoms of the ethylenediamine ligands in the equatorial plane around the CuII atom form a slightly distorted square-planar arrangement, while the slightly distorted Jahn-Teller octahedral coordination is completed by the two O atoms of water molecules in the axial positions (Table 1 and Fig. 1).

The Cu—N1 [2.015 (2) Å] and Cu—N2 [2.022 (2) Å] bond lengths and N1—Cu—N2 [84.91 (7)°] bond angle agree with those found in other [Cu(en)2(H2O)2]2+ complexes (Table 1). The Cu—O1W [2.503 (2) Å] bond is much longer than Cu—N bonds, as a result of the Jahn-Teller distortion. The Cu—OW bonds in other [Cu(en)2(H2O)2]2+ complexes are in the range of 2.416 (3)–2.693 (9) Å (Table 1). The value of the T parameter (Hathaway & Hodgson, 1973), which indicates the degree of tetragonal distortion about the CuII atom, is 0.81 and it agrees with the reported values, in the range of 0.76–0.84, for other [Cu(en)2(H2O)2]2+ complexes (Table 1).

In the crystal structure, the [Cu(en)2(H2O)2]2+ coordination cations and 3-(3-pyridyl)propionate anions are linked by O—H···O and N—H···O hydrogen-bonds (Table 2, Fig. 2) in parallel to the a axis. The amine H atom is linked to both carboxylate O atoms of 3-(3-pyridyl)propionate by three-centered/bifurcated N—H···O hydrogen-bonds (Jeffrey, 1997) and both of them form the R12(4) ring motif (Bernstein et al., 1995). The similar R12(4) ring motifs with sulfonate or carboxylate groups are reported in[Cu(en)2(H2O)2](4-amino- naphthalene-1-sulfonate)2.2 H2O (Li et al., 2005)and [Cu(en)2(H2O)2]- (N-carboxyglycinate).H2O (Kovbasyuk et al., 1997).

The O—H···O hydrogen bonds between the coordinated water molecules and the carboxylate O atoms of 3-(3-pyridyl)propionate anions and N—H···O hydrogen bonds of amine H atoms form the R21(6) and R22(8) ring motifs (Bernstein et al., 1995). These ring motifs are also reported for other [Cu(en)2(H2O)2]X2 complexes, while only the R22(8) ring motifs are present in [Cu(en)2(H2O)2]X2 complexes, [where X = 4-chlorobenzoate (Lee et al., 2005); X = 4-fluorobenzoate (Liu et al., 2004), X = isonicotinate (Segla et al., 2000) and X = 4-nitrobenzoate (Harrison et al., 2007)]. On the other hand, the R21(6) ring motifs are reported for [Cu(en)2(H2O)2]X2 complexes, [where X = naphthalene-2-sulfonate (Sharma et al., 2005) and X = 2,6-dimethoxynicotinate (Jašková et al., 2007)]. To the best of our knowledge, only [Cu(en)2(H2O)2](2-aminobenzoate)2 complex (Miminoshvili et al., 2005), exhibits both R21(6) and R22(8) ring motifs, in the crystal structure.

The additional N—H···O hydrogen bonds form further R21(6) ring motifs. Finally, two [Cu(en)2(H2O)2]2+ cations and two 3-(3-pyridyl)propionate anions are joined through R42(8) ring motifs to form a layer parallel to the a axis. The layers of [Cu(en)2(H2O)2]2+ cations and 3-(3-pyridyl)- propionate anions are linked to form a three-dimensional network through uncoordinated water molecules by O—H···O and O—H···N hydrogen-bonds (Fig. 3).

The additional interactions between the 3-(3-pyridyl)propionate anions of (I) are the π-π stacking interactions (Janiak, 2000) between the two adjacent pyridine rings, (N3/C6—C10), with the centroid to centroid distances of Cg···Cgv = 3.66 Å [symmetry code: (v) -x,-y + 2,-z + 2]. The distance between parallel planes of the stacked pyridine rings is 3.33 Å.

Related literature top

For general background, see: Hathaway & Hodgson (1973); Bernstein et al. (1995); Janiak (2000); Jeffrey (1997). For similar structures, see: Jašková et al. (2007); Miminoshvili et al. (2005); Carballo et al. (2005); Segla et al. (2000); Liu et al. (2004); Sharma et al. (2005); Anacona et al. (2002); Emsley et al. (1988, 1990); Li et al. (2005); Gonzalez-Alvarez et al. (2003); Lee et al. (2005); Mahadevan et al. (1986); Kovbasyuk et al. (1997); Harrison et al. (2007).

