

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Heptanedioato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) hexahydrate

Jian-Li Lin* and Yuan-Yuan Wang

State Key Laboratory, Base of Novel Functional Materials and Preparation Science, Institute of Solid Materials Chemistry, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China Correspondence e-mail: leikeweipublic@hotmail.com

Received 28 December 2007; accepted 4 March 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.060; wR factor = 0.117; data-to-parameter ratio = 16.3.

In the crystal structure of the title compound, $[Zn(C_7H_{10}O_4)-(C_{12}H_8N_2)_2]\cdot 6H_2O$, the Zn^{II} atom is coordinated by two carboxylate O atoms of a mono-bidentate chelating pimelate anion (pimelic acid is heptanedioic acid) and four N atoms of two phenanthroline ligands, forming a considerably distorted octahedral ZnN_4O_2 coordination geometry. The complexes are assembled into a three-dimensional network *via* C-H···O, C-H··· π and π - π interactions. The mean interplanar distance between adjacent phenanthroline ligands is 3.399 (2) Å.

Related literature

For related literature, see: Ge & Zheng (2005); Wei *et al.* (2002); Zheng (2004); Zheng, Kong & Chen (2003); Zheng, Lin & Kong (2003); Zheng *et al.* (2001, 2002); Zheng & Ying (2004).

Experimental

Crystal data

 $[Zn(C_7H_{10}O_4)(C_{12}H_8N_2)_2] \cdot 6H_2O$ M_r = 692.02

Monoclinic, $P2_1/n$ a = 9.2050 (18) Å b = 21.241 (4) Åc = 16.598 (3) Å $\beta = 96.48 (3)^{\circ}$ $V = 3224.6 (11) \text{ Å}^{3}$ Z = 4

Data collection

Bruker P4 diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.697, T_{\max} = 0.834$
9226 measured reflections
7393 independent reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	H atoms treated by a mixture of
$wR(F^2) = 0.117$	independent and constrained
S = 1.01	refinement
7393 reflections	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
453 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$
18 restraints	

Table 1

Selected geometric parameters (Å, °).

Zn-N4	2.128 (3)	Zn-N1	2.167 (3)
Zn-N3	2.129 (3)	Zn-O1	2.178 (3)
Zn-N2	2.148 (3)	Zn-O2	2.224 (3)
N4-Zn-N3	78.26 (11)	N2–Zn–O1	87.11 (10)
N4-Zn-N2	99.28 (11)	N1-Zn-O1	146.42 (10)
N3-Zn-N2	168.21 (11)	N4-Zn-O2	156.42 (10)
N4-Zn-N1	109.01 (11)	N3-Zn-O2	90.89 (10)
N3-Zn-N1	92.26 (11)	N2-Zn-O2	95.35 (10)
N2-Zn-N1	77.55 (11)	N1-Zn-O2	92.10 (10)
N4-Zn-O1	102.80 (10)	O1-Zn-O2	59.45 (9)
N3-Zn-O1	104.68 (10)		

Table 2		
Hydrogen-bond geometry	/ (Å,	°)

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$O5-H5A\cdotsO8^{i}$	0.84 (2)	1.95 (2)	2.776 (5)	165 (5)
O5−H5B···O10	0.84 (4)	1.90 (4)	2.733 (6)	170 (4)
$O6-H6A\cdots O4^{ii}$	0.85 (4)	2.02(2)	2.861 (5)	176 (3)
$O6-H6B\cdots O7$	0.83 (3)	2.16 (3)	2.985 (5)	170 (3)
$O7-H7A\cdots O5$	0.85 (3)	1.89 (3)	2.734 (5)	176 (5)
$O7 - H7B \cdot \cdot \cdot O2^{iii}$	0.86(2)	1.97 (2)	2.828 (4)	174 (5)
O8−H8A…O9	0.85 (3)	1.96 (3)	2.804 (4)	172 (4)
$O8-H8B\cdots O4^{ii}$	0.85 (3)	1.99 (3)	2.832 (4)	173 (3)
O9−H9A…O7	0.84(4)	1.95 (2)	2.789 (4)	175 (4)
$O9-H9B\cdots O3^{iv}$	0.85 (3)	1.89 (3)	2.736 (4)	173 (4)
$O10-H10A\cdots O3^{iv}$	0.86(2)	1.88 (4)	2.732 (4)	171 (4)
O10−H10B···O1	0.85(3)	2.11(3)	2.957 (4)	176 (4)
$C2-H2\cdots O9^{v}$	0.93	2.53	3.429 (5)	162
$C5-H5\cdots O2^{vi}$	0.93	2.55	3.381 (4)	149
C17−H17···O1 ^{vii}	0.93	2.59	3.263 (4)	129
C18−H18···O6 ^{iv}	0.93	2.50	3.344 (5)	151
$C26-H26B\cdots Cg1^{i}$	0.97	2.99	3.791 (4)	140
$C27 - H27A \cdots Cg2^{i}$	0.97	2.82	3.375 (4)	117

Symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z; (iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iv) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (v) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{3}{2}$; (vi) -x + 1, -y, -z + 2; (vii) -x + 1, -y, -z + 1. *Cg*1 and *Cg2* are the centroids of the C16–C19/C23/C24 and C23/C19–C22/N4 rings, respectively.

