Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[tris{ μ_2 -4-[4-(dimethylamino)phenyldiazenvl]benzenesulfonato}tridioxanetrisodium(I)]

Kazuvuki Sato, Hiroki Shibata and Jin Mizuguchi*

Department of Applied Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan Correspondence e-mail: mizu-j@ynu.ac.jp

Received 4 March 2008: accepted 25 March 2008

Key indicators: single-crystal X-ray study; T = 93 K; mean $\sigma(C-C) = 0.005$ Å; R factor = 0.045; wR factor = 0.086; data-to-parameter ratio = 13.6.

The title compound, $[Na_3(C_{14}H_{14}N_3O_3S)_3(C_4H_8O_2)_3]_n$, is a polynuclear complex which includes, in the monomeric unit, three units of Na^I-4'-dimethylaminoazobenzene-4-sulfonate [known as methyl orange (MO)] and three molecules of dioxane (C₄H₈O₂). These constitute three kinds of Na^I centres. two of which are seven-coordinate while the third is fivecoordinate. One of the seven-coordinate centres is coordinated by six O atoms from the sulfonate groups of four different MOs and by one O atom from dioxane. The other is coordinated by seven O atoms from the sulfonate groups of five different MOs. The five-coordinate centre is coordinated by three O atoms from the sulfonate groups of three different MOs and two O atoms from two different dioxanes. In the crystal structure, a one-dimensional polymer chain is formed along the a axis and this ensures the thermal stability of the title compound. It is also to be noted that the N=N bond lengths of the three azo groups are appreciably different [1.259 (4), 1.196 (4), and 1.253 (4) Å].

Related literature

For general background on azo pigments, see: Herbst & Hunger (2004). For solvated methyl orange, see: Hanson (1973); Kennedy et al. (2004). For 4'-dimethylaminoazobenzene-4-sulfonic acid, see: Burke et al. (2004).

Experimental

Crystal data

[Na₃(C₁₄H₁₄N₃O₃S)₃(C₄H₈O₂)₃] $M_r = 1246.34$ Orthorhombic, $P2_12_12_1$ a = 8.4471 (6) Å b = 155153(10) Å c = 44.488 (3) Å

Data collection

Rigaku R-AXIS RAPID	47815 measured reflections
diffractometer	10385 independent reflections
Absorption correction: multi-scan	6459 reflections with $F^2 > 2\sigma(F^2)$
(Higashi, 1995)	$R_{\rm int} = 0.088$
$T_{\min} = 0.468, \ T_{\max} = 0.869$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	$\Delta \rho_{\rm max} = 0.36 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.085$	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$
S = 0.81	Absolute structure: Flack (1983),
10385 reflections	with 4457 Friedel pairs
764 parameters	Flack parameter: 0.006 (14)
H-atom parameters constrained	-

V = 5830.6 (7) Å³

Cu Ka radiation

 $0.45 \times 0.08 \times 0.07 \text{ mm}$

 $\mu = 2.01 \text{ mm}^-$

T = 93(1) K

Z = 4

Table 1

	Selected	bond	lengths	(A)).
--	----------	------	---------	-----	----

Na1-O1	2.341 (2)	Na2-O8	2.570 (2)
Na1-O4	2.394 (2)	Na2–O9 ⁱ	2.477 (2)
Na1–O9 ⁱ	2.258 (2)	Na3–O2 ⁱ	2.402 (2)
Na1-O10	2.400 (2)	Na3–O3 ⁱ	2.604 (2)
Na1-O12	2.280 (2)	Na3-O4 ⁱⁱ	2.446 (2)
Na2–O2	2.288 (2)	Na3–O6 ⁱⁱ	2.607 (2)
Na2—O5	2.371 (2)	Na3–O7 ⁱ	2.471 (2)
Na2–O6 ⁱⁱ	2.426 (2)	Na3-O8	2.449 (2)
Na2—O7	2.459 (2)	Na3-O14	2.434 (2)
Na2–O7 ⁱ	2.643 (2)		

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC & Rigaku, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2280).

References

- Burke, N. J., Burrows, A. D., Mahon, M. F. & Teat, S. J. (2004). CrystEngComm, 6 429-437
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hanson, A. W. (1973). Acta Cryst. B29, 454-460.
- Herbst, W. & Hunger, K. (2004). Industrial Organic Pigments, pp. 183-419. Weinheim: VCH.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Kennedy, A. R., Kirkhouse, J. B. A., McCarney, K. M., Puissegur, O., Smith, W. E., Staunton, E., Teat, S. J., Cherryman, J. C. & James, R. (2004). *Chem. Eur. J.* 10, 4606–4615.

Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC and Rigaku (2006). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA and Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

supporting information

Acta Cryst. (2008). E64, m586-m587 [doi:10.1107/S1600536808008015]

Poly[tris{ μ_2 -4-[4-(dimethylamino)phenyldiazenyl]benzenesulfonato}-tridioxanetrisodium(I)]

Kazuyuki Sato, Hiroki Shibata and Jin Mizuguchi

S1. Comment

We are involved in the color generation mechanism of azo pigments typically characterized by the chromophore of the azo group (-N=N-). However, some types of azo pigments are also known to possess the hydrazone structure (=N- NH–), often leading to the formation of intramolecular hydrogen bonds (Herbst & Hunger, 2004). Methyl orange (MO) (NaO₃SC₆H₄N=NC₆H₄NMe₂), the skeleton of the title compound, is known as one of the classical azo pigments and its structure which includes solvent molecules as ligands have been determined by Hanson (1973) and Kennedy *et al.* (2004). These papers report the N/N distance to be about 1.24 Å, *i.e.* the typical distance of the -N=N- bond. On the other hand, the methyl orange derivative (HO₃SC₆H₄N=NC₆H₄NMe₂: 4'-dimethylaminoazobenzene-4-sulfonic acid) in which the Na atom is replace by H atom has been found to possess a zwitterionic structure in the solid state: $^{-}$ O₃SC₆H₄NH⁺=NC₆H₄NMe as characterized by a NH···O intermolecular hydrogen bond between the NH group of one molecule and one of the sulfate oxygen atoms (Burke *et al.*, 2004). This structure reveals a lengthening of the N=N bond to 1.307 (3) Å, indicating a hydrozone-like structure. In addition, the color of the crystal is no more orange but red violet. This motivated us to study the correlation between the crystal structure has been determined in the present investigation.

Figure 1 shows the *ORTEPIII* plot (Burnett & Johnson, 1996) of the monomeric unit of (I). The asymmetric unit includes three MO molecules together with three dioxane ones. These constitute three kinds of Na(I)-complexes, two of which are seven-coordinate and the other is five-coordinate. As shown in Fig. 2, there are two kinds of seven-coordinate complexes, one of which is chelated by six O atoms from the sulfonic group of four different MOs and also by one O atom from dioxane. The other is coordinated by seven O atoms from the sulfonic group of five different MOs. The five-coordinate complex includes three O atoms from the sulfonic group of three different MOs as well as two O atoms from the two different dioxanes. It is also important to note that the N/N bond lengths are typical of the azo group (-N=N-) but these are significantly different: 1.259 (4) Å for N1/N2, 1.196 (5) Å for N4/N5, and 1.253 (4) Å for N7/N8. The monomeric unit is extended alternately to form a one dimensional polymer along the *a* axis as shown in Fig. 3.

S2. Experimental

MO was purchased from Junsei Chemical Co., Ltd. Single crystals of (I) were grown by recrystallization from a dimethylacetamide solution by slow diffusion of 1,4-dioxane. After a week, a number of orange needle-like single crystals were obtained.

S3. Refinement

All H atoms were placed in geometrically idealized position and constrained to ride on their parent atoms, with C—H = 0.95, 0.98 and 0.99 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

A view of the monomeric structure of (I), showing 50% displacement ellipsoids.

Figure 2

The three kinds of Na-complexes: five-coordinate Na1, seven-coordinate Na2 and Na3 [symmetry codes: (i) 1/2 + x, 1/2 - y, 1 - z; (ii) -1/2 + x, 1/2 - y, 1 - z].

Figure 3

The crystal packing of the title compound.

$Poly[tris{\mu_2-4-[4- (dimethylamino)phenyldiazenyl]benzenesulfonato}tridioxanetrisodium(I)]$