Experimental top

The violet [Cu(en)2(H2O)2](3-pypr)2.2H2O was formed in a methanolic solution of [Cu(3-pypr)2(H2O)2] (1.25 mmol) by adding ethylenediamine in the molar ratio of 1:2. The resulting solution was left to slowly evaporate at room temperature. In isolating the complex, it was necessary to add acetone to the concentrated solution. Well shaped violet crystals, suitable for X-ray structure analysis were collected after a few hours by filtration and finally dried in vacuo (yield; 90%). Anal. Calc. for C20H40N6O8; C, 43.20; H, 7.25; N, 15.11; Cu, 11.43. Found: C, 43.45; H, 7.47; N, 15.30; Cu, 11.21%. Selected IR data (cm-1): 1592 versus,br (νa(COO-) + ν(C?N)); 1392 versus (νs(COO-)); 605 s (δ(py), pyridine ring in-plane bending); 405 m (γ(py), pyridine ring out-of-plane bending). Electronic data (cm-1): 18 400 br.

Refinement top

H atoms were positioned geometrically, with O—H = 0.84 Å (for H2O), N—H = 0.92 Å (for NH2) and C—H = 0.95 and 0.99 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N,O), where x = 0.92 for O2W H and x = 1.2 for other H atoms.

Computing details top

Data collection: KappaCCD Software (Nonius, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of R21(4), R12(6), R24(8) and R22(8) motifs [symmetry codes: (i) x + 1, y, z; (ii) -x, -y + 1, -z + 1].
[Figure 3] Fig. 3. A packing diagram of (I), showing hydrogen bonds and π-π stacking interactions, as dashed lines [symmetry codes: (iii) x + 1, y, z - 1; (iv) -x, -y + 2, -z + 1].
trans-Diaquabis(ethylenediamine-κ2N,N')copper(II) bis[3-(3-pyridyl)propionate] dihydrate top
Crystal data top
[Cu(C2H8N2)2(H2O)2](C8H8NO2)2·2H2OZ = 1
Mr = 556.13F(000) = 295
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Ag Kα radiation, λ = 0.56085 Å
a = 6.2620 (1) ÅCell parameters from 2489 reflections
b = 8.5660 (2) Åθ = 3.3–21.4°
c = 13.3550 (4) ŵ = 0.47 mm1
α = 75.271 (1)°T = 153 K
β = 83.809 (1)°Prism, violet
γ = 70.863 (1)°0.45 × 0.25 × 0.20 mm
V = 654.30 (3) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2989 independent reflections
Radiation source: fine-focus sealed tube2644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω and ϕ scansθmax = 21.4°, θmin = 3.3°
Absorption correction: numerical
(HABITUS; Herrendorf & Bärnighausen, 1997)
h = 88
Tmin = 0.808, Tmax = 0.915k = 1111
15039 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0215P)2 + 0.3896P]
where P = (Fo2 + 2Fc2)/3
2989 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Cu(C2H8N2)2(H2O)2](C8H8NO2)2·2H2Oγ = 70.863 (1)°
Mr = 556.13V = 654.30 (3) Å3
Triclinic, P1Z = 1
a = 6.2620 (1) ÅAg Kα radiation, λ = 0.56085 Å
b = 8.5660 (2) ŵ = 0.47 mm1
c = 13.3550 (4) ÅT = 153 K
α = 75.271 (1)°0.45 × 0.25 × 0.20 mm
β = 83.809 (1)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2989 independent reflections
Absorption correction: numerical
(HABITUS; Herrendorf & Bärnighausen, 1997)
2644 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.915Rint = 0.079
15039 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.07Δρmax = 0.38 e Å3
2989 reflectionsΔρmin = 0.31 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

2.3086 (0.0059) x + 8.2273 (0.0023) y - 0.2376 (0.0130) z = 6.3254 (0.0154)