Data collection: *XSCANS* (Siemens, 1996); cell refinement: *XSCANS*; data reduction: *XSCANS*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine

Mo $K\alpha$ radiation $\mu = 0.82 \text{ mm}^{-1}$

 $0.43 \times 0.26 \times 0.22$ mm

3 standard reflections every 97 reflections intensity decay: no

3956 reflections with $I > 2\sigma(I)$

T = 296 (2) K

 $R_{\rm int} = 0.043$

metal-organic compounds

structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This project was supported by the Zhejiang Provincial Fund for Analysis and Measurements (grant No. 04058), the Scientific Research Fund of Ningbo University (grant No. XK200457), the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2003 A62026).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2271).

References

- Ge, C.-X. & Zheng, Y.-Q. (2005). J. Coord. Chem. 58, 1199-1208.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wei, D.-Y., Zheng, Y.-Q. & Lin, J.-L. (2002). Z. Anorg. Allg. Chem. 628, 2005– 2012.
- Zheng, Y.-Q. (2004). Z. Kristallogr. NCS, 219, 427-428.
- Zheng, Y.-Q., Kong, Z.-P. & Chen, K. (2003). Z. Kristallogr. New Cryst. Struct. 218, 225–226.
- Zheng, Y.-Q., Lin, J.-L. & Kong, Z.-P. (2003). Z. Anorg. Allg. Chem. 629, 357–361.
- Zheng, Y.-Q., Lin, J.-L. & Sun, J. (2001). Z. Anorg. Allg. Chem. 627, 1997–2001.
- Zheng, Y.-Q., Liu, W.-H. & Lin, J.-L. (2002). Z. Anorg. Allg. Chem. 628, 1401– 1405.
- Zheng, Y.-Q. & Ying, E.-B. (2004). Z. Kristallogr. New Cryst. Struct 219, 423–424.

supporting information

Acta Cryst. (2008). E64, m527-m528 [doi:10.1107/S1600536808006004]

(Heptanedioato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) hexahydrate

Jian-Li Lin and Yuan-Yuan Wang

S1. Comment

Previous investigation on self-assembly of metal ions, hetroaromatic N-donor ligands and pimelate anions exhibits various coordinating modes of pimelate anions. For example, pimelate anion bridges two metal ions in bis-monodentate fashion (Zheng, Lin *et al.*, 2003; Ge & Zheng, 2005; Zheng & Ying, 2004), in chelting/monodentate fashion (Zheng, 2004) and in bis-chelaing fashion (Zheng, Kong *et al.*, 2003). When bridging three metal ions, pimelate anion can offer one carboxylate monoatomically to bridge two metal ions and the other end monodentately to coordinate one metal ion (Zheng *et al.*, 2001; Ge & Zheng, 2005). Furthermore, pimelate anion can bischelate two Cd atoms with one oxygen bonded to additional Cd atom to bridge three metal atoms to form polymeric chains (Zheng *et al.*, 2002). To the best of our knowledge, the title Zn compound represents a new example with pimelate anion coordinating one metal atom in a chelating fashion.

The title compound consists of $[Zn(phen)_2(C_7H_{10}O_4)]$ complex and hydrogen bonded H₂O molecules. As demonstrated in Fig.1, the Zn atom in the complex cation is coordinated by two carboxylato oxygen atoms of one mono-chelating pimelate $(C_7H_{10}O_4)^{2-}$ anion and four nitrogen atoms of two phenanthroline (phen) ligands to define a considerably distorted octahedral ZnN₄O₂ chromophore. Two phen ligands chelating the central Zn atom form V-shaped cleft and the mono-chelating pimelato ligand is twisted at the carbon atom next to the chelating carboxylato end to adopt a *gauche* conformation around the C26—C27 bond. The present complex looks very like the monovalent $[Zn(phen)_2(C_8H_{13}O_4)]^+$ complex cation found in the earlier-reported $[Zn(phen)_2(C_8H_{13}O_4)](NO_3).H_2O$, where the Zn atoms are coordinated by two phen ligands and one hydrogen suberate $(C_8H_{13}O_4)^-$ anion (Wei *et al.*, 2002).

