

ISSN 1600-5368

Retraction of articles

This article reports the retraction of 39 articles published in *Acta Crystallographica Section E* between 2004 and 2009.

After thorough investigation (see Harrison *et al.*, 2010), 39 additional articles are retracted as a result of problems with the data sets or incorrect atom assignments. Full details of all the articles are given in Table 1.

Table 1

Details of articles to be retracted, in order of publication.

TT' J	D (Retracted	DOI	
Inte	Reference	by	DOI	Refcode
<pre>trans-Bis[1-[3-(cyclohexylamino)propyliminomethyl]-2-naphtholato}copper(II) dichloride dihydrate</pre>	Zhang (2004)	Journal	10.1107/\$1600536804028296	BIPDUA
Bis(4-bromo-2-formylphenolato- $\kappa^2 O, O'$)copper(II)	Sun & Gao (2005)	Author	10.1107/S160053680500187X	FEYSUY
Bis(salicylaldehydo)zinc(II)	Xiong & Liu (2005)	Journal	10.1107/\$1600536805010913	GAMDUU
Bis(4-bromo-2-formylphenolato- $\kappa^2 O, O'$)zinc(II)	Chen (2006)	Journal	10.1107/\$1600536805040432	SAZCUS
Bis(2-formylphenolato- $\kappa^2 O, O'$)nickel(II)	Li & Chen (2006)	Journal	10.1107/S1600536806012931	IDAZAP
Bis(2-formylphenolato)cobalt(II)	Qiu (2006)	Journal	10.1107/S1600536806015704	GEJDUV
Bis(2-formylphenolato- $\kappa^2 O, O'$)manganese(II)	Wang & Fang (2006)	Journal	10.1107/S1600536806021039	IDOVED
$Tetraaqua(1,10-phenanthroline-\kappa^2 N, N') copper(II)$ naphthalene-1,5-disulfonate dihydrate	Liu et al. (2006)	Author	10.1107/\$1600536806030637	GENYOO
$Tetraaqua(1,10-phenanthroline-\kappa^2 N, N')$ nickel(II) naphthalene-1,5-disulfonate dihydrate	Liu & Fan (2006)	Author	10.1107/\$1600536806035410	KERBEP
[6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- trinitratolutetium(III)copper(II)	Sui et al. (2006)	Journal	10.1107/S160053680604565X	HESPEB
Bis(2-formylphenolato- $\kappa^2 O, O'$)iron(II)	Yang et al. (2007)	Author	10.1107/S1600536807021721	PIFCAJ
2,6-Dimethoxybenzohydrazide	Qadeer et al. (2007a)	Journal	10.1107/S1600536807022593	PIFHES
2-(2,4-Dichlorophenylsulfanyl)acetohydrazide	Qadeer et al. (2007b)	Journal	10.1107/S1600536807022891	YIFSOW
{6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- trinitratoeuropium(III)zinc(II)	Hu et al. (2007)	Author	10.1107/S1600536807031121	WIHKEE
{µ-6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- trinitratocerium(III)zinc(II)	Sui, Zhang, Hu & Yin (2007)	Author	10.1107/S1600536807032564	WIHREL
{µ-6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- trinitratopraseodymium(III)zinc(II)	Chen et al. (2007)	Author	10.1107/S1600536807032540	WIHRIP
{ μ -6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- trinitratopraseodymium(III)nickel(II)	Sui, Li et al. (2007)	Author	10.1107/\$1600536807032618	UFACUA
$[6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato-1\kappa^4O^1,O^{I'},O^6,O^{G'}:2\kappa^4O^1,N,N',O^{I'}](methanol-1\kappaO)-\mu-nitrato-1:2\kappa^2O:O'-dimitrato 1\kappa^4O,O^{G'}:ansium(UD-inc(U))$	Sui, Fang, Hu & Lin (2007)	Author	10.1107/S1600536807033314	UDUYIC
anuraio-ik 0,0 -ceriam(iii)/(iic(ii)) (6.6' Dimathoxy 2.2' Iathana 1.2 divibis(nitrilomathylidyna)/dinhanolato)	Sui Zhang Hu & Jiang	Author	10 1107/\$1600526807027120	AFECELI
[0,0-Dimethoxy-2,2-lename-1,2-arybis(hirthomethyliayhe)]alphenolai0)- methanol-µ-nitrato-dinitratosamarium(III)nickel(II)	(2007)	Aution	10.1107/\$1000330807037130	AFECEU
[6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato}- methanol-µ-nitrato-dinitratopraseodymium(III)zinc(II)	Sui, Fang & Yuan (2007)	Author	10.1107/S1600536807037488	AFICEY
[6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- methanol-µ-nitrato-dinitratolutetium(III)zinc(II)	Sui, Sui et al. (2007)	Author	10.1107/S1600536807037737	AFEFOH
catena-Poly[[chloridonickel(II)]-di-µ-chlorido-[chloridonickel(II)]-µ-4,4'- methylenebis(3,5-dimethylpyrazole)-ĸ ² N ² :N ²]	Huang & Chen (2007)	Author	10.1107/S1600536807039384	VIJYOD
{2,2'-[o-Phenylenebis(nitrilomethylidyne)]diphenolato}zinc(II)	Liu et al. (2007a)	Author	10.1107/S1600536807040640	DIKYUS
trans-Bis(ethylenediamine- $\kappa^2 N, N'$)bis(nitrato- κO)zinc(II)	Liu, Zeng & Chen (2007)	Author	10.1107/\$1600536807042390	XIKYEW
$[N,N'-(o-Phenylene)bis(picolinamido)-\kappa^4N,N',N'',N''' lcobalt(II)$	Liu & Zeng (2007 <i>a</i>)	Author	10.1107/S1600536807044571	XILFII
$[N,N'-(o-Phenylene)dipicolinamide-\kappa^4Nlnickel(II)$	Liu & Zeng (2007b)	Author	10.1107/\$1600536807048386	WINWEW
{2.2'-[o-Phenylenebis(nitrilomethylidyne)]diphenolato}manganese(II)	Liu et al. $(2007b)$	Author	10.1107/\$1600536807052993	VIOPIV
N-(2-Amino-3-pyridyl)urea monohydrate	Li et al. (2007)	Author	10.1107/\$1600536807047526	SIMFEA
N-(2-Fluorophenyl)carbamic acid monohydrate	Yang (2007)	Author	10.1107/S1600536807052464	WINMOW
Aqua(dimethylglyoxime- $\kappa^2 N, N'$)(3,5-dinitro-2-oxidobenzoato- $\kappa^2 O^1, O^2$)- copper(II)	Liu & Wen (2007)	Author	10.1107/S1600536807054244	HIQCAM
µ-Acetato-tri-µ-ferrocenecarboxylatobis[(N,N-dimethylformamide)- copper(II)]	Liu, Lin et al. (2007)	Journal	10.1107/S1600536807059041	HIQQEE