Crystal data	
$[Na_3(C_{14}H_{14}N_3O_3S)_3(C_4H_8O_2)_3]$	F(000) = 2616.00
$M_r = 1246.34$	$D_{\rm x} = 1.420 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Cu K α radiation, $\lambda = 1.54187$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 37788 reflections
a = 8.4471 (6) Å	$\theta = 3.0-69.5^{\circ}$
b = 15.5153 (10) Å	$\mu = 2.01 \text{ mm}^{-1}$
c = 44.488(3) Å	T = 93 K
V = 5830.6 (7) Å ³	Needle, orange
Z = 4	$0.45 \times 0.08 \times 0.07 \text{ mm}$
Data collection	
Rigaku R-AXIS RAPID	10385 independent reflections
diffractometer	6459 reflections with $F^2 > 2\sigma(F^2)$
Detector resolution: 10.00 pixels mm ⁻¹	$R_{\rm int} = 0.088$
ω scans	$\theta_{\rm max} = 68.2^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(Higashi, 1995)	$k = -18 \rightarrow 18$
$T_{\min} = 0.468, \ T_{\max} = 0.869$	$l = -53 \rightarrow 52$
47815 measured reflections	
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.085$ S = 0.8110385 reflections 764 parameters 0 restraints H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0379P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.36 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.43 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack (1983), 4457 Friedel pairs Absolute structure parameter: 0.006 (14)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F² against all reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F². The threshold expression of F² > σ (F²) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	-0.22723 (12)	0.51838 (6)	0.500329 (18)	0.0235 (2)	
S2	0.24529 (12)	0.33481 (6)	0.444409 (17)	0.0228 (2)	
S3	-0.23478 (12)	0.15835 (6)	0.469265 (17)	0.0207 (2)	
Na1	0.14117 (17)	0.50896 (9)	0.48393 (3)	0.0364 (4)	
Na2	-0.05298 (15)	0.30286 (8)	0.49922 (3)	0.0222 (3)	
Na3	0.06100 (16)	0.11580 (8)	0.52800 (3)	0.0247 (3)	
01	-0.1035 (2)	0.57736 (15)	0.49049 (5)	0.0289 (6)	
O2	-0.1910 (2)	0.42862 (14)	0.49340 (5)	0.0263 (6)	
O3	-0.3846 (2)	0.54162 (14)	0.48945 (5)	0.0272 (6)	
O4	0.3013 (2)	0.42185 (14)	0.45153 (5)	0.0288 (6)	
05	0.0808 (2)	0.32228 (16)	0.45286 (5)	0.0307 (6)	
O6	0.3528 (3)	0.26919 (14)	0.45582 (4)	0.0284 (6)	
07	-0.2901 (2)	0.24718 (13)	0.47370 (4)	0.0219 (6)	
08	-0.0744 (2)	0.14658 (14)	0.48053 (4)	0.0212 (5)	
09	-0.3498 (2)	0.09663 (14)	0.48117 (4)	0.0229 (6)	
O10	0.2588 (3)	0.61217 (16)	0.51733 (5)	0.0493 (8)	
O11	0.3014 (3)	0.7091 (2)	0.57093 (7)	0.0600 (9)	
012	0.1835 (3)	0.60985 (16)	0.44754 (6)	0.0412 (7)	
O13	0.2640 (3)	0.69209 (16)	0.39299 (5)	0.0384 (7)	
O14	0.1498 (2)	0.07239 (16)	0.57779 (5)	0.0301 (6)	
O15	0.3011 (3)	0.03688 (16)	0.63339 (5)	0.0354 (7)	
N1	-0.2081 (3)	0.54629 (18)	0.63447 (6)	0.0288 (8)	
N2	-0.2712 (3)	0.48628 (18)	0.64929 (6)	0.0284 (7)	
N3	-0.2357 (4)	0.4979 (2)	0.77516 (6)	0.0410 (9)	
N4	0.2901 (4)	0.2991 (2)	0.30969 (7)	0.0450 (10)	
N5	0.2201 (4)	0.3531 (2)	0.29585 (8)	0.0466 (10)	
N6	0.2814 (4)	0.3307 (2)	0.16975 (6)	0.0425 (9)	
N7	-0.2721 (4)	0.12369 (19)	0.33631 (6)	0.0310 (8)	
N8	-0.1971 (3)	0.18020 (19)	0.32210 (6)	0.0335 (9)	
N9	-0.2472 (4)	0.1789 (2)	0.19640 (6)	0.0397 (9)	
C1	-0.2283 (4)	0.5248 (2)	0.54014 (7)	0.0235 (9)	
C2	-0.1781 (4)	0.5994 (2)	0.55415 (8)	0.0356 (11)	
C3	-0.1741 (4)	0.6044 (2)	0.58525 (7)	0.0401 (11)	
C4	-0.2232 (4)	0.5361 (2)	0.60262 (7)	0.0248 (9)	
C5	-0.2779 (4)	0.4619 (2)	0.58864 (7)	0.0266 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C6	-0.2802 (4)	0.4555 (2)	0.55754 (7)	0.0263 (9)
C7	-0.2540 (5)	0.4925 (2)	0.68062 (7)	0.0283 (9)
C8	-0.1563 (4)	0.5506 (2)	0.69568 (8)	0.0312 (10)
С9	-0.1486 (4)	0.5526 (2)	0.72657 (8)	0.0363 (11)
C10	-0.2412 (5)	0.4964 (2)	0.74404 (7)	0.0316 (10)
C11	-0.3357 (4)	0.4355 (2)	0.72890 (8)	0.0366 (11)
C12	-0.3399 (4)	0.4343 (2)	0.69779 (8)	0.0355 (10)
C13	-0.1415 (4)	0.5631 (2)	0.79053 (7)	0.0426 (11)
C14	-0.3432(4)	0.4472 (2)	0.79285 (8)	0.0433 (11)
C15	0.2514 (4)	0.3268(2)	0.40466 (7)	0.0228 (8)
C16	0.3362(4)	0.2605(2)	0.39107 (8)	0.0340(10)
C17	0.3430(4)	0.2538(2)	0 36013 (8)	0.0376(11)
C18	0.2644(5)	0.2000(2) 0.3132(2)	0.34274(8)	0.0398(11)
C19	0.2044(5) 0.1751(4)	0.3783(2)	0.34274(0) 0.35570(8)	0.0390(11) 0.0387(11)
C20	0.1791(4) 0.1685(4)	0.3703(2) 0.3847(2)	0.35570(8) 0.38701(8)	0.0317(10)
C21	0.1003(4) 0.2468(6)	0.3647(2) 0.3415(2)	0.36701(8)	0.0317(10)
C21	0.2408(0) 0.2301(4)	0.3413(2) 0.2776(2)	0.20331(8)	0.0429(12)
C22	0.3391(4) 0.3525(5)	0.2770(2) 0.2728(2)	0.24980(8)	0.0410(12)
C23	0.3323(3)	0.2738(2)	0.21009(0)	0.0404(11)
C24	0.2711(3)	0.3328 (2)	0.20008 (8)	0.0330(10)
C25	0.1/7/(4)	0.3962 (2)	0.21499 (8)	0.0402(12)
C26	0.1683 (5)	0.3989 (2)	0.24557 (9)	0.04/3(12)
C27	0.3/30(5)	0.2643(2)	0.15458 (8)	0.0536 (13)
C28	0.2072 (6)	0.3977 (2)	0.15193 (8)	0.0797 (18)
C29	-0.2317 (4)	0.14013 (19)	0.42995 (7)	0.0183 (8)
C30	-0.3588 (4)	0.0990 (2)	0.41650 (7)	0.0233 (9)
C31	-0.3643 (4)	0.0927 (2)	0.38564 (7)	0.0282 (9)
C32	-0.2470 (4)	0.1300 (2)	0.36811 (7)	0.0237 (9)
C33	-0.1157 (4)	0.1677 (2)	0.38175 (7)	0.0276 (9)
C34	-0.1070 (4)	0.1729 (2)	0.41273 (7)	0.0227 (9)
C35	-0.2204 (4)	0.1761 (2)	0.29030 (7)	0.0283 (10)
C36	-0.3160 (4)	0.1176 (2)	0.27532 (8)	0.0379 (11)
C37	-0.3253 (4)	0.1181 (2)	0.24433 (8)	0.0389 (11)
C38	-0.2368 (5)	0.1778 (2)	0.22709 (8)	0.0332 (10)
C39	-0.1413 (4)	0.2362 (2)	0.24270 (8)	0.0339 (11)
C40	-0.1333 (4)	0.2352 (2)	0.27349 (8)	0.0348 (10)
C41	-0.3149 (5)	0.1046 (2)	0.18092 (7)	0.0518 (14)
C42	-0.1464 (4)	0.2364 (2)	0.17905 (7)	0.0426 (11)
C43	0.2370 (6)	0.7041 (2)	0.51826 (10)	0.0663 (15)
C44	0.1934 (5)	0.7348 (2)	0.54849 (13)	0.0758 (17)
C45	0.3257 (5)	0.6181 (2)	0.57015 (9)	0.0543 (14)
C46	0.3743 (4)	0.5895 (2)	0.53932 (8)	0.0389 (11)
C47	0.3421 (5)	0.6270 (3)	0.44005 (10)	0.0586 (14)
C48	0.3665 (4)	0.6332 (3)	0.40808 (9)	0.0591 (14)
C49	0.1042 (5)	0.6743 (3)	0.40154 (9)	0.0645 (15)
C50	0.0770 (5)	0.6692 (2)	0.43346 (9)	0.0561 (13)
C51	0.2248 (4)	0.1395 (2)	0.59486 (7)	0.0299 (9)
C52	0.2227 (4)	0.1169 (2)	0.62798 (7)	0.0374 (10)
C53	0.2281 (4)	-0.0283 (2)	0.61608 (7)	0.0345 (10)
	× /		\ /	()

C54	0.2307 (4)	-0.0064 (2)	0.58293 (7)	0.0316 (10)
H2	-0.1460	0.6475	0.5424	0.043*
Н3	-0.1371	0.6555	0.5947	0.048*
Н5	-0.3142	0.4149	0.6005	0.032*
H6	-0.3168	0.4043	0.5481	0.032*
H8	-0.0936	0.5898	0.6844	0.037*
H9	-0.0798	0.5924	0.7362	0.044*
H11	-0.3967	0.3952	0.7400	0.044*
H12	-0.4035	0.3925	0.6879	0.043*
H13a	-0.1810	0.6205	0.7853	0.051*
H13b	-0.0306	0.5578	0.7843	0.051*
H13c	-0.1496	0.5546	0.8123	0.051*
H14a	-0.3174	0.3860	0.7906	0.052*
H14b	-0.4519	0.4574	0.7860	0.052*
H14c	-0.3338	0.4636	0.8141	0.052*
H16	0.3900	0.2195	0.4032	0.041*
H17	0.4015	0.2086	0.3510	0.045*
H19	0.1191	0.4181	0.3434	0.046*
H20	0.1071	0.4287	0.3962	0.038*
H22	0.3928	0.2366	0.2620	0.050*
H23	0.4173	0.2309	0.2099	0.048*
H25	0.1213	0.4370	0.2033	0.048*
H26	0.1049	0.4421	0.2548	0.057*
H27a	0.4857	0.2726	0.1588	0.064*
H27b	0.3551	0.2680	0.1329	0.064*
H27c	0.3397	0.2074	0.1618	0.064*
H28a	0.2426	0.3930	0.1310	0.096*
H28b	0.2370	0.4543	0.1599	0.096*
H28c	0.0920	0.3912	0.1528	0.096*
H30	-0.4413	0.0753	0.4284	0.028*
H31	-0.4490	0.0626	0.3763	0.034*
H33	-0.0320	0.1899	0.3698	0.033*
H34	-0.0177	0.1984	0.4222	0.027*
H36	-0.3757	0.0768	0.2865	0.045*
H37	-0.3920	0.0777	0.2344	0.047*
H39	-0.0810	0.2773	0.2318	0.041*
H40	-0.0672	0.2754	0.2835	0.042*
H41a	-0.2576	0.0524	0.1868	0.062*
H41b	-0.3059	0.1128	0.1592	0.062*
H41c	-0.4268	0.0988	0.1864	0.062*
H42a	-0.1809	0.2365	0 1580	0.051*
H42b	-0.0365	0.2166	0.1802	0.051*
H42c	-0.1540	0.2949	0.1872	0.051*
H43a	0.1528	0.7205	0.5039	0.080*
H43h	0 3361	0.7328	0.5119	0.080*
H44a	0.1873	0.7985	0.5482	0.000
H44h	0.0871	0 7124	0.5536	0.091
H45a	0 2267	0 5883	0.5760	0.051
11104	0.4401	0.0000	0.0100	0.000