Along [001] direction, the complex are arranged with the clefts orientating alternatively up- and downwards and the symmetry-related phen ligands orientate anti-parallelly to each other and the mean interplanar distance of 3.399 (2) Å suggests that the N-donor ligands are engaged in intercationic π - π stacking interactions. In this sense, the complex cations are, *via* π - π stacking interactions, assembled into one-dimensional chains extending parallel to [001] and careful inspection indicates that the resulting chains are stabilized by intercationic C5—H5…O2 hydrogen bonds. In the (011) plane, the chains are so arranged that the twisted pimelato ligands are located in the clefts of the adjacent chains and the alkyl C—H bonds are directed to the phen plane (C1 to C12) to form C—H… π interactions. According to the above description, supramolecular assembly of the complex cations into two-dimensional layers (Fig. 2) is achieved due to intercationic π - π , C—H…O and C—H… π interactions. The lattice H₂O molecules are sandwiched between the cationic layers and form hydrogen bonded anionic chains propagating along [100]. The water molecules except the O5 one are hydrogen-bonded to the carboxylate O atoms.

S2. Experimental

NaOH (2.0 ml, 1 *M*) was dropwise added to a stirred solution of $Zn(NO_3)_2.6H_2O$ (0.295 g, 0.99 mmol) in H_2O (5.0 ml) to produce white precipitate, which was separated by centrifugation and washed with deionized water for several times. The

fresh precipitate was moved to a solution of phenanthroline monohydrate (0.200 g, 1.0 mmol) and pimelic acid (0.162 g, 1.0 mmol) in CH₃OH/H₂O (1:1 ν/ν ; 20 ml), and then NaOH (0.5 ml, 1 *M*) was dropwise added. The resulting suspension was filtered out and the colorless filtrate (pH = 8.57) was allowed to stand at room temperature and slow evaporation for several weeks afforded a mixture of prismatic colorless crystals of [Zn(C₁₂H₈N₂)₂(C₇H₁₀O₄)].6H₂O and plate-like colorless crystals. The former crystals are stable, and the latter are found to easily deteriorate upon isolation from the mother liquor.

S3. Refinement

H atoms of water molecules were located in a difference Fourier map, and were refined with distance restraints of O—H = 0.85 (2) and H···H = 1.38 (2) Å, and with $U_{iso}(H) = 1.2U_{eq}(O)$. Other H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the Zn^{II} complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

A view of a single layer of (I). H atoms and water molecules have been omitted.

(Heptanedioato- $\kappa^2 O, O'$)bis(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) hexahydrate

Crystal data [Zn(C₇H₁₀O₄)(C₁₂H₈N₂)₂]·6H₂O $M_r = 692.02$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.2050 (18) Å b = 21.241 (4) Å c = 16.598 (3) Å $\beta = 96.48$ (3)° V = 3224.6 (11) Å³ Z = 4

Data collection

Bruker P4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\theta/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.697, T_{\max} = 0.834$ 9226 measured reflections F(000) = 1448 $D_x = 1.425 \text{ Mg m}^{-3}$ Melting point: 163 K Mo K\alpha radiation, \lambda = 0.71073 Å Cell parameters from 25 reflections $\theta = 5-12.5^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$ T = 296 KBlock, colourless $0.43 \times 0.26 \times 0.22 \text{ mm}$

7393 independent reflections 3956 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 27.5^\circ, \theta_{min} = 1.6^\circ$ $h = -11 \rightarrow 1$ $k = -1 \rightarrow 27$ $l = -21 \rightarrow 21$ 3 standard reflections every 97 reflections intensity decay: no Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H atoms treated by a mixture of independent
$wR(F^2) = 0.117$	and constrained refinement
S = 1.01	$w = 1/[\sigma^2(F_o^2) + (0.0346P)^2 + 1.0334P]$
7393 reflections	where $P = (F_o^2 + 2F_c^2)/3$
453 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
18 restraints	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.00132 (18)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn	0.45796 (4)	0.04742 (2)	0.72867 (2)	0.03662 (14)	
N1	0.6065 (3)	0.00835 (14)	0.82659 (17)	0.0385 (7)	
N2	0.4468 (3)	0.11526 (14)	0.82373 (17)	0.0396 (7)	
C1	0.6859 (4)	-0.04345 (19)	0.8282 (2)	0.0484 (9)	
H1	0.6865	-0.0662	0.7804	0.058*	
C2	0.7686 (5)	-0.0660 (2)	0.8973 (3)	0.0619 (12)	
H2	0.8243	-0.1024	0.8952	0.074*	
C3	0.7668 (5)	-0.0338 (2)	0.9682 (3)	0.0629 (12)	
H3	0.8202	-0.0486	1.0153	0.075*	
C4	0.6848 (4)	0.02125 (19)	0.9703 (2)	0.0486 (10)	
C5	0.6771 (5)	0.0579 (2)	1.0425 (2)	0.0644 (13)	
H5	0.7280	0.0448	1.0911	0.077*	
C6	0.5972 (5)	0.1109 (2)	1.0404 (2)	0.0654 (13)	
H6	0.5950	0.1339	1.0878	0.079*	
C7	0.5155 (4)	0.13299 (19)	0.9674 (2)	0.0478 (10)	
C8	0.4325 (5)	0.1880 (2)	0.9616 (3)	0.0614 (12)	
H8	0.4282	0.2131	1.0072	0.074*	
C9	0.3580 (5)	0.20512 (19)	0.8897 (3)	0.0575 (11)	
H9	0.3010	0.2414	0.8859	0.069*	
C10	0.3680 (4)	0.16756 (19)	0.8216 (2)	0.0513 (10)	
H10	0.3171	0.1798	0.7725	0.062*	
C11	0.5207 (4)	0.09748 (17)	0.8962 (2)	0.0405 (9)	
C12	0.6062 (4)	0.04080 (17)	0.8974 (2)	0.0394 (9)	