Table 1 (continued)

Title	Reference	Retracted by	DOI	Refcode
	Hu et al. (2008)	Author	10.1107/S160053680706151X	MIRPAF
Bis(4-chloro-2-formylphenolato)nickel(II)	Li et al. (2008)	Author	10.1107/S1600536807056309	RISTET
{µ-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- µ-nitrato-dinitratoterbium(III)zinc(II)	Chen et al. (2008)	Author	10.1107/S1600536808006958	QIXHIP
Bis(2-ethoxy-6-formylphenolato- $\kappa^2 O^1, O^6$)nickel(II)	Han (2008)	Journal	10.1107/S160053680800809X	QIXLIT
{µ-6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- µ-nitrato-dinitratoholmium(III)zinc(II)	Xiao, Sui et al. (2008)	Author	10.1107/S1600536808013743	BIZTUA
{µ-6,6'-Diethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato]- trinitratoholmium(III)nickel(II)	Xiao, Fu et al. (2008)	Author	10.1107/S1600536808013755	BIZVAI
Hydrogen-bonding patterns in the cocrystal terephthalic acid-4,4'-bipyridine (2/1)	Wang et al. (2009)	Journal	10.1107/S160053680903236X	DUCZEH
{6,6'-Dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- 1κ ⁴ O ¹ ,O ['] ,O ⁶ ,O ^{6'} :2κ ⁴ O ¹ ,N,N',O ^{1'}](ethanol-1κO)-μ-nitrato-1:2κ ² O:O'- dinitrato-1κ ⁴ O,O'-samarium(III)zinc(II)	Huang et al. (2009)	Journal	10.1107/S1600536809033558	YUCWAV