supporting information

H45b	0.4089	0.6021	0.5848	0.065*
H46a	0.4767	0.6166	0.5341	0.047*
H46b	0.3893	0.5262	0.5393	0.047*
H47a	0.4100	0.5806	0.4482	0.070*
H47b	0.3749	0.6818	0.4496	0.070*
H48a	0.4774	0.6508	0.4044	0.071*
H48b	0.3519	0.5753	0.3992	0.071*
H49a	0.0718	0.6190	0.3923	0.077*
H49b	0.0352	0.7199	0.3931	0.077*
H50a	0.0909	0.7270	0.4425	0.067*
H50b	-0.0334	0.6506	0.4372	0.067*
H51a	0.1684	0.1947	0.5916	0.036*
H51b	0.3356	0.1468	0.5880	0.036*
H52a	0.2757	0.1631	0.6395	0.045*
H52b	0.1117	0.1129	0.6350	0.045*
H53a	0.1171	-0.0356	0.6228	0.041*
H53b	0.2840	-0.0836	0.6194	0.041*
H54a	0.3417	-0.0013	0.5760	0.038*
H54b	0.1793	-0.0532	0.5714	0.038*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0279 (6)	0.0264 (5)	0.0162 (4)	0.0019 (5)	-0.0006 (4)	0.0012 (3)
S2	0.0255 (6)	0.0286 (5)	0.0142 (4)	-0.0006 (5)	0.0006 (4)	0.0010 (3)
S3	0.0248 (6)	0.0238 (5)	0.0136 (4)	0.0007 (5)	0.0003 (4)	-0.0008 (3)
Na1	0.0469 (10)	0.0338 (8)	0.0285 (7)	0.0075 (8)	0.0062 (7)	0.0099 (6)
Na2	0.0234 (8)	0.0246 (7)	0.0187 (6)	-0.0009 (6)	0.0017 (6)	0.0002 (6)
Na3	0.0260 (9)	0.0277 (8)	0.0206 (7)	0.0023 (7)	0.0003 (6)	0.0011 (6)
01	0.0337 (16)	0.0338 (15)	0.0193 (13)	-0.0084 (13)	0.0039 (12)	0.0015 (11)
O2	0.0323 (16)	0.0229 (13)	0.0239 (13)	0.0056 (12)	-0.0026 (11)	-0.0033 (10)
O3	0.0312 (16)	0.0347 (15)	0.0157 (12)	0.0060 (13)	-0.0040 (11)	-0.0007 (11)
O4	0.0364 (18)	0.0254 (14)	0.0244 (13)	-0.0094 (13)	0.0024 (12)	-0.0009 (10)
05	0.0219 (15)	0.0525 (17)	0.0177 (13)	-0.0041 (14)	0.0037 (11)	-0.0025 (12)
06	0.0396 (18)	0.0292 (14)	0.0165 (13)	0.0084 (14)	-0.0028 (12)	0.0020 (10)
O7	0.0292 (16)	0.0179 (12)	0.0186 (12)	0.0030 (12)	-0.0033 (11)	-0.0025 (9)
08	0.0185 (14)	0.0325 (15)	0.0126 (12)	0.0041 (12)	-0.0056 (10)	0.0034 (10)
09	0.0253 (15)	0.0228 (14)	0.0205 (13)	-0.0031 (12)	0.0044 (11)	0.0021 (10)
O10	0.065 (2)	0.0376 (17)	0.0452 (17)	0.0097 (18)	-0.0302 (17)	-0.0086 (13)
011	0.057 (2)	0.058 (2)	0.065 (2)	-0.0100 (19)	0.0032 (19)	-0.0125 (17)
012	0.0334 (19)	0.0430 (18)	0.0471 (17)	0.0066 (15)	0.0023 (14)	0.0237 (14)
013	0.0374 (19)	0.0487 (17)	0.0292 (13)	0.0134 (17)	0.0061 (15)	0.0104 (12)
O14	0.0334 (17)	0.0327 (15)	0.0244 (14)	0.0021 (14)	-0.0016 (12)	0.0030 (12)
015	0.046 (2)	0.0380 (16)	0.0221 (13)	-0.0015 (14)	-0.0059 (13)	0.0031 (12)
N1	0.034 (2)	0.0276 (19)	0.0251 (17)	0.0020 (16)	-0.0024 (15)	-0.0023 (14)
N2	0.027 (2)	0.0351 (19)	0.0231 (16)	0.0001 (18)	0.0032 (15)	0.0032 (14)
N3	0.044 (2)	0.057 (2)	0.0221 (17)	-0.008 (2)	0.0027 (19)	-0.0071 (16)
N4	0.040 (2)	0.043 (2)	0.053 (2)	-0.009 (2)	-0.014 (2)	0.0018 (17)

supporting information

N5	0.042 (2)	0.039 (2)	0.059 (2)	-0.009(2)	-0.016 (2)	0.0077 (18)
N6	0.071 (2)	0.042 (2)	0.0152 (16)	0.001 (2)	0.0008 (18)	0.0008 (15)
N7	0.035 (2)	0.035 (2)	0.0238 (17)	0.0062 (18)	0.0048 (17)	0.0006 (14)
N8	0.039 (2)	0.035 (2)	0.0261 (18)	0.0051 (18)	0.0060 (16)	-0.0020 (15)
N9	0.057 (2)	0.048 (2)	0.0141 (15)	-0.015 (2)	-0.0007 (19)	-0.0021 (14)
C1	0.026 (2)	0.021 (2)	0.0233 (19)	0.003 (2)	-0.0032(18)	-0.0017(15)
C2	0.059(3)	0.024(2)	0.024 (2)	-0.015(2)	-0.003(2)	0.0063(17)
C3	0.066(3)	0.032(2)	0.022(2)	-0.011(2)	-0.003(2)	-0.0080(17)
C4	0.027(2)	0.030(2)	0.0169(19)	0.002(2)	-0.0005(18)	-0.0023(15)
C5	0.027(2) 0.029(2)	0.030(2) 0.031(2)	0.0201(18)	-0.004(2)	0.0019(18)	0.0025(10)
C6	0.029(2)	0.021(2)	0.0201(10) 0.0224(19)	-0.0053(19)	0.0011(18)	-0.0075(16)
C7	0.023(2)	0.020(2) 0.034(2)	0.0221(19) 0.0183(18)	-0.007(2)	0.002(2)	-0.0071(16)
C8	0.035(2) 0.037(2)	0.031(2)	0.0105(10)	-0.004(2)	-0.0013(19)	0.0040(17)
C9	0.037(2) 0.045(3)	0.031(2) 0.036(2)	0.023(2)	-0.009(2)	-0.0013(1)	-0.0040(17)
C10	0.013(3)	0.030(2)	0.020(2)	0.009(2)	-0.002(2)	-0.0013(17)
C10	0.035(2)	0.040(2) 0.048(2)	0.022(2)	-0.006(2)	0.004(2)	0.0013(17)
C12	0.038(2)	0.048(2)	0.023(2)	-0.005(2)	-0.0018(10)	-0.0051(19)
C12 C13	0.039(2)	0.040(2)	0.021(2)	-0.003(2)	-0.0018(19)	-0.0030(19)
C13	0.053(3)	0.052(2)	0.022(2)	0.003(2)	-0.002(2)	0.004(2)
C14 C15	0.033(3)	0.034(2)	0.023(2)	0.004(2)	0.004(2)	-0.004(2)
C15	0.023(2)	0.027(2)	0.0100(17)	-0.007(2) -0.013(2)	-0.0012(18)	-0.0028(13) -0.0002(19)
C10 C17	0.038(2)	0.042(2)	0.022(2)	-0.013(2) -0.000(2)	-0.0032(19)	-0.0002(19)
C17	0.041(2)	0.040(2)	0.020(2)	-0.000(2)	0.000(2)	-0.003(2)
C10	0.039(3)	0.038(3)	0.022(2)	-0.023(2)	0.008(2)	-0.009(2)
C19 C20	0.035(2)	0.052(2)	0.029(2)	-0.011(2)	-0.014(2)	0.017(2)
C20	0.020(2)	0.041(2)	0.028(2)	-0.001(2)	-0.0018(18)	0.0033(19)
C21	0.054 (3)	0.052(3)	0.023(2)	-0.023(3)	0.010(2)	-0.007(2)
C22	0.052(3)	0.049(2)	0.023(2)	-0.020(2)	-0.011(2)	0.014(2)
C23	0.051(3)	0.043(2)	0.027(2)	-0.008(2)	0.003(2)	-0.0016(19)
C24	0.049 (3)	0.036 (2)	0.0219 (19)	-0.012(2)	-0.003(2)	0.0025 (18)
C25	0.061(3)	0.035 (2)	0.025 (2)	-0.005(2)	0.001 (2)	0.0016 (18)
C26	0.066(3)	0.044 (2)	0.032(2)	-0.009(2)	0.003(2)	-0.009 (2)
C27	0.071 (3)	0.058 (3)	0.031 (2)	-0.014 (2)	0.006 (2)	-0.013(2)
C28	0.163 (5)	0.053 (3)	0.022 (2)	0.017(3)	0.004 (3)	0.004 (2)
C29	0.024 (2)	0.0144 (18)	0.0169 (17)	0.0065 (19)	-0.0037 (18)	0.0019 (13)
C30	0.026 (2)	0.026 (2)	0.0177 (19)	0.0006 (19)	0.0035 (17)	-0.0031 (16)
C31	0.025 (2)	0.031 (2)	0.028 (2)	-0.004 (2)	-0.0062 (18)	-0.0024 (18)
C32	0.029 (2)	0.026 (2)	0.0162 (18)	0.005 (2)	-0.0052 (19)	-0.0006 (15)
C33	0.025 (2)	0.036 (2)	0.022 (2)	0.003 (2)	0.0105 (17)	0.0057 (17)
C34	0.028 (2)	0.025 (2)	0.0153 (18)	0.0039 (19)	-0.0012 (16)	-0.0027 (16)
C35	0.033 (2)	0.040 (2)	0.0120 (18)	0.005 (2)	0.0011 (18)	-0.0019 (17)
C36	0.052 (3)	0.038 (2)	0.024 (2)	0.003 (2)	0.003 (2)	0.0045 (19)
C37	0.056 (3)	0.039 (2)	0.022 (2)	-0.001(2)	-0.003(2)	-0.0018 (19)
C38	0.041 (2)	0.040 (2)	0.0192 (19)	0.007 (2)	-0.001(2)	-0.0003 (17)
C39	0.041 (3)	0.045 (2)	0.016 (2)	0.003 (2)	0.0072 (19)	0.0069 (18)
C40	0.035 (2)	0.043 (2)	0.027 (2)	0.000 (2)	-0.005 (2)	-0.0036 (19)
C41	0.084 (4)	0.057 (3)	0.014 (2)	-0.002(2)	-0.002 (2)	-0.000 (2)
C42	0.052 (3)	0.057 (2)	0.019 (2)	0.002 (2)	-0.000(2)	0.001 (2)
C43	0.078 (4)	0.028 (2)	0.092 (3)	0.000 (3)	-0.037(3)	-0.009(2)