				0.00.00
N3	0.5138 (3)	-0.02261 (14)	0.64572 (17)	0.0359 (7)
N4	0.5801 (3)	0.10061 (13)	0.65101 (16)	0.0339 (7)
C13	0.4767 (4)	-0.08320 (19)	0.6419 (2)	0.0479 (10)
H13	0.4083	-0.0977	0.6747	0.058*
C14	0.5360 (4)	-0.12543 (18)	0.5911 (2)	0.0474 (10)
H14	0.5051	-0.1671	0.5891	0.057*
C15	0.6391 (4)	-0.10603 (18)	0.5445 (2)	0.0455 (10)
H15	0.6815	-0.1345	0.5115	0.055*
C16	0.6810 (4)	-0.04252 (17)	0.54645 (18)	0.0357 (8)
C17	0.7875 (4)	-0.01760 (19)	0.4982 (2)	0.0458 (10)
H17	0.8350	-0.0444	0.4654	0.055*
C18	0.8192 (4)	0.0444 (2)	0.4999 (2)	0.0451 (9)
H18	0.8873	0.0599	0.4676	0.054*
C19	0.7503 (4)	0.08676 (17)	0.5505 (2)	0.0366 (8)
C20	0.7791 (4)	0.15174 (18)	0.5536 (2)	0.0471 (10)
H20	0.8472	0.1691	0.5227	0.057*
C21	0.7055 (5)	0.18921 (19)	0.6029 (2)	0.0542 (11)
H21	0.7200	0.2326	0.6036	0.065*
C22	0.6091 (4)	0.16208 (17)	0.6518 (2)	0.0444 (9)
H22	0.5632	0.1879	0.6865	0.053*
C23	0.6491 (3)	0.06355 (16)	0.60015 (19)	0.0320 (8)
C24	0.6144 (3)	-0.00242 (16)	0.59791 (18)	0.0293 (8)
01	0.2329 (3)	0.07270 (12)	0.68624 (14)	0.0445 (6)
02	0.2732 (3)	-0.01112(12)	0.76159 (15)	0.0468 (7)
C25	0.1853 (4)	0.02656 (18)	0.7233 (2)	0.0386 (9)
C26	0.0227 (4)	0.01661 (18)	0.7220(2)	0.0451 (10)
H26A	0.0056	-0.0170	0.7594	0.054*
H26B	-0.0172	0.0034	0.6680	0.054*
C27	-0.0573(4)	0.07532 (18)	0.7449(2)	0.0463 (10)
H27A	-0.1616	0.0672	0.7362	0.056*
H27B	-0.0365	0 1091	0.7086	0.056*
C28	-0.0188(4)	0.09761 (17)	0.8318(2)	0.030
H28A	-0.0387	0.0641	0.8687	0.051*
H28R	0.0849	0.1070	0.8408	0.051*
C20	-0.1048(4)	0.15551 (18)	0.8501(2)	0.031
H29A	-0.0795	0.1893	0.8149	0.057*
H20R	-0.2079	0.1055	0.8365	0.057*
C30	-0.0816(4)	0.17858 (18)	0.0305	0.037
	0.0810 (4)	0.17838 (18)	0.9303 (2)	0.0497 (10)
H20D	-0.0034	0.1929	0.9470	0.000*
П30Б С21	-0.0934	0.1431 0.22120 (17)	0.9720	0.000°
03	-0.1810(4)	0.23129(17)	0.9387(2)	0.0424(9)
03	-0.1007(3)	0.24772(12)	1.03240(15)	0.0501(7)
04	-0.2/00(3)	0.25491 (12)	0.90506 (16)	0.0518 (7)
	0.0021 (4)	0.29022 (19)	0.7220 (3)	0.09/9(13)
нза	-0.029(2)	0.294 (2)	0.722 (3)	0.117*
нэв	0.082 (5)	0.2586 (18)	0.695 (3)	0.117*
06	0.5105 (4)	0.35021(17)	0.9056 (2)	0.0760 (10)
H6A	0.577 (4)	0.3225 (18)	0.908 (2)	0.091*