References

- Chen, Q. (2006). Acta Cryst. E62, m56-m57.
- Chen, J.-R., Sui, Y., Luo, Q.-Y. & Jiang, R.-Q. (2007). Acta Cryst. E63, m2091– m2092.
- Chen, J.-R., Sui, Y., Chen, L., Wen, J.-W. & Yin, L.-Y. (2008). Acta Cryst. E64, m562–m563.
- Han, Z.-Q. (2008). Acta Cryst. E64, m592.
- Harrison, W. T. A., Simpson, J. & Weil, M. (2010). Acta Cryst. E66, e1-e2.
- Hu, R.-H., Sui, Y., Chen, L. & He, C.-M. (2008). Acta Cryst. E64, m8-m9.
- Hu, R.-H., Sui, Y., Fang, X.-N. & Chen, H.-M. (2007). Acta Cryst. E63, m2039– m2040.
- Huang, C.-F. & Chen, H.-L. (2007). Acta Cryst. E63, m2356-m2357.
- Huang, Q., Sui, Y.-H. & Zhang, G.-X. (2009). Acta Cryst. E65, m1161-m1162.
- Li, Y.-G. & Chen, H.-J. (2006). Acta Cryst. E62, m1038-m1039.
- Li, N.-G., Tao, R.-M. & Fu, B.-F. (2007). Acta Cryst. E63, 04228.
- Li, Z., Zhang, X. & Pu, X. (2008). Acta Cryst. E64, m215.
- Liu, J.-T. & Fan, S.-D. (2006). Acta Cryst. E62, m2507-m2508.
- Liu, J.-T., Fan, S.-D. & Li, D.-Q. (2006). Acta Cryst. E62, m2165-m2166.
- Liu, D., Lin, J., Xu, Y., Huang, C. & Li, X. (2007). Acta Cryst. E63, m3094.
- Liu, Y.-Q. & Wen, H.-R. (2007). Acta Cryst. E63, m2928.
- Liu, Y.-Q. & Zeng, X.-R. (2007a). Acta Cryst. E63, m2547.
- Liu, Y.-Q. & Zeng, X.-R. (2007b). Acta Cryst. E63, m2684.
- Liu, Y.-Q., Zeng, X.-R. & Chen, W.-T. (2007). Acta Cryst. E63, m2462.
- Liu, Y.-Q., Zeng, X.-R., Luo, Q.-Y. & Xu, Y.-P. (2007a). Acta Cryst. E63, m2396.
- Liu, Y.-Q., Zeng, X.-R., Luo, Q.-Y. & Xu, Y.-P. (2007b). Acta Cryst. E63, m2854.

- Qadeer, G., Rama, N. H. & Chen, W.-T. (2007*a*). *Acta Cryst.* E63, 02892. Qadeer, G., Rama, N. H. & Chen, W.-T. (2007*b*). *Acta Cryst.* E63, 02932.
- Qiu, X.-Y. (2006). Acta Cryst. E62, m1190–m1191.
- Sui, Y., Fang, X.-N., Hu, P. & Lin, J. (2007). Acta Cryst. E63, m2135–m2136.
- Sui, Y., Fang, X.-N. & Yuan, M.-W. (2007). Acta Cryst. E63, m2135–m2130.
- Sui, Y., Li, X.-F., Huang, G.-S. & Wang, G.-J. (2007). Acta Cryst. E63, m2093– m2094.
- Sui, Y., Sui, Y.-H., Luo, Q.-Y. & Wang, Y.-D. (2007). Acta Cryst. E63, m2277– m2278.
- Sui, Y., Xiao, Y.-A., Fang, X.-N., Zeng, X.-R. & Li, M.-H. (2006). Acta Cryst. E62, m3205–m3207.
- Sui, Y., Zhang, J.-H., Hu, R.-H. & Jiang, R.-Q. (2007). Acta Cryst. E63, m2256– m2257.
- Sui, Y., Zhang, J.-H., Hu, R.-H. & Yin, L.-Y. (2007). Acta Cryst. E63, m2089– m2090.
- Sun, Y.-X. & Gao, G.-Z. (2005). Acta Cryst. E61, m354-m355.
- Wang, Q. & Fang, X.-N. (2006). Acta Cryst. E62, m1492-m1493.
- Wang, S., Yang, T., Li, Z. & Yu, X. (2009). Acta Cryst. E65, o2198.
- Xiao, Y.-A., Fu, X.-K., Sui, Y., Wu, Q. & Xiong, S.-H. (2008). Acta Cryst. E64, m806–m807.
- Xiao, Y.-A., Sui, Y., Yi, X.-G., Wu, J.-H. & Zhang, L.-P. (2008). Acta Cryst. E64, m804–m805.
- Xiong, Z.-Y. & Liu, L.-J. (2005). Acta Cryst. E61, m863-m864.
- Yang, X.-M. (2007). Acta Cryst. E63, 04453.
- Yang, Y.-M., Lu, P.-C., Zhu, T.-T. & Liu, C.-H. (2007). Acta Cryst. E63, m1613. Zhang, P. (2004). Acta Cryst. E60, m1808-m1810.

metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2-ethoxy-6-formylphenolato- $\kappa^2 O^1 O^6$)nickel(II)

Zhen-Quan Han

Applied Technical College, Qiqihar University, Qiqihar 161006, People's Republic of China

Correspondence e-mail: zhenquan_han@126.com

Received 18 March 2008; accepted 25 March 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.042; wR factor = 0.116; data-to-parameter ratio = 17.3.

The title compound, $[Ni(C_9H_9O_3)_2]$, was synthesized by the reaction of 3-ethoxysalicylaldehyde with nickel(II) nitrate in methanol solution. The asymmetric unit onsists of two halfmolecules; each Ni atom lies on a centre of symmetry. The Ni^{II} ions are coordinated by four O atoms from two deprotonated 3-ethoxysalicylaldehyde ligands in a slightly distorted squareplanar coordination environment.

Related literature

For related literature, see: Carlsson et al. (2004); Li & Chen (2006); Mounts & Fernando (1974); Volkmer et al. (1996)

Experimental

b = 10.123 (2) A
c = 11.919 (3) Å
$\alpha = 111.175$ (2)
$\beta = 97.377 (2)^{\circ}$

$\gamma = 102.431 \ (3)^{\circ}$
$V = 904.1 (4) \text{ Å}^3$
Z = 2
Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.719, T_{\max} = 0.733$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.116$ S = 1.023993 reflections

Table 1 Selected geometric parameters (Å, °).						
Ni1-O5	1,837 (2)	Ni2-01	1.843 (2)			
Ni1-O4	1.852 (2)	Ni2-O2	1.851 (2)			
O5-Ni1-O5 ⁱ	180	O1-Ni2-O1 ⁱⁱ	180			
O5-Ni1-O4	94.16 (9)	O1-Ni2-O2	93.70 (9)			
O5 ⁱ -Ni1-O4	85.84 (9)	O1 ⁱⁱ -Ni2-O2	86.30 (9)			
04–Ni1–O4 ⁱ	180	O2 ⁱⁱ -Ni2-O2	180			
Symmetry codes: (i) -	(1, -v + 1, -z; (ii)) - (ii)	$x_{1} - v_{2} - z_{2}$				

 $\mu = 1.10 \text{ mm}^{-1}$ T = 298 (2) K

 $R_{\rm int} = 0.013$

231 parameters

 $\Delta \rho_{\text{max}} = 0.65 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min} = -0.66 \text{ e } \text{\AA}^{-3}$

 $0.32 \times 0.32 \times 0.30$ mm

5465 measured reflections

3993 independent reflections

3187 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection: SMART (Bruker, 1998); cell refinement: SAINT Bruker, 1998); data reduction: SAINT; program(s) used to solve tructure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author acknowledges Qigihar University for a research grant.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2604).