C44	0.039 (3)	0.049 (3)	0.140 (5)	0.001 (2)	-0.012 (3)	-0.056 (3)
C45	0.066 (3)	0.047 (3)	0.050 (2)	-0.018 (2)	0.019 (2)	-0.014 (2)
C46	0.041 (3)	0.033 (2)	0.043 (2)	0.002 (2)	-0.008(2)	-0.004 (2)
C47	0.032 (3)	0.079 (3)	0.065 (3)	0.001 (2)	0.001 (2)	0.039 (2)
C48	0.038 (3)	0.096 (4)	0.043 (2)	0.022 (3)	0.011 (2)	0.003 (2)
C49	0.044 (3)	0.117 (4)	0.033 (2)	0.046 (3)	0.005 (2)	0.010(2)
C50	0.052 (3)	0.061 (3)	0.055 (3)	0.009(2)	-0.002 (2)	0.025 (2)
C51	0.036 (2)	0.027 (2)	0.0266 (19)	-0.004 (2)	0.0048 (19)	0.0032 (15)
C52	0.051 (3)	0.038 (2)	0.0231 (19)	-0.005 (2)	-0.004 (2)	0.0004 (17)
C53	0.048 (3)	0.027 (2)	0.029 (2)	0.004 (2)	0.003 (2)	0.0061 (17)
C54	0.042 (2)	0.031 (2)	0.0223 (19)	-0.005 (2)	-0.001 (2)	-0.0013 (16)

Geometric parameters (Å, °)

S1—01	1.457 (2)	C14—H14b	0.980
S1—O2	1.459 (2)	C14—H14c	0.980
S1—O3	1.460 (2)	C15—C16	1.391 (5)
S1—C1	1.774 (3)	C15—C20	1.383 (5)
S2—O4	1.465 (2)	C16—C17	1.382 (5)
S2—O5	1.452 (2)	C16—H16	0.950
S2—O6	1.456 (2)	C17—C18	1.374 (5)
S2—C15	1.773 (3)	C17—H17	0.950
S3—O7	1.469 (2)	C18—C19	1.386 (5)
S3—O8	1.456 (2)	C19—C20	1.398 (5)
S3—O9	1.464 (2)	C19—H19	0.950
S3—C29	1.772 (3)	C20—H20	0.950
Na1—O1	2.341 (2)	C21—C22	1.396 (5)
Na1—O4	2.394 (2)	C21—C26	1.362 (5)
Na1—O9 ⁱ	2.258 (2)	C22—C23	1.384 (5)
Na1—O10	2.400 (2)	C22—H22	0.950
Na1—O12	2.280 (2)	C23—C24	1.403 (5)
Na2—O2	2.288 (2)	С23—Н23	0.950
Na2—O5	2.371 (2)	C24—C25	1.411 (5)
Na2—O6 ⁱⁱ	2.426 (2)	C25—C26	1.363 (5)
Na2—O7	2.459 (2)	C25—H25	0.950
Na2—O7 ⁱ	2.643 (2)	C26—H26	0.950
Na2—O8	2.570 (2)	C27—H27a	0.980
Na2—O9 ⁱ	2.477 (2)	C27—H27b	0.980
Na3—O2 ⁱ	2.402 (2)	C27—H27c	0.980
Na3—O3 ⁱ	2.604 (2)	C28—H28a	0.980
Na3—O4 ⁱⁱ	2.446 (2)	C28—H28b	0.980
Na3—O6 ⁱⁱ	2.607 (2)	C28—H28c	0.980
Na3—O7 ⁱ	2.471 (2)	C29—C30	1.385 (5)
Na3—O8	2.449 (2)	C29—C34	1.398 (4)
Na3—O14	2.434 (2)	C30—C31	1.377 (4)
O10—C43	1.439 (4)	С30—Н30	0.950
O10—C46	1.425 (4)	C31—C32	1.387 (5)
O11—C44	1.410 (6)	C31—H31	0.950

O11—C45	1.427 (5)	C32—C33	1.393 (5)
O12—C47	1.406 (5)	C33—C34	1.383 (4)
O12—C50	1.432 (5)	С33—Н33	0.950
O13—C48	1.426 (5)	С34—Н34	0.950
O13—C49	1.430 (5)	C35—C36	1.385 (5)
O14—C51	1.437 (4)	C35—C40	1.393 (5)
O14—C54	1.420 (4)	C36—C37	1.381 (5)
O15—C52	1.428 (4)	С36—Н36	0.950
O15—C53	1.413 (4)	C37—C38	1.416 (5)
N1—N2	1.259 (4)	С37—Н37	0.950
N1—C4	1.431 (4)	C38—C39	1.398 (5)
N2—C7	1.405 (4)	C39—C40	1.372 (5)
N3—C10	1.385 (4)	C39—H39	0.950
N3—C13	1.457 (4)	C40—H40	0.950
N3—C14	1.436 (4)	C41—H41a	0.980
N4—N5	1.196 (4)	C41—H41b	0.980
N4—C18	1.502 (4)	C41—H41c	0.980
N5-C21	1.476 (5)	C42—H42a	0.980
N6-C24	1.379 (4)	C42—H42b	0.980
N6—C27	1.455 (5)	C42—H42c	0.980
N6—C28	1.450 (5)	C43—C44	1.473 (7)
N7—N8	1.253 (4)	C43—H43a	0.990
N7—C32	1.434 (4)	C43—H43b	0.990
N8—C35	1.430 (4)	C44—H44a	0.990
N9—C38	1.368 (4)	C44—H44b	0.990
N9—C41	1.460 (4)	C45—C46	1.499 (5)
N9—C42	1.455 (4)	C45—H45a	0.990
C1—C2	1.382 (4)	C45—H45b	0.990
C1—C6	1.395 (4)	C46—H46a	0.990
C2—C3	1.386 (4)	C46—H46b	0.990
С2—Н2	0.950	C47—C48	1.440 (5)
C3—C4	1.376 (4)	C47—H47a	0.990
С3—Н3	0.950	C47—H47b	0.990
C4—C5	1.388 (4)	C48—H48a	0.990
C5—C6	1.387 (4)	C48—H48b	0.990
С5—Н5	0.950	C49—C50	1.441 (5)
С6—Н6	0.950	C49—H49a	0.990
С7—С8	1.395 (5)	C49—H49b	0.990
C7—C12	1.387 (5)	C50—H50a	0.990
C8—C9	1.376 (5)	C50—H50b	0.990
С8—Н8	0.950	C51—C52	1.515 (4)
C9—C10	1.406 (5)	C51—H51a	0.990
С9—Н9	0.950	C51—H51b	0.990
C10—C11	1.408 (5)	С52—Н52а	0.990
C11—C12	1.385 (5)	С52—Н52b	0.990
C11—H11	0.950	C53—C54	1.514 (4)
C12—H12	0.950	С53—Н53а	0.990
C13—H13a	0.980	С53—Н53b	0.990

С13—Н13b	0.980	C54—H54a	0.990
C13—H13c	0.980	C54—H54b	0.990
C14—H14a	0.980		
O3…H46a ⁱⁱⁱ	2.581	H28a····H45b ^{xiv}	2.424
O3…H47a ⁱⁱⁱ	2.596	H28b····N7 ^v	2.650
O11…H49b ^{iv}	2.769	H40…H13a ^{viii}	2.671
O11····H50a ^{iv}	2.705	H41a…H19 ^{vii}	2.742
O11····H50b ^{iv}	2.612	H41b…O13 ^{vii}	2.649
O13…H3 ^{iv}	2.567	H41b…H48b ^{vii}	2.687
O13…H41b ^v	2.649	H41c···H23 ⁱⁱⁱ	2.651
O13····H42a ^v	2.473	H42a…O13 ^{vii}	2.473
O15····H13c ^{vi}	2.748	H42a…H49b ^{vii}	2.600
O15····H14c ^{vi}	2.615	H42c····H8 ^{viii}	2.786
N7…H28b ^{vii}	2.650	H44a…H47b ^x	2.658
C40…H13aviii	2.784	H44a···H50b ^{iv}	2.572
C45····H28a ^{ix}	2.774	H44a…H54b ^{xv}	2.522
H2···H47b ^x	2.678	H44b…H47b ^x	2.434
H3…O13 ^x	2.567	H45a…H28a ^{ix}	2.479
H8…H27a ^{ix}	2.584	H45b…H28a ^{ix}	2.424
H8····H42c ^{xi}	2.786	H46a···O3 ^{xiii}	2.581
H13a····C40 ^{xi}	2.784	H47a…O3 ^{xiii}	2.596
H13a···H40 ^{xi}	2.671	H47b…H2 ^{iv}	2.678
H13c····O15 ^{xii}	2.748	H47b…H44a ^{iv}	2.658
H13c···H52b ^{xii}	2.533	H47b…H44b ^{iv}	2.434
H14b····H26 ^{xi}	2.456	H48b…H41b ^v	2.687
H14c…O15 ^{xii}	2.615	H49b…O11 ^x	2.769
H19…H41a ^v	2.742	H49b…H42a ^v	2.600
H23····H41c ^{xiii}	2.651	H50a…O11 ^x	2.705
H26…H14b ^{viii}	2.456	H50b…O11 ^x	2.612
H27a····H8 ^{xiv}	2.584	H50b…H44a ^x	2.572
H28a····C45 ^{xiv}	2.774	H52b····H13c ^{vi}	2.533
H28a····H45a ^{xiv}	2.479	H54b…H44a ^{xvi}	2.522
O1—S1—O2	112.68 (14)	S2-C15-C16	120.0 (2)
01—\$1—03	113.50 (13)	S2-C15-C20	120.4 (2)
01—S1—C1	105.59 (15)	C16—C15—C20	119.6 (3)
O2—S1—O3	110.90 (13)	C15—C16—C17	120.7 (3)
O2—S1—C1	105.39 (14)	C15—C16—H16	119.7
O3—S1—C1	108.21 (15)	C17—C16—H16	119.7
O4—S2—O5	112.08 (14)	C16—C17—C18	119.4 (3)
O4—S2—O6	111.58 (13)	C16—C17—H17	120.3
O4—S2—C15	105.72 (15)	C18—C17—H17	120.3
O5—S2—O6	114.39 (14)	N4—C18—C17	112.6 (3)
O5—S2—C15	106.05 (16)	N4—C18—C19	126.3 (3)
O6—S2—C15	106.29 (14)	C17—C18—C19	121.1 (3)
O7—S3—O8	111.56 (13)	C18—C19—C20	119.2 (3)
O7—S3—O9	110.74 (13)	C18—C19—H19	120.4