H6B	0.463 (4)	0.351 (2)	0.8597 (16)	0.091*
O7	0.3106 (3)	0.36089 (15)	0.7516 (2)	0.0664 (9)
H7A	0.234 (3)	0.3389 (15)	0.740 (3)	0.080*
H7B	0.286 (4)	0.3996 (9)	0.744 (3)	0.080*
08	0.7737 (3)	0.30601 (17)	0.75204 (18)	0.0672 (9)
H8A	0.694 (3)	0.312 (2)	0.7220 (19)	0.081*
H8B	0.754 (4)	0.289 (2)	0.7958 (15)	0.081*
09	0.5085 (3)	0.31376 (16)	0.65131 (18)	0.0663 (9)
H9A	0.453 (4)	0.3297 (19)	0.683 (2)	0.080*
H9B	0.456 (4)	0.2967 (19)	0.6116 (18)	0.080*
O10	0.1348 (4)	0.19689 (15)	0.6205 (2)	0.0749 (10)
H10A	0.196 (4)	0.2109 (18)	0.589 (2)	0.090*
H10B	0.166 (5)	0.1614 (13)	0.638 (3)	0.090*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.0340 (2)	0.0411 (3)	0.0360 (2)	0.0035 (2)	0.00918 (16)	-0.0029 (2)
N1	0.0361 (17)	0.0382 (18)	0.0412 (18)	-0.0007 (15)	0.0050 (14)	-0.0012 (15)
N2	0.0360 (17)	0.0397 (18)	0.0446 (19)	-0.0014 (15)	0.0117 (15)	-0.0034 (15)
C1	0.050 (2)	0.044 (2)	0.050 (2)	0.005 (2)	0.0023 (19)	0.003 (2)
C2	0.055 (3)	0.059 (3)	0.070 (3)	0.017 (2)	-0.001 (2)	0.016 (2)
C3	0.062 (3)	0.069 (3)	0.055 (3)	-0.002 (3)	-0.008(2)	0.016 (2)
C4	0.049 (2)	0.052 (3)	0.043 (2)	-0.011 (2)	-0.0036 (19)	0.006 (2)
C5	0.071 (3)	0.080 (4)	0.041 (2)	-0.012 (3)	-0.001 (2)	0.003 (2)
C6	0.081 (3)	0.076 (3)	0.040 (3)	-0.023 (3)	0.010(2)	-0.019 (2)
C7	0.053 (2)	0.048 (3)	0.044 (2)	-0.014 (2)	0.012 (2)	-0.0103 (19)
C8	0.072 (3)	0.050 (3)	0.066 (3)	-0.006 (2)	0.020 (3)	-0.029 (2)
C9	0.056 (3)	0.041 (2)	0.078 (3)	0.006 (2)	0.018 (2)	-0.015 (2)
C10	0.047 (2)	0.048 (3)	0.060 (3)	0.002 (2)	0.010(2)	-0.006 (2)
C11	0.038 (2)	0.043 (2)	0.041 (2)	-0.0112 (19)	0.0085 (18)	-0.0016 (18)
C12	0.041 (2)	0.040 (2)	0.038 (2)	-0.0066 (19)	0.0083 (17)	0.0002 (18)
N3	0.0355 (17)	0.0338 (17)	0.0385 (17)	0.0038 (14)	0.0044 (14)	-0.0020 (13)
N4	0.0336 (16)	0.0360 (18)	0.0329 (16)	0.0057 (14)	0.0078 (13)	-0.0007 (14)
C13	0.043 (2)	0.049 (3)	0.053 (3)	-0.002 (2)	0.010 (2)	0.004 (2)
C14	0.050 (2)	0.037 (2)	0.054 (2)	0.003 (2)	0.000 (2)	-0.005 (2)
C15	0.051 (2)	0.045 (2)	0.039 (2)	0.010 (2)	0.0009 (19)	-0.0086 (18)
C16	0.0365 (19)	0.044 (2)	0.0256 (17)	0.0073 (19)	-0.0020 (15)	-0.0029 (17)
C17	0.054 (2)	0.053 (3)	0.033 (2)	0.011 (2)	0.0116 (18)	-0.0075 (18)
C18	0.047 (2)	0.058 (3)	0.0324 (19)	0.006 (2)	0.0126 (17)	0.003 (2)
C19	0.035 (2)	0.045 (2)	0.0300 (19)	0.0011 (18)	0.0048 (16)	0.0051 (17)
C20	0.051 (2)	0.047 (2)	0.045 (2)	0.000 (2)	0.0145 (19)	0.005 (2)
C21	0.066 (3)	0.036 (2)	0.063 (3)	-0.006 (2)	0.020 (2)	0.002 (2)
C22	0.050 (2)	0.037 (2)	0.047 (2)	0.0023 (19)	0.0128 (19)	-0.0064 (18)
C23	0.0281 (18)	0.040 (2)	0.0274 (18)	0.0062 (16)	0.0009 (15)	0.0012 (15)
C24	0.0280 (18)	0.036 (2)	0.0229 (17)	0.0040 (16)	0.0006 (14)	-0.0008 (15)
01	0.0456 (15)	0.0491 (16)	0.0402 (14)	-0.0004 (13)	0.0104 (12)	-0.0003 (13)
O2	0.0367 (14)	0.0506 (17)	0.0530 (16)	0.0073 (13)	0.0044 (12)	-0.0009 (13)