References

- Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Carlsson, H., Haukka, M., Bousseksou, A., Latour, J.-M. & Nordlander, E. (2004). Inorg. Chem. 43, 8252-8262.
- Li, Y.-G. & Chen, H.-J. (2006). Acta Cryst. E62, m1038-m1039.
- Mounts, R. D. & Fernando, Q. (1974). Acta Cryst. B30, 542-543.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Volkmer, D., Hommerich, B., Griesar, K., Haase, W. & Krebs, B. (1996). Inorg. Chem. 35, 3792-3803.

supporting information

Acta Cryst. (2008). E64, m592 [doi:10.1107/S160053680800809X]

Bis(2-ethoxy-6-formylphenolato- $\kappa^2 O^1, O^6$)nickel(II)

Zhen-Quan Han

S1. Comment

The authors interest in nickel(II) complexes arises from the fact that Ni(II) is the active center of the urease enzyme (Carlsson *et al.*, 2004; Volkmer *et al.*, 1996). The author reports herein the crystal structure of the title nickel(II) complex.

In the asymmetric unit of the title compound, there are two independent complex (Fig. 1). Each Ni^H ion lies on an inversion center and is coordinated by four O atoms from two deprotonated 3-ethoxysalicytaldehyde ligands. The coordinate bond values (Table 1) in each molecule are comparable to each other between the two independent complex molecules. The structure is similar to other nickel(II) complexes derived from the derivatives of salicylaldehyde (Li & Chen, 2006; Mounts & Fernando, 1974).

S2. Experimental

All chemicals were of AR grade. 3-Ethoxysalicylaldehyde (33.2 mg, 0.2 mmol) and nickel(II) nitrate hexahydrate (29.0 mg, 0.1 mmol) were refluxed for 30 min in 10 ml methanol solution. The mixture was cooled to room temperature and filtered. Keeping the filtrate in air for a week, yielded red block crystals suitable for X-ray analysis.

S3. Refinement

H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances in the range 0.93–0.97 Å, and with U_{iso} (H) set at $1.2U_{eq}$ (C) and $1.5U_{eq}$ (methyl C). Although no significant density was located in the solvent accessible VOIDS of 47.00 Å³, these might be able to accommodate disordered water molecules.

Figure 1

The molecular structures of the two centrosymmetric independent molecules, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The unlabeled atoms are related by the symmetry operators (-x, -y+1, -z) and (-x, -y, -z) for the molecules containing Ni1 and Ni2 respectively.

Bis(2-ethoxy-6-formylphenolato- $\kappa^2 O^1, O^6$)nickel(II)

Crystal data $[Ni(C_9H_9O_3)_2]$ $M_r = 389.03$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.448 (2) Å*b* = 10.123 (2) Å c = 11.919 (3) Å $\alpha = 111.175 (2)^{\circ}$ $\beta = 97.377 \ (2)^{\circ}$ $\gamma = 102.431 (3)^{\circ}$ V = 904.1 (4) Å³ Data collection Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.719, \ T_{\rm max} = 0.733$

F = 2 F(000) = 404 $D_x = 1.429 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2386 reflections $\theta = 2.2-27.9^{\circ}$ $\mu = 1.10 \text{ mm}^{-1}$ T = 298 KBlock, red $0.32 \times 0.32 \times 0.30 \text{ mm}$