O7—S3—C29	106.68 (13)	С20—С19—Н19	120.4
O8—S3—O9	114.29 (12)	C15—C20—C19	120.0 (3)
O8—S3—C29	107.83 (15)	С15—С20—Н20	120.0
O9—S3—C29	105.22 (14)	С19—С20—Н20	120.0
O1—Na1—O4	146.03 (9)	N5-C21-C22	126.3 (3)
O1—Na1—O9 ⁱ	105.83 (9)	N5-C21-C26	114.5 (3)
O1—Na1—O10	89.19 (10)	C22—C21—C26	119.2 (3)
O1—Na1—O12	85.18 (9)	C21—C22—C23	120.2 (3)
O4—Na1—O9 ⁱ	89.17 (8)	C21—C22—H22	119.9
O4—Na1—O10	121.03 (10)	С23—С22—Н22	119.9
O4—Na1—O12	82.61 (9)	C22—C23—C24	120.5 (3)
O9 ⁱ —Na1—O10	92.55 (9)	С22—С23—Н23	119.8
O9 ⁱ —Na1—O12	168.76 (11)	C24—C23—H23	119.8
O10-Na1-O12	85.21 (9)	N6-C24-C23	122.0 (3)
O2—Na2—O5	92.07 (9)	N6-C24-C25	120.1 (3)
O2—Na2—O6 ⁱⁱ	108.62 (9)	C23—C24—C25	117.9 (3)
O2—Na2—O7	80.35 (8)	C24—C25—C26	120.3 (3)
$O2$ — $Na2$ — $O7^{i}$	136.91 (8)	C24—C25—H25	119.9
O2—Na2—O8	137.09 (9)	C26—C25—H25	119.8
O2—Na2—O9 ⁱ	81.71 (8)	C21—C26—C25	122.0 (3)
O5—Na2—O6 ⁱⁱ	158.78 (9)	C21—C26—H26	119.0
O5—Na2—O7	91.80 (8)	С25—С26—Н26	119.0
O5—Na2—O7 ⁱ	91.91 (8)	N6—C27—H27a	109.5
O5—Na2—O8	82.64 (8)	N6—C27—H27b	109.5
O5—Na2—O9 ⁱ	84.04 (8)	N6—C27—H27c	109.5
O6 ⁱⁱ —Na2—O7	87.23 (8)	H27a—C27—H27b	109.5
O6 ⁱⁱ —Na2—O7 ⁱ	76.37 (8)	H27a—C27—H27c	109.5
O6 ⁱⁱ —Na2—O8	78.98 (7)	H27b—C27—H27c	109.5
O6 ⁱⁱ —Na2—O9 ⁱ	103.11 (8)	N6—C28—H28a	109.5
O7—Na2—O7 ⁱ	142.34 (8)	N6—C28—H28b	109.5
O7—Na2—O8	57.44 (7)	N6-C28-H28c	109.5
O7—Na2—O9 ⁱ	161.42 (8)	H28a—C28—H28b	109.5
O7 ⁱ —Na2—O8	85.95 (7)	H28a—C28—H28c	109.5
O7 ⁱ —Na2—O9 ⁱ	56.11 (7)	H28b—C28—H28c	109.5
O8—Na2—O9 ⁱ	139.17 (8)	S3—C29—C30	119.3 (2)
O2 ⁱ —Na3—O3 ⁱ	57.24 (7)	S3—C29—C34	119.6 (2)
O2 ⁱ —Na3—O4 ⁱⁱ	149.46 (9)	C30—C29—C34	121.0 (2)
O2 ⁱ —Na3—O6 ⁱⁱ	153.40 (9)	C29—C30—C31	119.3 (3)
O2 ⁱ —Na3—O7 ⁱ	77.92 (8)	С29—С30—Н30	120.3
O2 ⁱ —Na3—O8	96.97 (8)	С31—С30—Н30	120.4
O2 ⁱ —Na3—O14	90.72 (8)	C30—C31—C32	120.5 (3)
O3 ⁱ —Na3—O4 ⁱⁱ	92.59 (8)	C30—C31—H31	119.8
O3 ⁱ —Na3—O6 ⁱⁱ	147.51 (9)	C32—C31—H31	119.8
O3 ⁱ —Na3—O7 ⁱ	135.08 (8)	N7—C32—C31	114.9 (3)
O3 ⁱ —Na3—O8	90.47 (8)	N7—C32—C33	125.2 (3)
O3 ⁱ —Na3—O14	87.56 (8)	C31—C32—C33	119.9 (2)
O4 ⁱⁱ —Na3—O6 ⁱⁱ	57.02 (7)	C32—C33—C34	120.1 (3)
O4 ⁱⁱ —Na3—O7 ⁱ	132.32 (8)	С32—С33—Н33	120.0

O4 ⁱⁱ —Na3—O8	87.07 (8)	С34—С33—Н33	120.0
O4 ⁱⁱ —Na3—O14	82.62 (8)	C29—C34—C33	119.0 (3)
O6 ⁱⁱ —Na3—O7 ⁱ	76.29 (8)	С29—С34—Н34	120.5
O6 ⁱⁱ —Na3—O8	77.86 (7)	С33—С34—Н34	120.5
O6 ⁱⁱ —Na3—O14	98.40 (8)	N8—C35—C36	125.9 (3)
O7 ⁱ —Na3—O8	92.49 (7)	N8—C35—C40	115.4 (3)
O7 ⁱ —Na3—O14	96.26 (8)	C36—C35—C40	118.7 (3)
O8—Na3—O14	169.39 (9)	C35—C36—C37	120.7 (3)
S1—O1—Na1	112.71 (13)	С35—С36—Н36	119.7
S1—O2—Na2	153.80 (14)	С37—С36—Н36	119.6
S1—O2—Na3 ⁱⁱ	100.05 (11)	C36—C37—C38	120.9 (3)
Na2—O2—Na3 ⁱⁱ	104.16 (9)	С36—С37—Н37	119.6
S1—O3—Na3 ⁱⁱ	91.59 (10)	С38—С37—Н37	119.5
S2—O4—Na1	117.91 (12)	N9—C38—C37	121.0 (3)
S2—O4—Na3 ⁱ	98.61 (11)	N9—C38—C39	121.6 (3)
Na1—O4—Na3 ⁱ	114.66 (9)	C37—C38—C39	117.4 (3)
S2—O5—Na2	134.29 (14)	C38—C39—C40	121.1 (3)
S2—O6—Na2 ⁱ	144.54 (12)	С38—С39—Н39	119.5
S2—O6—Na3 ⁱ	92.21 (11)	С40—С39—Н39	119.4
Na2 ⁱ —O6—Na3 ⁱ	82.33 (7)	C35—C40—C39	121.2 (3)
S3—O7—Na2	97.62 (11)	С35—С40—Н40	119.4
S3—O7—Na2 ⁱⁱ	93.03 (10)	C39—C40—H40	119.4
S3—O7—Na3 ⁱⁱ	164.82 (13)	N9—C41—H41a	109.5
Na2—O7—Na2 ⁱⁱ	125.25 (8)	N9—C41—H41b	109.5
Na2—O7—Na3 ⁱⁱ	97.27 (8)	N9—C41—H41c	109.5
Na2 ⁱⁱ —O7—Na3 ⁱⁱ	80.73 (7)	H41a—C41—H41b	109.5
S3—O8—Na2	93.35 (11)	H41a—C41—H41c	109.5
S3—O8—Na3	139.09 (12)	H41b—C41—H41c	109.5
Na2—O8—Na3	82.65 (7)	N9—C42—H42a	109.5
S3—O9—Na1 ⁱⁱ	138.22 (14)	N9—C42—H42b	109.5
S3—O9—Na2 ⁱⁱ	100.11 (11)	N9—C42—H42c	109.5
Na1 ⁱⁱ —O9—Na2 ⁱⁱ	101.03 (8)	H42a—C42—H42b	109.5
Na1—O10—C43	128.8 (2)	H42a—C42—H42c	109.5
Na1—O10—C46	122.9 (2)	H42b—C42—H42c	109.5
C43—O10—C46	108.2 (2)	O10-C43-C44	112.2 (3)
C44—O11—C45	110.8 (3)	O10—C43—H43a	109.2
Na1—O12—C47	116.6 (2)	O10—C43—H43b	109.2
Na1—O12—C50	130.8 (2)	C44—C43—H43a	109.2
C47—O12—C50	111.9 (3)	C44—C43—H43b	109.2
C48—O13—C49	108.9 (2)	H43a—C43—H43b	107.9
Na3—O14—C51	114.61 (18)	O11—C44—C43	113.2 (3)
Na3—O14—C54	122.24 (18)	O11—C44—H44a	108.9
C51—O14—C54	109.1 (2)	O11—C44—H44b	108.9
C52—O15—C53	109.2 (2)	C43—C44—H44a	108.9
N2—N1—C4	113.5 (2)	C43—C44—H44b	108.9
N1—N2—C7	115.2 (2)	H44a—C44—H44b	107.7
C10—N3—C13	119.9 (3)	O11—C45—C46	110.7 (3)
C10—N3—C14	121.2 (3)	O11—C45—H45a	109.5