C25	0.038 (2)	0.047 (2)	0.033 (2)	-0.0004 (19)	0.0100 (17)	-0.0141 (18)
C26	0.033 (2)	0.053 (2)	0.050 (2)	-0.0004 (19)	0.0042 (17)	-0.013 (2)
C27	0.037 (2)	0.055 (2)	0.046 (2)	0.0071 (19)	0.0028 (18)	-0.0063 (19)
C28	0.034 (2)	0.051 (2)	0.043 (2)	0.0076 (19)	0.0055 (17)	-0.0003 (19)
C29	0.045 (2)	0.045 (2)	0.053 (2)	0.0041 (19)	0.0102 (19)	-0.003 (2)
C30	0.049 (2)	0.051 (3)	0.049 (2)	0.009 (2)	0.0070 (19)	-0.004 (2)
C31	0.046 (2)	0.032 (2)	0.052 (3)	0.0022 (19)	0.018 (2)	-0.0001 (19)
O3	0.075 (2)	0.0500 (17)	0.0447 (17)	0.0128 (16)	0.0137 (15)	-0.0042 (14)
O4	0.0510 (17)	0.0512 (17)	0.0543 (17)	0.0130 (14)	0.0110 (14)	0.0012 (14)
O5	0.076 (2)	0.083 (3)	0.145 (4)	-0.020(2)	0.054 (3)	-0.036 (2)
O6	0.073 (2)	0.078 (2)	0.077 (2)	0.0225 (19)	0.0106 (18)	-0.023 (2)
O7	0.0578 (19)	0.060 (2)	0.083 (2)	0.0079 (16)	0.0120 (18)	-0.0120 (19)
08	0.055 (2)	0.095 (3)	0.0522 (18)	0.0039 (19)	0.0068 (15)	0.0066 (18)
09	0.0517 (19)	0.083 (2)	0.064 (2)	0.0020 (17)	0.0033 (15)	-0.0208 (17)
O10	0.087 (2)	0.059 (2)	0.085 (2)	0.0016 (19)	0.042 (2)	0.0066 (18)

Geometric parameters (Å, °)

Zn—N4	2.128 (3)	C17—H17	0.9300
Zn—N3	2.129 (3)	C18—C19	1.427 (5)
Zn—N2	2.148 (3)	C18—H18	0.9300
Zn—N1	2.167 (3)	C19—C23	1.401 (5)
Zn—O1	2.178 (3)	C19—C20	1.405 (5)
Zn—O2	2.224 (3)	C20—C21	1.374 (5)
Zn—C25	2.540 (4)	С20—Н20	0.9300
N1—C1	1.320 (4)	C21—C22	1.393 (5)
N1—C12	1.363 (4)	C21—H21	0.9300
N2—C10	1.325 (5)	C22—H22	0.9300
N2—C11	1.367 (4)	C23—C24	1.437 (5)
C1—C2	1.388 (5)	O1—C25	1.262 (4)
C1—H1	0.9300	O2—C25	1.259 (4)
C2—C3	1.363 (6)	C25—C26	1.509 (5)
С2—Н2	0.9300	C26—C27	1.519 (5)
C3—C4	1.395 (6)	C26—H26A	0.9700
С3—Н3	0.9300	C26—H26B	0.9700
C4—C12	1.400 (5)	C27—C28	1.521 (5)
C4—C5	1.438 (6)	С27—Н27А	0.9700
C5—C6	1.341 (6)	С27—Н27В	0.9700
С5—Н5	0.9300	C28—C29	1.512 (5)
C6—C7	1.431 (6)	C28—H28A	0.9700
С6—Н6	0.9300	C28—H28B	0.9700
С7—С8	1.393 (6)	C29—C30	1.507 (5)
C7—C11	1.408 (5)	С29—Н29А	0.9700
C8—C9	1.357 (6)	С29—Н29В	0.9700
С8—Н8	0.9300	C30—C31	1.521 (5)
C9—C10	1.395 (5)	С30—Н30А	0.9700
С9—Н9	0.9300	С30—Н30В	0.9700
C10—H10	0.9300	C31—O4	1.242 (4)