5465 measured reflections 3993 independent reflections 3187 reflections with $I > 2\sigma(I)$ $R_{int} = 0.013$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -10 \rightarrow 8$ $k = -13 \rightarrow 13$ $l = -11 \rightarrow 15$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.02	H-atom parameters constrained
3993 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0596P)^2 + 0.672P]$
231 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\min} = -0.66 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
Nil	0.0000	0.5000	0.0000	0.02805 (13)
Ni2	0.0000	0.0000	0.0000	0.02920 (14)
01	0.0505 (2)	-0.0121 (2)	0.15045 (16)	0.0363 (4)
O2	-0.0576 (3)	0.1741 (2)	0.0663 (2)	0.0506 (5)
O3	0.1596 (3)	-0.0689 (2)	0.33683 (18)	0.0484 (5)
O4	0.0529 (3)	0.3494 (3)	-0.1190 (2)	0.0513 (5)
05	0.1989 (2)	0.63719 (19)	0.02863 (17)	0.0350 (4)
O6	0.4541 (3)	0.8659 (2)	0.1053 (2)	0.0552 (6)
C1	0.3232 (3)	0.4873 (3)	-0.1220 (3)	0.0366 (6)
C2	0.3219 (3)	0.6192 (3)	-0.0278 (2)	0.0328 (5)
C3	0.4641 (3)	0.7438 (3)	0.0107 (3)	0.0416 (7)
C4	0.5959 (4)	0.7345 (4)	-0.0462 (3)	0.0534 (8)
H4	0.6872	0.8170	-0.0214	0.064*
C5	0.5940 (4)	0.6031 (4)	-0.1404 (3)	0.0583 (9)
Н5	0.6837	0.5983	-0.1779	0.070*
C6	0.4608 (4)	0.4814 (4)	-0.1777 (3)	0.0508 (8)
H6	0.4606	0.3938	-0.2403	0.061*
C7	0.1866 (3)	0.3570 (3)	-0.1613 (3)	0.0387 (6)
H7	0.1946	0.2713	-0.2220	0.046*
C8	0.5934 (4)	0.9930 (4)	0.1562 (4)	0.0630 (10)
H8A	0.6162	1.0304	0.0939	0.076*
H8B	0.6910	0.9687	0.1859	0.076*
C9	0.5528 (5)	1.1062 (5)	0.2603 (4)	0.0745 (11)
H9A	0.4523	1.1251	0.2308	0.112*
H9B	0.6424	1.1959	0.2933	0.112*

H9C	0.5375	1.0706	0.3238	0.112*	
C10	0.0426 (4)	0.2306 (3)	0.2817 (3)	0.0403 (6)	
C11	0.0741 (3)	0.0937 (3)	0.2595 (2)	0.0344 (6)	
C12	0.1373 (4)	0.0681 (3)	0.3646 (3)	0.0408 (6)	
C13	0.1716 (5)	0.1762 (4)	0.4812 (3)	0.0603 (9)	
H13	0.2143	0.1582	0.5484	0.072*	
C14	0.1433 (6)	0.3135 (4)	0.5010 (3)	0.0737 (12)	
H14	0.1689	0.3866	0.5806	0.088*	
C15	0.0782 (5)	0.3389 (4)	0.4027 (3)	0.0604 (10)	
H15	0.0571	0.4292	0.4158	0.073*	
C16	-0.0311 (4)	0.2596 (3)	0.1806 (3)	0.0390 (6)	
H16	-0.0617	0.3467	0.1996	0.047*	
C17	0.2484 (5)	-0.0970 (4)	0.4322 (3)	0.0552 (8)	
H17A	0.1831	-0.0992	0.4930	0.066*	
H17B	0.3528	-0.0202	0.4733	0.066*	
C18	0.2804 (6)	-0.2441 (5)	0.3720 (4)	0.0832 (14)	
H18A	0.1769	-0.3208	0.3414	0.125*	
H18B	0.3527	-0.2606	0.4315	0.125*	
H18C	0.3322	-0.2449	0.3047	0.125*	