C13—N3—C14	117.9 (2)	O11—C45—H45b	109.5
N5—N4—C18	109.3 (3)	C46—C45—H45a	109.5
N4—N5—C21	110.1 (3)	C46—C45—H45b	109.5
C24—N6—C27	120.9 (3)	H45a—C45—H45b	108.1
C24—N6—C28	120.1 (3)	O10—C46—C45	111.6 (3)
C27—N6—C28	119.0 (2)	O10—C46—H46a	109.3
N8—N7—C32	112.0 (2)	O10—C46—H46b	109.3
N7—N8—C35	113.5 (2)	C45—C46—H46a	109.3
C38—N9—C41	119.0 (3)	C45—C46—H46b	109.3
C38—N9—C42	120.0 (3)	H46a—C46—H46b	108.0
C41—N9—C42	117.6 (2)	O12—C47—C48	112.5 (3)
<u>\$1-C1-C2</u>	119.7 (2)	012—C47—H47a	109.1
<u>\$1</u> — <u>C1</u> — <u>C6</u>	120.9 (2)	012—C47—H47b	109.1
$C_2 - C_1 - C_6$	119.4 (2)	C48—C47—H47a	109.1
C1 - C2 - C3	1203(3)	C48—C47—H47b	109.1
C1 - C2 - H2	119.8	H47a - C47 - H47b	107.8
$C_3 = C_2 = H_2$	119.0	013 - C48 - C47	114.9(3)
$C_{2} - C_{3} - C_{4}$	120.7(3)	013 - C48 - H48a	108.6
$C_2 = C_3 = H_3$	119.7	013 - C48 - H48b	108.5
C4 - C3 - H3	119.7	C47 - C48 - H483	108.5
N1 - C4 - C3	116.4 (2)	C47 - C48 - H48b	108.5
N1 - C4 - C5	110.4(2) 124.4(2)	$H48_{2}$ $C48$ $H48_{b}$	107.5
$C_3 = C_4 = C_5$	124.4(2) 110.2(2)	013 $C49$ $C50$	107.5 115.0(3)
$C_3 = C_4 = C_3$	119.2(2) 120.7(3)	013 - 013	113.0 (3)
$C_4 = C_5 = C_0$	120.7 (3)	013 - 013	108.5
C4 - C5 - H5	119.7	C_{13} C_{49} H_{490} C_{50} C_{40} H_{400}	108.5
$C_0 = C_5 = H_5$	119.7	$C_{50} = C_{49} = H_{49a}$	108.5
C1 = C6 = C3	119.7 (5)	$C_{30} - C_{49} - H_{490}$	108.5
$C_1 = C_0 = H_0$	120.2	H49a - C49 - H490	107.5
C_{2}	120.2	012 - 012	111.5 (5)
$N_2 - C_7 - C_8$	125.0 (3)	012—C50—H50a	109.3
$N_2 - C_1 - C_{12}$	110.0(3)	C40 C50 H505	109.5
$C_8 - C_7 - C_{12}$	11 / .8 (3)	C49—C50—H50a	109.3
$C_{}C_{8}C_{9}$	121.5 (3)	C49—C50—H50b	109.3
C/-C8-H8	119.3	H50a—C50—H50b	108.0
C9—C8—H8	119.3	014-051-052	109.9 (2)
	120.8 (3)	014—C51—H51a	109.7
C8—C9—H9	119.6	014—C51—H51b	109.7
С10—С9—Н9	119.6	C52—C51—H51a	109.7
N3—C10—C9	121.6 (3)	С52—С51—Н51Ь	109.7
N3—C10—C11	120.5 (3)	H51a—C51—H51b	108.2
C9—C10—C11	117.8 (3)	015	111.1 (2)
C10—C11—C12	120.1 (3)	O15—C52—H52a	109.4
C10—C11—H11	119.9	O15—C52—H52b	109.4
C12—C11—H11	119.9	C51—C52—H52a	109.4
C7—C12—C11	121.9 (3)	C51—C52—H52b	109.4
C7—C12—H12	119.1	H52a—C52—H52b	108.0
C11—C12—H12	119.1	O15—C53—C54	111.3 (2)
N3—C13—H13a	109.5	O15—C53—H53a	109.4

N3—C13—H13b	109.5	O15—C53—H53b	109.4
N3—C13—H13c	109.5	С54—С53—Н53а	109.4
H13a—C13—H13b	109.5	C54—C53—H53b	109.3
H13a—C13—H13c	109.5	H53a—C53—H53b	108.0
H13b—C13—H13c	109.5	O14—C54—C53	110.1 (2)
N3_C14_H14a	109.5	014 - C54 - H54a	109.6
N3 $C14$ H14b	109.5	O14 $C54$ H54b	109.0
$N_2 C_{14} H_{14c}$	109.5	C_{53} C_{54} H_{540}	109.7
	109.5	C53 - C54 - 1154a	109.0
H14a - C14 - H140	109.5		109.0
H14a—C14—H14c	109.5	H54a—C54—H54b	108.2
H14b—C14—H14c	109.5		
O1—S1—O2—Na2	69.6 (3)	O3 ⁱ —Na3—O2 ⁱ —Na2 ⁱ	172.73 (12)
O1—S1—O2—Na3 ⁱⁱ	-133.01 (12)	O2 ⁱ —Na3—O4 ⁱⁱ —S2 ⁱⁱ	179.17 (15)
O2—S1—O1—Na1	-21.26 (17)	O2 ⁱ —Na3—O4 ⁱⁱ —Na1 ⁱⁱ	-54.6 (2)
O1—S1—O3—Na3 ⁱⁱ	132.15 (11)	$O4^{ii}$ —Na3— $O2^{i}$ —S1 ⁱ	12.8 (2)
O3—S1—O1—Na1	-148.38(12)	O4 ⁱⁱ —Na3—O2 ⁱ —Na2 ⁱ	-177.25 (15)
01-\$1-C1-C2	27.1 (3)	$O2^{i}$ —Na3— $O6^{ii}$ — $S2^{ii}$	-179.71 (17)
01 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-1532(2)	Ω^{2i} Na3 Ω^{6ii} Na2	35 5 (2)
$C_1 = S_1 = O_1 = N_{21}$	93 26 (16)	06^{ii} Na3 02^{i} S1 ⁱ	-159.98(16)
$O_2 S_1 O_3 N_2 3^{ii}$	<i>A</i> 12 (13)	$O6^{ii}$ Na ³ $O2^{i}$ Na ²ⁱ	00(2)
$O_2 = S_1 = O_2 = N_{a2}$	-1610(2)	O^{2i} No ² O^{7i} S^{2i}	-164.7(4)
$O_3 = S_1 = O_2 = N_a 2^{ij}$	-101.9(2)	02 - Na3 - 07 - 35	-104.7(4)
$03 - 51 - 02 - Na3^{n}$	-4.53(15)	$O2^{i}$ Na 3 $O7^{i}$ Na 2^{i}	3.99 (8)
02—\$1—C1—C2	146.6 (2)	O2 ⁱ —Na3—O ⁷ⁱ —Na2	128.65 (7)
O2—S1—C1—C6	-33.8 (3)	$O7^{i}$ —Na3— $O2^{i}$ —S1 ⁱ	-174.30 (12)
C1—S1—O2—Na2	-45.0 (3)	O7 ⁱ —Na3—O2 ⁱ —Na2 ⁱ	-4.39 (8)
C1—S1—O2—Na3 ⁱⁱ	112.34 (14)	O2 ⁱ —Na3—O8—S3	162.35 (19)
O3—S1—C1—C2	-94.7 (3)	O2 ⁱ —Na3—O8—Na2	-111.02 (7)
O3—S1—C1—C6	84.9 (3)	$O8$ — $Na3$ — $O2^{i}$ — $S1^{i}$	-83.23 (12)
C1—S1—O3—Na3 ⁱⁱ	-111.01 (13)	O8—Na3—O2 ⁱ —Na2 ⁱ	86.68 (10)
O4—S2—O5—Na2	-74.3 (2)	O2 ⁱ —Na3—O14—C51	91.7 (2)
O5—S2—O4—Na1	13.40 (18)	O2 ⁱ —Na3—O14—C54	-43.8(2)
O5—S2—O4—Na3 ⁱ	137.30 (11)	$O14$ —Na3— $O2^{i}$ — $S1^{i}$	89.45 (12)
$04-S2-06-Na2^{i}$	72.9 (2)	$O14$ —Na3— $O2^{i}$ —Na 2^{i}	-100.64(10)
$04 - 82 - 06 - Na3^{i}$	-6.98(13)	$O_{3^{i}} N_{a3} O_{4^{ii}} S_{2^{ii}}$	-17240(11)
06-52-04-Na1	-11638(14)	O_{3}^{i} Na ³ O_{4}^{ii} Na ^{1ⁱⁱ}	-46.21(11)
06 S2 04 Na ³ⁱ	7 52 (14)	O_{1i} N ₂ 2 O_{2i} S1 ⁱ	-177.60(11)
04 S2 C15 C16	1.32(14)	$O_4 - Na_5 - O_5 - S_1$	177.09(11)
04 - 52 - C15 - C10	124.0 (3)	$O_3 - Na_3 - O_0 - S_2$	27.67 (19)
04 - 52 - 015 - 020	-5/.2(3)	O_3^{μ} Na3- O_6^{μ} Na2	-116.94 (15)
C15—S2—O4—Na1	128.50 (16)	06"—Na3—03"—S1"	162.96 (13)
$C15-S2-O4-Na3^{1}$	-107.60 (15)	$O3^{i}$ Na3 O^{i} S3 ⁱ	-168.2 (4)
$O5-S2-O6-Na2^{1}$	-55.7 (2)	O3 ¹ —Na3—O7 ¹ —Na2 ¹	0.56 (14)
$O5$ — $S2$ — $O6$ — $Na3^{i}$	-135.54 (12)	O3 ⁱ —Na3—O7 ⁱ —Na2	125.21 (11)
O6—S2—O5—Na2	54.0 (2)	$O7^{i}$ —Na3— $O3^{i}$ —S1 ⁱ	1.22 (17)
O5—S2—C15—C16	-116.2 (3)	O3 ⁱ —Na3—O8—S3	105.3 (2)
O5—S2—C15—C20	61.9 (3)	O3 ⁱ —Na3—O8—Na2	-168.06 (7)
C15—S2—O5—Na2	170.82 (19)	$O8$ — $Na3$ — $O3^i$ — $S1^i$	95.22 (11)
O6—S2—C15—C16	5.9 (3)	O3 ⁱ —Na3—O14—C51	148.9 (2)