C11—C12	1.437 (5)	C31—O3	1.264 (4)
N3—C13	1.331 (4)	O5—H5A	0.84 (2)
N3—C24	1.355 (4)	O5—H5B	0.84 (4)
N4—C22	1.333 (4)	O6—H6A	0.85 (4)
N4—C23	1.363 (4)	O6—H6B	0.83 (3)
C13—C14	1.385 (5)	O7—H7A	0.85 (3)
C13—H13	0.9300	O7—H7B	0.86 (2)
C14—C15	1.355 (5)	O8—H8A	0.85 (3)
C14—H14	0.9300	O8—H8B	0.85 (3)
C15—C16	1.403 (5)	O9—H9A	0.84 (4)
С15—Н15	0.9300	O9—H9B	0.85(3)
C16-C24	1 396 (4)	010—H10A	0.86(4)
C_{16} C_{17}	1.396(1) 1 436(5)	O10 H10B	0.85(3)
C17 - C18	1 349 (5)		0.05 (5)
017 010	1.549 (5)		
N4—Zn—N3	78.26 (11)	C14—C15—H15	120.4
N4—Zn—N2	99.28 (11)	C16—C15—H15	120.4
N3—Zn—N2	168.21 (11)	C24—C16—C15	117.5 (3)
N4—Zn—N1	109.01 (11)	C24—C16—C17	119.4 (3)
N3—Zn—N1	92.26 (11)	C15—C16—C17	123.0 (3)
N2— Zn — $N1$	77.55 (11)	C18—C17—C16	120.5 (3)
N4—Zn—O1	102.80 (10)	C18—C17—H17	119.8
N3 - Zn - O1	104.68 (10)	C16—C17—H17	119.8
$N^2 - Zn - O^1$	87 11 (10)	C17 - C18 - C19	121 3 (3)
N1 - Zn - O1	14642(10)	C17 - C18 - H18	119.4
N4 - Zn - O2	15642(10)	C19— $C18$ — $H18$	119.1
$N_3 = Z_n = O_2^2$	90.89 (10)	C^{23} $-C^{19}$ $-C^{20}$	117.3 (3)
$N_2 = 7n = 0^2$	95 35 (10)	C_{23} C_{19} C_{20}	117.5(3)
$N_1 - Z_n - O_2$	92 10 (10)	C_{20} C_{19} C_{18}	117.0(3) 123.1(3)
01 $7n$ 02	59.45 (9)	$C_{20} = C_{10} = C_{10}$	123.1(3) 110.2(4)
N_{1} Z_{n} C_{2}	131 21 (12)	$C_{21} C_{20} H_{20}$	119.2 (+)
N_{4} Z_{11} C_{25}	131.21(12) 00 51 (11)	$C_{21} - C_{20} - H_{20}$	120.4
$N_2 = Z_1 = C_2 S$	90.80 (11)	$C_{10} = C_{20} = 1120$	110.8 (1)
$N_2 - Z_{II} - C_{23}$	110.78(12)	$C_{20} = C_{21} = C_{22}$	119.8 (4)
$n_{-2n} - c_{23}$	119.78(12) 20.77(10)	$C_{20} = C_{21} = H_{21}$	120.1
$O_1 = Z_1 = C_{23}$	29.77(10) 20.60(10)	N4 C22 C21	120.1 122.6(3)
$C1 \times 1 \times C12$	29.09 (10)	$N_{4} = C_{22} = C_{21}$	122.0 (5)
C1 = N1 = C12 C1 = N1 = 7n	129 5 (3)	C_{21} C_{22} H_{22}	118.7
C12—N1—Zn	123.3(3) 113.0(2)	N4-C23-C19	123 3 (3)
C10 - N2 - C11	113.0(2) 118.2(3)	N4 - C23 - C24	123.5(3) 117.5(3)
C10-N2-Zn	127.9 (3)	C19-C23-C24	119.2 (3)
C11 - N2 - Zn	113.6 (2)	N3-C24-C16	122.8 (3)
N1-C1-C2	123.8 (4)	N3-C24-C23	117.3(3)
N1-C1-H1	118.1	C_{16} C_{24} C_{23}	119.9 (3)
C2—C1—H1	118.1	$C_{25} - O_{1} - Z_{n}$	91.2 (2)
$C_3 - C_2 - C_1$	118.8 (4)	$C_{25} = 0^{2} = Z_{n}$	89 2 (2)
C3—C2—H2	120.6	02-C25-01	1201(3)
C1—C2—H2	120.6	02 - C25 - C26	1199(3)
		02 020 020	