* 0.0032 (0.0016) N3

* -0.0044 (0.0016) C6

* 0.0010 (0.0017) C7

* -0.0039 (0.0017) C8

* 0.0003 (0.0018) C9

* 0.0038 (0.0017) C10

3.3255 (0.0028) N3_$6

3.3331 (0.0028) C6_$6

3.3277 (0.0030) C7_$6

3.3326 (0.0031) C8_$6

3.3285 (0.0029) C9_$6

3.3249 (0.0030) C10_$6

Rms deviation of fitted atoms = 0.0032

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.50000.50000.50000.02500 (12)
N10.5413 (3)0.7274 (2)0.48893 (14)0.0328 (4)
H1A0.61470.72420.54590.039*
H1B0.62700.75400.43060.039*
N20.1813 (3)0.6372 (2)0.45504 (14)0.0307 (4)
H2A0.14100.59690.40470.037*
H2B0.08130.62970.51040.037*
N30.0294 (4)0.8099 (3)1.12361 (17)0.0520 (6)
O10.0720 (3)0.6040 (3)0.66095 (13)0.0493 (5)
O20.4121 (3)0.7310 (2)0.71927 (15)0.0518 (5)
O1W0.3984 (3)0.4843 (2)0.68797 (15)0.0515 (5)
H1W0.44220.55310.70880.063*
H2W0.25700.50840.69160.063*
O2W0.6770 (4)0.9227 (3)0.29173 (16)0.0682 (6)
H3W0.73630.89480.23680.063*
H4W0.60861.02740.28090.063*
C10.1767 (4)0.8158 (3)0.41381 (19)0.0399 (5)
H1C0.01920.89280.41300.048*
H1D0.24020.83120.34210.048*
C20.3163 (4)0.8558 (3)0.4831 (2)0.0399 (5)
H2C0.32940.97090.45420.048*
H2D0.24420.85200.55300.048*
C30.2033 (4)0.6638 (3)0.72904 (17)0.0339 (5)
C40.1063 (4)0.6478 (3)0.83208 (19)0.0418 (5)
H4A0.20500.60830.88900.050*
H4B0.04480.56080.83870.050*
C50.0846 (6)0.8114 (3)0.8436 (2)0.0575 (8)
H5A0.23600.89780.83920.069*
H5B0.01130.85270.78600.069*
C60.0179 (4)0.7906 (3)0.94565 (19)0.0389 (5)
C70.1118 (4)0.8301 (3)1.0313 (2)0.0458 (6)
H70.27110.87491.02420.055*
C80.1937 (5)0.7467 (3)1.1312 (2)0.0507 (7)
H80.25670.72981.19620.061*
C90.3376 (4)0.7045 (3)1.0513 (2)0.0460 (6)
H90.49630.66031.06060.055*
C100.2489 (4)0.7271 (3)0.95738 (19)0.0417 (5)
H100.34620.69920.90050.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.02142 (18)0.02502 (19)0.0296 (2)0.00597 (13)0.00336 (13)0.00873 (14)
N10.0370 (10)0.0319 (10)0.0332 (10)0.0132 (8)0.0058 (8)0.0086 (8)
N20.0266 (8)0.0378 (10)0.0292 (9)0.0082 (7)0.0023 (7)0.0121 (8)
N30.0777 (16)0.0397 (12)0.0397 (13)0.0190 (11)0.0090 (11)0.0145 (10)
O10.0421 (9)0.0819 (14)0.0342 (9)0.0235 (9)0.0035 (7)0.0280 (9)
O20.0401 (9)0.0620 (12)0.0555 (12)0.0036 (8)0.0106 (8)0.0300 (9)
O1W0.0399 (9)0.0668 (12)0.0526 (11)0.0158 (8)0.0015 (8)0.0243 (9)
O2W0.0781 (14)0.0525 (12)0.0540 (13)0.0063 (10)0.0207 (11)0.0053 (10)
C10.0364 (12)0.0340 (12)0.0404 (13)0.0026 (9)0.0085 (10)0.0078 (10)
C20.0478 (13)0.0284 (11)0.0425 (14)0.0068 (10)0.0010 (10)0.0129 (10)
C30.0380 (12)0.0386 (12)0.0311 (12)0.0163 (9)0.0034 (9)0.0119 (9)
C40.0532 (14)0.0418 (13)0.0336 (13)0.0141 (11)0.0079 (10)0.0126 (10)
C50.089 (2)0.0386 (14)0.0508 (17)0.0225 (14)0.0349 (15)0.0035 (12)
C60.0540 (14)0.0294 (11)0.0378 (13)0.0159 (10)0.0144 (11)0.0068 (10)
C70.0436 (13)0.0338 (12)0.0636 (18)0.0142 (10)0.0036 (12)0.0137 (12)
C80.083 (2)0.0384 (14)0.0338 (14)0.0169 (13)0.0209 (13)0.0078 (11)
C90.0479 (14)0.0426 (14)0.0516 (16)0.0146 (11)0.0149 (12)0.0121 (12)
C100.0519 (14)0.0419 (13)0.0353 (13)0.0169 (11)0.0005 (10)0.0132 (10)
Geometric parameters (Å, º) top
Cu—O1Wi2.503 (2)C1—C21.506 (3)
Cu—O1W2.503 (2)C1—H1C0.9900
Cu—N1i2.015 (2)C1—H1D0.9900
Cu—N12.015 (2)C2—H2C0.9900
Cu—N2i2.022 (2)C2—H2D0.9900
Cu—N22.022 (2)C3—C41.521 (3)