Atomic displacement parameters $(Å^2)$						
	U^{11}	U ²²	U ³³	U ¹²	U^{13}	<i>U</i> ²³
Ni1	0.0239 (2)	0.0277 (2)	0.0327 (2)	0.00622 (17)	0.00861 (17)	0.01208 (19)
Ni2	0.0308 (2)	0.0285 (2)	0.0283 (2)	0.00865 (18)	0.00732 (18)	0.01098 (18)
01	0.0484 (11)	0.0311 (9)	0.0290 (9)	0.0129 (8)	0.0067 (8)	0.0113 (8)
O2	0.0517 (13)	0.0484 (12)	0.0514 (13)	0.0158 (10)	0.0160 (10)	0.0173 (10)
O3	0.0639 (14)	0.0438 (12)	0.0361 (10)	0.0201 (10)	0.0001 (10)	0.0152 (9)
O4	0.0470 (12)	0.0502 (13)	0.0537 (13)	0.0132 (10)	0.0147 (10)	0.0164 (11)
05	0.0277 (9)	0.0310 (9)	0.0459 (11)	0.0057 (7)	0.0132 (8)	0.0149 (8)
O6	0.0374 (11)	0.0432 (12)	0.0731 (16)	-0.0024 (9)	0.0148 (11)	0.0170 (11)
C1	0.0303 (13)	0.0484 (16)	0.0388 (14)	0.0144 (12)	0.0129 (11)	0.0225 (12)
C2	0.0246 (12)	0.0412 (14)	0.0404 (14)	0.0104 (10)	0.0093 (10)	0.0238 (12)
C3	0.0300 (13)	0.0469 (17)	0.0530 (18)	0.0070 (12)	0.0110 (12)	0.0272 (15)
C4	0.0316 (15)	0.061 (2)	0.072 (2)	0.0021 (14)	0.0163 (15)	0.0362 (18)
C5	0.0380 (17)	0.079 (3)	0.069 (2)	0.0179 (17)	0.0286 (16)	0.036 (2)
C6	0.0414 (16)	0.065 (2)	0.0521 (18)	0.0205 (15)	0.0228 (14)	0.0239 (16)
C7	0.0367 (14)	0.0426 (15)	0.0386 (14)	0.0161 (12)	0.0154 (12)	0.0132 (12)
C8	0.0436 (18)	0.055 (2)	0.076 (3)	-0.0064 (16)	0.0034 (17)	0.0253 (19)
C9	0.073 (3)	0.060(2)	0.064 (2)	-0.008(2)	0.005 (2)	0.0134 (19)
C10	0.0472 (16)	0.0387 (15)	0.0354 (14)	0.0168 (13)	0.0131 (12)	0.0114 (12)
C11	0.0318 (13)	0.0374 (14)	0.0314 (13)	0.0086 (11)	0.0091 (10)	0.0110 (11)
C12	0.0423 (15)	0.0421 (15)	0.0341 (14)	0.0127 (12)	0.0064 (12)	0.0115 (12)
C13	0.084 (3)	0.064 (2)	0.0297 (15)	0.030 (2)	0.0049 (16)	0.0120 (15)
C14	0.114 (3)	0.064 (2)	0.0347 (17)	0.041 (2)	0.0089 (19)	0.0036 (16)
C15	0.093 (3)	0.0484 (19)	0.0391 (17)	0.0340 (19)	0.0151 (17)	0.0092 (14)
C16	0.0474 (16)	0.0345 (14)	0.0392 (15)	0.0176 (12)	0.0166 (12)	0.0139 (12)
C17	0.062 (2)	0.065 (2)	0.0424 (17)	0.0247 (17)	0.0015 (15)	0.0249 (16)