C2—C3—C4	120.1 (4)	O1—C25—C26	120.0 (4)
С2—С3—Н3	120.0	O2—C25—Zn	61.09 (19)
С4—С3—Н3	120.0	O1—C25—Zn	59.01 (18)
C3—C4—C12	117.1 (4)	C26—C25—Zn	177.7 (3)
C3—C4—C5	123.5 (4)	C25—C26—C27	112.9 (3)
C12—C4—C5	119.3 (4)	C25—C26—H26A	109.0
C6—C5—C4	120.7 (4)	C27—C26—H26A	109.0
С6—С5—Н5	119.6	C25—C26—H26B	109.0
C4—C5—H5	119.6	C27—C26—H26B	109.0
C5—C6—C7	122.1 (4)	H26A—C26—H26B	107.8
С5—С6—Н6	118.9	C26—C27—C28	115.2 (3)
С7—С6—Н6	118.9	С26—С27—Н27А	108.5
C8—C7—C11	117.5 (4)	С28—С27—Н27А	108.5
C8—C7—C6	124.5 (4)	С26—С27—Н27В	108.5
C11—C7—C6	118.0 (4)	С28—С27—Н27В	108.5
C9—C8—C7	120.3 (4)	H27A—C27—H27B	107.5
С9—С8—Н8	119.8	C29—C28—C27	111.8 (3)
С7—С8—Н8	119.8	C29—C28—H28A	109.2
C8—C9—C10	119.1 (4)	C27—C28—H28A	109.2
С8—С9—Н9	120.5	C29—C28—H28B	109.2
С10—С9—Н9	120.5	C27—C28—H28B	109.2
N2—C10—C9	123.0 (4)	H28A—C28—H28B	107.9
N2-C10-H10	118.5	C30—C29—C28	115.8 (3)
С9—С10—Н10	118.5	C30—C29—H29A	108.3
N2—C11—C7	122.0 (4)	C28—C29—H29A	108.3
N2-C11-C12	117.5 (3)	С30—С29—Н29В	108.3
C7—C11—C12	120.5 (3)	C28—C29—H29B	108.3
N1—C12—C4	122.9 (4)	H29A—C29—H29B	107.4
N1-C12-C11	117.7 (3)	C29—C30—C31	116.5 (3)
C4—C12—C11	119.3 (3)	С29—С30—Н30А	108.2
C13—N3—C24	117.8 (3)	C31—C30—H30A	108.2
C13—N3—Zn	128.8 (3)	С29—С30—Н30В	108.2
C24—N3—Zn	112.9 (2)	C31—C30—H30B	108.2
C22—N4—C23	117.7 (3)	H30A—C30—H30B	107.3
C22—N4—Zn	129.3 (2)	O4—C31—O3	124.9 (3)
C23—N4—Zn	112.6 (2)	O4—C31—C30	119.2 (3)
N3—C13—C14	122.6 (4)	O3—C31—C30	115.8 (4)
N3—C13—H13	118.7	H5A—O5—H5B	111 (3)
C14—C13—H13	118.7	H6A—O6—H6B	111 (3)
C15—C14—C13	120.0 (4)	H7A—O7—H7B	107 (3)
C15—C14—H14	120.0	H8A—O8—H8B	108 (3)
C13—C14—H14	120.0	H9A—O9—H9B	108 (3)
C14—C15—C16	119.2 (3)	H10A—O10—H10B	107 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
O5—H5 <i>A</i> ···O8 ⁱ	0.84 (2)	1.95 (2)	2.776 (5)	165 (5)

supporting information

O5—H5 <i>B</i> ···O10	0.84 (4)	1.90 (4)	2.733 (6)	170 (4)
O6—H6A····O4 ⁱⁱ	0.85 (4)	2.02 (2)	2.861 (5)	176 (3)
O6—H6 <i>B</i> ···O7	0.83 (3)	2.16 (3)	2.985 (5)	170 (3)
O7—H7 <i>A</i> ···O5	0.85 (3)	1.89 (3)	2.734 (5)	176 (5)
O7—H7 <i>B</i> ···O2 ⁱⁱⁱ	0.86 (2)	1.97 (2)	2.828 (4)	174 (5)
O8—H8A···O9	0.85 (3)	1.96 (3)	2.804 (4)	172 (4)
O8—H8 <i>B</i> ···O4 ⁱⁱ	0.85 (3)	1.99 (3)	2.832 (4)	173 (3)
O9—H9A…O7	0.84 (4)	1.95 (2)	2.789 (4)	175 (4)
O9—H9 <i>B</i> ···O3 ^{iv}	0.85 (3)	1.89 (3)	2.736 (4)	173 (4)
O10—H10A…O3 ^{iv}	0.86 (2)	1.88 (4)	2.732 (4)	171 (4)
O10—H10B…O1	0.85 (3)	2.11 (3)	2.957 (4)	176 (4)
С2—Н2…О9 ^v	0.93	2.53	3.429 (5)	162
C5—H5····O2 ^{vi}	0.93	2.55	3.381 (4)	149
C17—H17…O1 ^{vii}	0.93	2.59	3.263 (4)	129
C18—H18····O6 ^{iv}	0.93	2.50	3.344 (5)	151
C26—H26 B ···Cg1 ⁱ	0.97	2.99	3.791 (4)	140
C27—H27 A ···Cg2 ⁱ	0.97	2.82	3.375 (4)	117

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*; (iii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iv) *x*+1/2, -*y*+1/2, *z*-1/2; (v) -*x*+3/2, *y*-1/2, -*z*+3/2; (vi) -*x*+1, -*y*, -*z*+2; (vii) -*x*+1, -*y*, -*z*+2; (vii) -*x*+1, -*y*, -*z*+1.