O1—C31.251 (3)C4—C51.498 (3)
O2—C31.250 (3)C4—H4A0.9900
O1W—H1W0.84C4—H4B0.9900
O1W—H2W0.84C5—C61.513 (3)
O2W—H3W0.84C5—H5A0.9900
O2W—H4W0.84C5—H5B0.9900
N1—C21.472 (3)C6—C71.378 (4)
N1—H1A0.9200C6—C101.379 (3)
N1—H1B0.9200C7—H70.9500
N2—C11.480 (3)C8—C91.363 (4)
N2—H2A0.9200C8—H80.9500
N2—H2B0.9200C9—C101.370 (3)
N3—C81.327 (4)C9—H90.9500
N3—C71.337 (4)C10—H100.9500
O1Wi—Cu—O1W180.0H1C—C1—H1D108.5
N1i—Cu—O1Wi88.72 (7)N1—C2—C1107.48 (18)
N1—Cu—O1Wi91.28 (7)N1—C2—H2C110.2
N2i—Cu—O1Wi93.19 (6)C1—C2—H2C110.2
N2—Cu—O1Wi86.81 (6)N1—C2—H2D110.2
N1i—Cu—O1W91.28 (7)C1—C2—H2D110.2
N1—Cu—O1W88.72 (7)H2C—C2—H2D108.5
N2i—Cu—O1W86.81 (6)O2—C3—O1124.1 (2)
N2—Cu—O1W93.19 (6)O2—C3—C4117.4 (2)
N1i—Cu—N1180.00 (11)O1—C3—C4118.4 (2)
N1i—Cu—N2i84.91 (7)C5—C4—C3113.0 (2)
N1—Cu—N2i95.09 (7)C5—C4—H4A109.0
N1i—Cu—N295.09 (7)C3—C4—H4A109.0
N1—Cu—N284.91 (7)C5—C4—H4B109.0
N2i—Cu—N2180.0C3—C4—H4B109.0
C2—N1—Cu108.14 (13)H4A—C4—H4B107.8
C2—N1—H1A110.1C4—C5—C6111.8 (2)
Cu—N1—H1A110.1C4—C5—H5A109.2
C2—N1—H1B110.1C6—C5—H5A109.2
Cu—N1—H1B110.1C4—C5—H5B109.2
H1A—N1—H1B108.4C6—C5—H5B109.2
C1—N2—Cu107.44 (13)H5A—C5—H5B107.9
C1—N2—H2A110.2C7—C6—C10116.7 (2)
Cu—N2—H2A110.2C7—C6—C5122.5 (2)
C1—N2—H2B110.2C10—C6—C5120.8 (2)
Cu—N2—H2B110.2N3—C7—C6124.6 (2)
H2A—N2—H2B108.5N3—C7—H7117.7
C8—N3—C7116.3 (2)C6—C7—H7117.7
Cu—O1W—H1W110.3N3—C8—C9123.8 (2)
Cu—O1W—H2W104.9N3—C8—H8118.1
H1W—O1W—H2W111.9C9—C8—H8118.1
H3W—O2W—H4W111.2C8—C9—C10118.7 (2)
N2—C1—C2107.81 (18)C8—C9—H9120.7
N2—C1—H1C110.1C10—C9—H9120.7
C2—C1—H1C110.1C9—C10—C6119.8 (2)
N2—C1—H1D110.1C9—C10—H10120.1
C2—C1—H1D110.1C6—C10—H10120.1
N2i—Cu—N1—C2165.34 (14)O1—C3—C4—C5104.8 (3)
N2—Cu—N1—C214.66 (14)C3—C4—C5—C6178.5 (2)
O1Wi—Cu—N1—C2101.34 (14)C4—C5—C6—C796.9 (3)
O1W—Cu—N1—C278.66 (14)C4—C5—C6—C1081.8 (3)
N1i—Cu—N2—C1165.31 (14)C8—N3—C7—C60.2 (4)
N1—Cu—N2—C114.70 (14)C10—C6—C7—N30.5 (4)
O1Wi—Cu—N2—C176.88 (14)C5—C6—C7—N3178.2 (2)
O1W—Cu—N2—C1103.12 (14)C7—N3—C8—C90.7 (4)
Cu—N2—C1—C240.8 (2)N3—C8—C9—C100.4 (4)
Cu—N1—C2—C140.7 (2)C8—C9—C10—C60.4 (4)
N2—C1—C2—N154.5 (2)C7—C6—C10—C90.8 (3)
O2—C3—C4—C577.7 (3)C5—C6—C10—C9178.0 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.922.323.130 (3)147
N1—H1A···O1ii0.922.413.247 (2)152
N1—H1B···O2W0.922.112.944 (3)151
N2—H2A···O1iii0.922.293.150 (3)155
N2—H2B···O10.922.123.019 (2)164
O1W—H1W···O2ii0.842.062.873 (3)164
O1W—H2W···O10.842.002.814 (2)164
O2W—H3W···N3iv0.842.082.899 (3)163
O2W—H4W···O2v0.842.032.859 (3)169
Symmetry codes: (ii) x+1, y, z; (iii) x, y+1, z+1; (iv) x+1, y, z1; (v) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2H8N2)2(H2O)2](C8H8NO2)2·2H2O
Mr556.13
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)6.2620 (1), 8.5660 (2), 13.3550 (4)
α, β, γ (°)75.271 (1), 83.809 (1), 70.863 (1)
V3)654.30 (3)
Z1
Radiation typeAg Kα, λ = 0.56085 Å
µ (mm1)0.47
Crystal size (mm)0.45 × 0.25 × 0.20
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionNumerical
(HABITUS; Herrendorf & Bärnighausen, 1997)
Tmin, Tmax0.808, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
15039, 2989, 2644
Rint0.079
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.086, 1.07
No. of reflections2989
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.31