O6—S2—C15—C20	-175.9 (2)	O3 ⁱ —Na3—O14—C54	13.3 (2)
C15—S2—O6—Na2 ⁱ	-172.4 (2)	O14—Na3—O3 ⁱ —S1 ⁱ	-95.20 (11)
C15—S2—O6—Na3 ⁱ	107.79 (14)	O4 ⁱⁱ —Na3—O6 ⁱⁱ —S2 ⁱⁱ	4.63 (8)
O7—S3—O8—Na2	1.51 (12)	O4 ⁱⁱ —Na3—O6 ⁱⁱ —Na2	-140.18 (10)
O7—S3—O8—Na3	84.2 (2)	O6 ⁱⁱ —Na3—O4 ⁱⁱ —S2 ⁱⁱ	-4.65 (8)
O8—S3—O7—Na2	-1.59(12)	O6 ⁱⁱ —Na3—O4 ⁱⁱ —Na1 ⁱⁱ	121.54 (12)
O8—S3—O7—Na2 ⁱⁱ	-127.76 (10)	$O4^{ii}$ —Na3— $O7^{i}$ —S 3^{i}	10.4 (5)
O8—S3—O7—Na3 ⁱⁱ	167.1 (4)	O4 ⁱⁱ —Na3—O7 ⁱ —Na2 ⁱ	179.09 (10)
07—S3—O9—Na1 ⁱⁱ	-120.22 (18)	O4 ⁱⁱ —Na3—O7 ⁱ —Na2	-56.26 (11)
O7—S3—O9—Na2 ⁱⁱ	-0.81 (13)	O7 ⁱ —Na3—O4 ⁱⁱ —S2 ⁱⁱ	8.63 (17)
O9—S3—O7—Na2	126.91 (10)	O7 ⁱ —Na3—O4 ⁱⁱ —Na1 ⁱⁱ	134.83 (10)
09—S3—07—Na2 ⁱⁱ	0.75 (12)	04 ⁱⁱ —Na3—O8—S3	12.7 (2)
09—S3—07—Na3 ⁱⁱ	-64.4(5)	$O4^{ii}$ —Na3—O8—Na2	99.38 (7)
07 - 83 - C29 - C30	-97.1 (2)	08 —Na3— 04^{ii} — $S2^{ii}$	-82.07(11)
07 - 83 - C29 - C34	78.2 (2)	08 —Na3— 04^{ii} —Na1 ⁱⁱ	44.13 (10)
$C_{29} = S_{3} = 0_{7} = N_{8}^{2}$	-11911(14)	$O4^{ii}$ Na3 $O14$ $C51$	-1182(2)
$C_{29} = S_{3} = O_{7} = N_{8}2^{ii}$	114 73 (14)	$O4^{ii}$ Na3 $O14$ C54	106.2(2)
$C_{29} = S_{3} = O_{7} = Na_{3}^{ii}$	49.6 (5)	014 Na3 04^{ii} S2 ⁱⁱ	100.2(2) 100.40(12)
$08-S3-09-Na1^{ii}$	68(2)	014 —Na3— 04^{ii} —Na1 ⁱⁱ	-13341(11)
$08 - S3 - 09 - Na^{2ii}$	$126\ 21\ (11)$	06^{ii} Na3 07^{i} S3 ⁱ	21 8 (4)
$09 - 83 - 08 - Na^2$	-125.08(11)	$O6^{ii}$ Na3 $O7^{i}$ Na2 ⁱ	-16947(8)
09 - S3 - 08 - Na3	-424(2)	$O6^{ii}$ Na3 $O7^{i}$ Na2	-44 81 (6)
08 - 53 - C29 - C30	142.9(2)	0.00^{-1} Na3- 0.00^{-1} Na2- 0.00^{-1} N	-165 30 (10)
08 - 53 - C29 - C34	-41.7(2)	07^{i} Na3 06^{ii} Na2	49.89(7)
$C_{29} = S_{3} = O_{8} = N_{8}^{2}$	118 33 (12)	06^{ii} Na3 08 S3	-441(2)
$C_{29} = S_{3} = O_{8} = N_{83}$	-159.02(18)	06^{ii} Na 3 -08 Na 2	42 50 (7)
09 - 83 - C29 - C30	20 5 (3)	08 —Na3— 06^{ii} — 82^{ii}	99.06 (10)
09 - 83 - C29 - C34	-1641(2)	08 —Na3— 06^{ii} —Na2	-4575(7)
$C_{29} = S_{3} = O_{29} = N_{21}^{ii}$	124 88 (19)	06^{ii} Na3-014-C51	-632(2)
$C_{29} = S_{3} = O_{9} = N_{2}^{ii}$	-11570(13)	06^{ii} Na3-014-C54	161.2(2)
01 - Na1 - 04 - S2	-625(2)	014 —Na3— 06^{ii} —S2 ⁱⁱ	-70.85(11)
01—Na1— 04 —Na3 ⁱ	-17790(14)	014 Na3 06^{ii} Na2	144 33 (8)
04-Na1-01-S1	80 1 (2)	07^{i} Na3 08 S3	-1195(2)
$01 - Na1 - 09^{i} - S3^{i}$	-171.62(17)	$O7^{i}$ Na3 $O8$ Na2	-32.89(7)
01 - Na1 - Oi - Na2	69 27 (10)	08 —Na3— 07^{i} —S3 ⁱ	98 7 (4)
O^{i} Na1 O^{i} S1	-33.09(15)	08 —Na3— 07^{i} —Na 2^{i}	-92.61(8)
01 - Na1 - 010 - C43	-444(3)	08 —Na3— 07^{i} —Na2	32.05(7)
01 - Na1 - 010 - C46	1395(2)	0.00^{-1} Na ₃ 0.014 C ₅ 1	13.8(2)
010 Na1 010 81	-12551(13)	0.7^{i} Na3-014-C54	-1218(2)
01—Na1— 012 — $C47$	157.4 (2)	014 —Na3— 07^{i} — $S3^{i}$	-75.4(5)
01—Na1— 012 — $C50$	-12.4(3)	014 Na3 07^{i} Na2 ⁱ	93.38 (8)
012—Na1—01—S1	149.23 (14)	014 Na 3 07^{i} Na 2	-141.96(8)
04 —Na1— 09^{i} — $S3^{i}$	39.3 (2)	08—Na3—O14—C51	-131.7(5)
04 —Na1— 09^{i} —Na2	-79.82(9)	08—Na3—014—C54	92.8 (5)
09 ⁱ —Na1—O4—S2	55.36 (14)	014—Na3—08—S3	26.1 (6)
$O9^{i}$ —Na1—O4—Na3 ⁱ	-60.09 (11)	014—Na3—08—Na2	112.8 (5)
O4—Na1—O10—C43	119.3 (3)	Na1—O10—C43—C44	127.6 (3)
O4—Na1—O10—C46	-56.9 (2)	Na1—O10—C46—C45	-125.2 (2)
	× /		× /

O10—Na1—O4—S2	147.83 (13)	C43—O10—C46—C45	57.9 (4)
O10-Na1-O4-Na3 ⁱ	32.39 (14)	C46—O10—C43—C44	-55.8 (4)
O4—Na1—O12—C47	-54.4 (2)	C44—O11—C45—C46	54.0 (4)
O4—Na1—O12—C50	135.8 (3)	C45—O11—C44—C43	-53.0 (4)
O12—Na1—O4—S2	-132.32 (15)	Na1—O12—C47—C48	136.3 (3)
O12-Na1-O4-Na3 ⁱ	112.24 (11)	Na1—O12—C50—C49	-138.0(3)
O9 ⁱ —Na1—O10—C43	-150.2 (3)	C47—O12—C50—C49	51.9 (4)
O9 ⁱ —Na1—O10—C46	33.7 (2)	C50-012-C47-C48	-52.0 (4)
O10-Na1-O9 ⁱ -S3 ⁱ	-81.7 (2)	C48—O13—C49—C50	51.0 (4)
O10-Na1-O9 ⁱ -Na2	159.15 (9)	C49—O13—C48—C47	-50.5 (4)
O9 ⁱ —Na1—O12—C47	-11.1 (6)	Na3—O14—C51—C52	160.1 (2)
O9 ⁱ —Na1—O12—C50	179.1 (4)	Na3—O14—C54—C53	-163.4(2)
O12—Na1—O9 ⁱ —S3 ⁱ	-3.6 (6)	C51—O14—C54—C53	58.9 (3)
O12—Na1—O9 ⁱ —Na2	-122.7 (5)	C54—O14—C51—C52	-58.7 (3)
O10—Na1—O12—C47	67.8 (2)	C52—O15—C53—C54	57.6 (3)
O10-Na1-O12-C50	-102.0(3)	C53—O15—C52—C51	-57.2 (3)
O12—Na1—O10—C43	40.9 (3)	N2—N1—C4—C3	172.3 (3)
O12—Na1—O10—C46	-135.3 (2)	N2—N1—C4—C5	-10.1(5)
O2—Na2—O5—S2	116.5 (2)	C4—N1—N2—C7	177.9 (3)
O5—Na2—O2—S1	-107.2(3)	N1—N2—C7—C8	-9.9 (5)
O5—Na2—O2—Na3 ⁱⁱ	95.84 (10)	N1—N2—C7—C12	171.5 (3)
O2—Na2—O6 ⁱⁱ —S2 ⁱⁱ	96.0 (2)	C13—N3—C10—C9	4.8 (5)
O2—Na2—O6 ⁱⁱ —Na3	179.03 (8)	C13—N3—C10—C11	-178.0(3)
O6 ⁱⁱ —Na2—O2—S1	77.6 (3)	C14—N3—C10—C9	173.0 (3)
O6 ⁱⁱ —Na2—O2—Na3 ⁱⁱ	-79.37 (10)	C14—N3—C10—C11	-9.8 (5)
O2—Na2—O7—S3	172.89 (11)	N5—N4—C18—C17	-179.3 (3)
O2—Na2—O7—Na2 ⁱⁱ	-87.92 (11)	N5-N4-C18-C19	-0.3(5)
O2—Na2—O7—Na3 ⁱⁱ	-4.16 (8)	C18—N4—N5—C21	178.7 (3)
O7—Na2—O2—S1	161.4 (3)	N4—N5—C21—C22	0.1 (5)
O7—Na2—O2—Na3 ⁱⁱ	4.37 (8)	N4—N5—C21—C26	178.3 (3)
$O2$ — $Na2$ — $O7^{i}$ — $S3^{i}$	-14.05 (16)	C27—N6—C24—C23	2.5 (6)
$O2$ —Na2— $O7^{i}$ —Na 2^{i}	-115.59 (13)	C27—N6—C24—C25	-178.0 (3)
O2—Na2—O7 ⁱ —Na3	152.02 (12)	C28—N6—C24—C23	-174.3(3)
O7 ⁱ —Na2—O2—S1	-12.2 (4)	C28—N6—C24—C25	5.2 (5)
O7 ⁱ —Na2—O2—Na3 ⁱⁱ	-169.15 (9)	N8—N7—C32—C31	157.9 (3)
O2—Na2—O8—S3	-12.78 (17)	N8—N7—C32—C33	-23.8(4)
O2—Na2—O8—Na3	-151.88 (12)	C32—N7—N8—C35	-179.6 (3)
O8—Na2—O2—S1	171.4 (2)	N7—N8—C35—C36	0.6 (5)
O8—Na2—O2—Na3 ⁱⁱ	14.43 (16)	N7—N8—C35—C40	-177.1 (3)
$O2$ — $Na2$ — $O9^i$ — $S3^i$	171.19 (11)	C41—N9—C38—C37	-16.5 (5)
O2—Na2—O9 ⁱ —Na1	-45.06 (9)	C41—N9—C38—C39	164.7 (3)
O9 ⁱ —Na2—O2—S1	-23.5 (3)	C42—N9—C38—C37	-175.4 (3)
O9 ⁱ —Na2—O2—Na3 ⁱⁱ	179.51 (9)	C42—N9—C38—C39	5.8 (5)
O5—Na2—O6 ⁱⁱ —S2 ⁱⁱ	-70.6 (4)	S1—C1—C2—C3	-178.2 (2)
O5—Na2—O6 ⁱⁱ —Na3	12.4 (2)	S1—C1—C6—C5	179.2 (2)
O6 ⁱⁱ —Na2—O5—S2	-76.2 (3)	C2—C1—C6—C5	-1.1 (5)
O5—Na2—O7—S3	81.09 (10)	C6—C1—C2—C3	2.2 (5)
O5—Na2—O7—Na2 ⁱⁱ	-179.71 (11)	C1—C2—C3—C4	-1.4 (5)