					supporti	ng information
C18	0.118 (4)	0.077 (3)	0.062 (2)	0.057 (3)	0.000 (2)	0.027 (2)
Geome	tric parameters ((Å, °)				
Nil—C	05	1.837 (2	2)	С6—Н6		0.9300
Ni1—C	D 5 ⁱ	1.837 (2	2)	С7—Н7		0.9300
Ni1—C	04	1.852 (2	2)	C8—C9		1.491 (5)
Ni1—C	O4 ⁱ	1.852 (2	2)	C8—H8A		0.9700
Ni2—C	D1	1.843 (2	2)	C8—H8B		0.9700
Ni2—C	D1 ⁱⁱ	1.843 (2	2)	С9—Н9А		0.9600
Ni2—C	D2 ⁱⁱ	1.851 (2	2)	С9—Н9В		0.9600
Ni2—C	02	1.851 (2	2)	С9—Н9С		0.9600
01—C	11	1.309 (3)	C10-C11		1.405 (4)
O2—C	16	1.282 (3)	C10-C15		1,406 (4)
03—С	12	1.365 (2	3)	C10-C16		1,438 (4)
03—С	17	1.429 (3)	C11—C12		1.430 (4)
04—C	27	1.294 (2	3)	C12—C13		1.369 (4)
05—С	2	1.319 (3)	C13—C14		1.402 (5)
06—C	3	1.367 (4	4)	C13—H13		0.9300
06—C	8	1.417 (4	4)	C14—C15		1.362 (5)
C1—C	2	1.404 (4	4)	C14—H14		0.9300
C1—C	6	1.412 (4	4)	C15—H15		0.9300
C1—C	7	1.432 (4)	С16—Н16		0.9300
С2—С	3	1.426 (4	4)	C17-C18		1.502 (5)
С3—С	4	1.380 (4	4)	C17—H17A		0.9700
C4—C	5	1.391 (5)	C17—H17B		0.9700
С4—Н	4	0.9300	<i>,</i>	C18—H18A		0.9600
С5—С	6	1.364	5)	C18—H18B		0.9600
С5—Н	5	0.9300		C18—H18C		0.9600
O5—N	ii1—O5 ⁱ	180		O6—C8—H8B		110.2
O5—N	ii1—04	94.16 (9)	C9—C8—H8B		110.2
O5 ⁱ —N	Vi1—O4	85.84 (9)	H8A—C8—H8B	•	108.5
O5—N	i1—O4 ⁱ	85.84 (9)	С8—С9—Н9А		109.5
05 ⁱ —N	Ji1—O4 ⁱ	94.16 ())	C8—C9—H9B		109.5
04—N	ii1—O4 ⁱ	180		Н9А—С9—Н9В	•	109.5
01—N	[i2—O1 ⁱⁱ	180		С8—С9—Н9С		109.5
01—N	i2—O2 ⁱⁱ	86.30 ())	Н9А—С9—Н9С	1	109.5
O1 ⁱⁱ —N	Ni2—O2 ⁱⁱ	93.70 ())	Н9В—С9—Н9С		109.5
01—N	i2—O2	93.70 (9)	C11—C10—C15	;	120.7 (3)
01 ⁱⁱ —N	Ni2—O2	86.30 (9)	C11—C10—C16)	120.0 (2)
02 ⁱⁱ —N	Ni2—O2	180		C15—C10—C16)	119.3 (3)
C11—0	01—Ni2	126.59	(17)	O1—C11—C10		125.3 (2)
C16—0	02—Ni2	127.6 (2	2)	O1—C11—C12		117.4 (2)
C12—0	O3—C17	118.6 (2	2)	C10-C11-C12		117.3 (2)
С7—О	4—Ni1	127.6 (2	2)	O3—C12—C13		125.1 (3)
С2—О	5—Ni1	127.62	(17)	O3—C12—C11		114.3 (2)
С3—О	06—C8	118.6 (1	3)	C13—C12—C11		120.5 (3)

C2—C1—C6	120.1 (3)	C12—C13—C14	121.2 (3)
C2—C1—C7	120.5 (2)	С12—С13—Н13	119.4
C6—C1—C7	119.4 (3)	C14—C13—H13	119.4
O5—C2—C1	125.0 (2)	C15—C14—C13	119.4 (3)
O5—C2—C3	117.0 (2)	C15—C14—H14	120.3
C1—C2—C3	118.0 (2)	C13—C14—H14	120.3
O6—C3—C4	125.7 (3)	C14—C15—C10	120.9 (3)
O6—C3—C2	114.0 (2)	C14—C15—H15	119.6
C4—C3—C2	120.3 (3)	C10—C15—H15	119.6
C3—C4—C5	120.8 (3)	O2—C16—C10	124.7 (3)
C3—C4—H4	119.6	O2—C16—H16	117.6
С5—С4—Н4	119.6	C10—C16—H16	117.6
C6—C5—C4	120.2 (3)	O3—C17—C18	107.2 (3)
С6—С5—Н5	119.9	O3—C17—H17A	110.3
С4—С5—Н5	119.9	С18—С17—Н17А	110.3
C5—C6—C1	120.6 (3)	O3—C17—H17B	110.3
С5—С6—Н6	119.7	С18—С17—Н17В	110.3
С1—С6—Н6	119.7	H17A—C17—H17B	108.5
O4—C7—C1	125.0 (3)	C17—C18—H18A	109.5
O4—C7—H7	117.5	C17—C18—H18B	109.5
С1—С7—Н7	117.5	H18A—C18—H18B	109.5
O6—C8—C9	107.6 (3)	C17—C18—H18C	109.5
O6—C8—H8A	110.2	H18A-C18-H18C	109.5
С9—С8—Н8А	110.2	H18B-C18-H18C	109.5
	▲		

Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z.