Computer programs: KappaCCD Software (Nonius, 1997), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.922.323.130 (3)147.0
N1—H1A···O1i0.922.413.247 (2)151.9
N1—H1B···O2W0.922.112.944 (3)150.9
N2—H2A···O1ii0.922.293.150 (3)155.0
N2—H2B···O10.922.123.019 (2)164.4
O1W—H1W···O2i0.842.062.873 (3)164.2
O1W—H2W···O10.842.002.814 (2)164.1
O2W—H3W···N3iii0.842.082.899 (3)163.0
O2W—H4W···O2iv0.842.032.859 (3)169.0
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+1, y, z1; (iv) x, y+2, z+1.
Comparative geometrical parameters (Å, °) and T parameter for selected trans-[Cu(en)2(H2O)2] X2 complexes top
X2Cu–N1Cu–N2Cu–OWTaN1–Cu–N2
(3-pypr)2.2H2O2.015 (2)2.022 (2)2.503 (2)0.8184.91 (7)
(2,6-(MeO)2nic)2b2.018 (2)2.020 (2)2.467 (2)0.8283.96 (8)
(4-O2Nbz)2c2.015 (2)2.027 (2)2.537 (2)0.8084.92 (7)
(2-NH2bz)2d2.012 (4)2.020 (5)2.503 (4)0.8184.52 (9)
(benz)2e2.009 (4)2.017 (4)2.653 (5)0.7684.8 (2)
(isonic)2f2.021 (2)2.018 (2)2.598 (2)0.7884.98 (6)
(4-Fbz)2g2.018 (4)2.021 (4)2.579 (4)0.7885.0 (2)
(naphs)2h2.020 (2)2.018 (2)2.513 (1)0.8084.63 (7)
(stz)2.2H2Oi2.042 (3)2.033 (3)2.484 (3)0.8284.1 (1)
F2.4H2Oj2.019 (5)2.023 (5)2.571 (6)0.7884.6 (2)
(NH2naphs)2.2H2Ok2.023 (2)2.012 (2)2.437 (2)0.8384.30 (9)
(Clbtts)2l2.019 (4)2.049 (3)2.416 (3)0.8484.2 (2)
(Cl-Fbz)2m2.009 (2)2.016 (2)2.618 (1)0.7784.30 (6)
(BPh4)2.2DMSOn2.022 (10)2.055 (8)2.693 (9)0.7684.9 (4)
(edcarb).2H2Oo1.996 (2)2.022 (2)2.556 (2)0.7984.78 (7)
(a) The value of the T parameter (T = RS/RL), indicating the degree of tetragonal distortion about the CuII atom (Hathaway & Hodgson, 1973); (b) Jašková et al. (2007) [2,6-(MeO)2nic is 2,6-dimethoxynicotinate]; (c) Harrison et al. (2007) [4-O2Nbz is 4-nitrobenzoate]; (d) Miminoshvili et al. (2005) [2-NH2bzc is 2-aminobenzoate]; (e) Carballo et al. (2005) [benz is benzilate]; (f) Segla et al. (2000) [isonic is isonicotinate]; (g) Liu et al. (2004) [4-Fbz is 4-fluorobenzoate]; (h) Sharma et al. (2005) [naphs is naphthalene-2-sulfonate]; (i) Anacona et al. (2002) [stz is sulfathiazole]; (j) Emsley et al. (1988; 1990); (k) Li et al. (2005) [NH2naphs is 4-aminonaphthalene-1-sulfonate]; (l) Gonzalez-Alvarez et al. (2003) [Clbtts is N-2-(6-chlorobenzothiazole)toluenesulfonamide]; (m) Lee et al. (2005); (n) Mahadevan et al. (1986); (o) Kovbasyuk et al. (1997) [edcarb is ethylene-1,2-dicarbonate].
 