O5—Na2—O7—Na3 ⁱⁱ	-95.95 (8)	C2—C3—C4—N1	177.4 (3)
O7—Na2—O5—S2	-163.1 (2)	C2—C3—C4—C5	-0.3 (5)
$O5$ —Na2— $O7^{i}$ — $S3^{i}$	81.02 (10)	N1-C4-C5-C6	-176.2 (3)
O5—Na2—O7 ⁱ —Na2 ⁱ	-20.52 (12)	C3—C4—C5—C6	1.4 (5)
O5—Na2—O7 ⁱ —Na3	-112.91 (8)	C4—C5—C6—C1	-0.6 (5)
O7 ⁱ —Na2—O5—S2	-20.6 (2)	N2—C7—C8—C9	179.2 (3)
O5—Na2—O8—S3	-97.88 (10)	N2-C7-C12-C11	-178.4 (3)
O5—Na2—O8—Na3	123.02 (8)	C8—C7—C12—C11	2.8 (5)
O8—Na2—O5—S2	-106.3 (2)	C12—C7—C8—C9	-2.1(5)
$O5$ —Na2— $O9^{i}$ — $S3^{i}$	-95.83 (11)	C7—C8—C9—C10	-0.9 (5)
O5—Na2—O9 ⁱ —Na1	47.92 (9)	C8—C9—C10—N3	-179.6 (3)
O9 ⁱ —Na2—O5—S2	35.0 (2)	C8—C9—C10—C11	3.1 (5)
O6 ⁱⁱ —Na2—O7—S3	-77.69 (10)	N3-C10-C11-C12	-179.7 (3)
O6 ⁱⁱ —Na2—O7—Na2 ⁱⁱ	21.50 (11)	C9-C10-C11-C12	-2.4 (5)
O6 ⁱⁱ —Na2—O7—Na3 ⁱⁱ	105.26 (8)	C10-C11-C12-C7	-0.6 (5)
O7—Na2—O6 ⁱⁱ —S2 ⁱⁱ	17.2 (2)	S2-C15-C16-C17	-179.5 (2)
O7—Na2—O6 ⁱⁱ —Na3	100.18 (7)	S2-C15-C20-C19	179.4 (2)
$O6^{ii}$ —Na2— $O7^{i}$ —S 3^{i}	-116.86 (10)	C16-C15-C20-C19	-2.4 (5)
O6 ⁱⁱ —Na2—O7 ⁱ —Na2 ⁱ	141.60 (11)	C20-C15-C16-C17	2.3 (5)
O6 ⁱⁱ —Na2—O7 ⁱ —Na3	49.21 (7)	C15—C16—C17—C18	-0.3 (5)
O7 ⁱ —Na2—O6 ⁱⁱ —S2 ⁱⁱ	-128.6 (2)	C16—C17—C18—N4	177.4 (3)
O7 ⁱ —Na2—O6 ⁱⁱ —Na3	-45.63 (6)	C16—C17—C18—C19	-1.7 (6)
O6 ⁱⁱ —Na2—O8—S3	92.78 (10)	N4-C18-C19-C20	-177.3 (3)
O6 ⁱⁱ —Na2—O8—Na3	-46.31 (8)	C17—C18—C19—C20	1.6 (6)
$O8$ — $Na2$ — $O6^{ii}$ — $S2^{ii}$	-40.2 (2)	C18—C19—C20—C15	0.5 (5)
O8—Na2—O6 ⁱⁱ —Na3	42.83 (6)	N5-C21-C22-C23	179.3 (4)
$O6^{ii}$ —Na2— $O9^{i}$ —S 3^{i}	63.89 (11)	N5-C21-C26-C25	-178.8 (3)
O6 ⁱⁱ —Na2—O9 ⁱ —Na1	-152.36 (9)	C22—C21—C26—C25	-0.4 (6)
$O9^{i}$ —Na2— $O6^{ii}$ — $S2^{ii}$	-178.4 (2)	C26—C21—C22—C23	1.2 (6)
O9 ⁱ —Na2—O6 ⁱⁱ —Na3	-95.42 (8)	C21—C22—C23—C24	-1.3 (6)
$O7$ — $Na2$ — $O7^{i}$ — $S3^{i}$	176.44 (11)	C22—C23—C24—N6	-179.8 (3)
O7—Na2—O7 ⁱ —Na2 ⁱ	74.90 (17)	C22—C23—C24—C25	0.7 (6)
O7—Na2—O7 ⁱ —Na3	-17.49 (14)	N6-C24-C25-C26	-179.5 (3)
O7 ⁱ —Na2—O7—S3	-14.36 (18)	C23—C24—C25—C26	-0.0 (5)
O7 ⁱ —Na2—O7—Na2 ⁱⁱ	84.84 (16)	C24—C25—C26—C21	-0.1 (5)
O7 ⁱ —Na2—O7—Na3 ⁱⁱ	168.60 (11)	S3—C29—C30—C31	173.3 (2)
O7—Na2—O8—S3	-1.00 (8)	S3—C29—C34—C33	-172.0 (2)
O7—Na2—O8—Na3	-140.09 (9)	C30—C29—C34—C33	3.3 (4)
O8—Na2—O7—S3	1.00 (8)	C34—C29—C30—C31	-2.0 (5)
O8—Na2—O7—Na2 ⁱⁱ	100.19 (11)	C29—C30—C31—C32	-2.5 (5)
O8—Na2—O7—Na3 ⁱⁱ	-176.05 (9)	C30—C31—C32—N7	-176.1 (3)
$O7$ — $Na2$ — $O9^i$ — $S3^i$	-173.6 (2)	C30—C31—C32—C33	5.5 (5)
O7—Na2—O9 ⁱ —Na1	-29.9 (3)	N7—C32—C33—C34	177.6 (3)
O9 ⁱ —Na2—O7—S3	157.6 (2)	C31—C32—C33—C34	-4.2 (5)
O9 ⁱ —Na2—O7—Na2 ⁱⁱ	-103.2 (2)	C32—C33—C34—C29	-0.2 (4)
O9 ⁱ —Na2—O7—Na3 ⁱⁱ	-19.4 (2)	N8—C35—C36—C37	-177.9 (3)
O7 ⁱ —Na2—O8—S3	169.67 (9)	N8—C35—C40—C39	178.0 (3)
O7 ⁱ —Na2—O8—Na3	30.57 (7)	C36—C35—C40—C39	0.2 (4)

$O8$ — $Na2$ — $O7^{i}$ — $S3^{i}$	163.50 (9)	C40—C35—C36—C37	-0.3 (5)
O8—Na2—O7 ⁱ —Na2 ⁱ	61.96 (11)	C35—C36—C37—C38	0.4 (6)
O8—Na2—O7 ⁱ —Na3	-30.42 (6)	C36—C37—C38—N9	-179.3 (3)
$O7^{i}$ —Na2— $O9^{i}$ —S 3^{i}	0.50 (8)	C36—C37—C38—C39	-0.5 (5)
O7 ⁱ —Na2—O9 ⁱ —Na1	144.25 (10)	N9-C38-C39-C40	179.2 (3)
$O9^{i}$ —Na2— $O7^{i}$ —S 3^{i}	-0.50 (8)	C37—C38—C39—C40	0.4 (5)
$O9^{i}$ —Na2— $O7^{i}$ —Na 2^{i}	-102.04 (12)	C38—C39—C40—C35	-0.2 (5)
O9 ⁱ —Na2—O7 ⁱ —Na3	165.58 (9)	O10—C43—C44—O11	54.7 (5)
$O8$ — $Na2$ — $O9^{i}$ — $S3^{i}$	-24.36 (16)	O11—C45—C46—O10	-58.4 (4)
08—Na2—O9 ⁱ —Na1	119.39 (12)	O12—C47—C48—O13	52.9 (5)
O9 ⁱ —Na2—O8—S3	-169.85 (11)	O13—C49—C50—O12	-52.9 (5)
O9 ⁱ —Na2—O8—Na3	51.05 (13)	O14—C51—C52—O15	58.4 (3)
$O2^{i}$ —Na3— $O3^{i}$ —S1 ⁱ	-2.78 (9)	O15—C53—C54—O14	-59.5 (4)
$O3^{i}$ —Na3— $O2^{i}$ —S1 ⁱ	2.82 (9)		

Symmetry codes: (i) x+1/2, -y+1/2, -z+1; (ii) x-1/2, -y+1/2, -z+1; (iii) x-1, y, z; (iv) x+1/2, -y+3/2, -z+1; (v) -x, y+1/2, -z+1/2; (vi) -x, y-1/2, -z+3/2; (vii) -x, y-1/2, -z+1/2; (viii) -x-1/2, -y+1, z-1/2; (ix) -x+1/2, -y+1, z+1/2; (x) x-1/2, -y+3/2, -z+1; (xi) -x-1/2, -y+1, z+1/2; (xii) -x, y+1/2, -z+3/2; (xiii) x+1, y, z; (xiv) -x+1/2, -y+1, z-1/2; (xv) x, y+1, z; (xv) x, y-1, z.