Acknowledgements

We thank the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences (grant Nos. 1/4454/07 and 1/0353/08).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAnacona, J. R., Ramos, N. & de Delgado, G. D. (2002). J. Coord. Chem. 55, 901–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCarballo, R., Covelo, B., Garcia-Matinez, E. & Vazquez-Lopez, E. M. (2005). Appl. Organomet. Chem. 19, 394–395.  Web of Science CrossRef CAS Google Scholar
First citationEmsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1988). Chem. Commun. pp. 1387–1388.  CrossRef Google Scholar
First citationEmsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1990). J. Mol. Struct. 220, 1–12.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGonzalez-Alvarez, M., Alzuet, G., Borras, J., Macias, B., Montejo-Bernardo, J. M. & Garcia-Granda, S. (2003). Z. Anorg. Allg. Chem. 629, 239–243.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarrison, W. T. A., Slawin, A. M. Z., Sharma, R. P., Sharma, B. & Bhama, S. (2007). Acta Cryst. E63, m178–m180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHathaway, B. J. & Hodgson, P. G. (1973). J. Inorg. Nucl. Chem. 35, 4071–4081.  CrossRef Web of Science Google Scholar
First citationHerrendorf, W. & Bärnighausen, H. (1997). HABITUS. Universities of Giessen and Karlsruhe, Germany.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationJašková, J., Mikloš, D., Korabik, M., Jorík, V., Segla, P., Kaliňáková, B., Hudecová, D., Švorec, J., Fischer, A., Mrozinski, J., Lis, T. & Melník, M. (2007). Inorg. Chim. Acta, 360, 2711–2720.  Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationKovbasyuk, L. A., Fritsky, I. O., Kokozay, V. N. & Iskenderov, T. S. (1997). Polyhedron, 16, 1723–1729.  CSD CrossRef CAS Web of Science Google Scholar
First citationLee, J.-C., Takahashi, H. & Matsui, Y. (2005). Z. Kristallogr. New Cryst. Struct. 220, 491–492.  CAS Google Scholar
First citationLi, M.-T., Wang, C.-G., Wu, Y. & Fu, X.-C. (2005). Acta Cryst. E61, m1660–m1661.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z.-D., Tan, M.-Y. & Zhu, H.-L. (2004). Acta Cryst. E60, m1081–m1083.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMahadevan, C., Rout, G. C., Seshasayee, M. & Sastry, S. (1986). J. Crystallogr. Spectrosc. Res. 16, 799–805.  CSD CrossRef CAS Web of Science Google Scholar
First citationMiminoshvili, K. E., Sobolev, A. N., Miminoshvili, E. B., Beridze, L. A. & Kutelia, E. R. (2005). J. Struct. Chem. 46, 560–565.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1997). Kappa-CCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSegla, P., Palicová, M., Koman, M., Mikloš, D. & Melník, M. (2000). Inorg. Chem. Commun. 3, 120–125.  CAS Google Scholar
First citationSharma, R. P., Sharma, R., Bala, R., Rychlewska, U. & Warzajtis, B. (2005). J. Mol. Struct. 738, 291–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages m509-m510
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds