organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6,6,9a-Trimethyl-5,5a,6,7,8,9,9a,9boctahydronaphtho[1,2-c]furan-1(3H)one

Iván Brito,^a* Matías López-Rodríguez,^b Miguel Zárraga,^c Cristian Paz^c and Claudia Pérez^d

^aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, ^bInstituto de Bio-Orgánica 'Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez No. 2, La Laguna, Tenerife, Spain, ^cDepartamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile, and ^dLaboratorio de Fitoquímica, Facultad de Ciencias Biológicas, Universidad de Concepción y Centro de Investigación de Ecosistemas de la Patagonia (CIEP), Bilbao 449, Coyhaique, Chile

Correspondence e-mail: ivanbritob@yahoo.com

Received 4 March 2008; accepted 18 March 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.062; wR factor = 0.167; data-to-parameter ratio = 11.0.

In the crystal structure of the title compound, $C_{15}H_{22}O_2$, the cyclohexene and cyclohexane rings adopt half-boat and chair conformations, respectively, and the lactone ring is in an envelope conformation.

Related literature

For related literature, see: Almeida et al. (2001); Appel et al. (1963); Cremer & Pople (1975); Cruz et al. (1973); Harinantenaina et al. (2007); Sierra et al. (1986).

Experimental

Crystal data

 $C_{15}H_{22}O_2$ $M_r = 234.33$ Orthorhombic, P212121 a = 7.4031 (2) Å b = 7.9250 (2) Å c = 22.9973 (8) Å

V = 1349.24 (7) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^-$ T = 298 (2) K $0.14 \times 0.12 \times 0.08 \text{ mm}$ Data collection

163 parameters

Nonius KappaCCD area-detector	1790 independent reflections
diffractometer	1645 reflections with $I > 2\sigma(I)$
Absorption correction: none 4453 measured reflections	$R_{\rm int} = 0.066$

Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.061$	H atoms treated by a mixture of
$wR(F^2) = 0.167$	independent and constrained
S = 1.18	refinement
1790 reflections	$\Delta \rho_{mun} = 0.23 \text{ e} \text{ Å}^{-3}$

max $\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the Spanish Research Council (CSIC) for providing us with a free-of-charge licence for the Cambridge Structural Database. MZ recognizes support provided by the Center for Ecosystem Research in Patagonia (CIEP), under grant 205.023.040-1SP.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2094).

References

- Almeida, A. T., Lacerda, R. & Kloos, H. (2001). Mem. Inst. Oswaldo Cruz, pp. 831-833.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Appel, H. H., Bond, R. P. M. & Overton, K. H. (1963). Tetrahedron, 19, 635-641
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Cruz, A., Silva, M. & Sammes, P. G. (1973). Phytochemistry, 12, 2549-2550. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harinantenaina, L., Asakawa, Y. & De Clercq, E. (2007). J. Nat. Prod. 70, 277-282
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sierra, J., López, J. & Cortés, M. (1986). Phytochemistry, 25, 253-254.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supporting information

Acta Cryst. (2008). E64, o738 [doi:10.1107/S1600536808007460]

6,6,9a-Trimethyl-5,5a,6,7,8,9,9a,9b-octahydronaphtho[1,2-c]furan-1(3H)-one

Iván Brito, Matías López-Rodríguez, Miguel Zárraga, Cristian Paz and Claudia Pérez

S1. Comment

Drimys winteri J.*R*. Forst is a plant used in folk medicine of many Latinoamerican countries. In Chile, Drimys winteri (canelo) is used by the indigenous Mapuche in the treatment of several stomachal diseases, ulcers and hemorrhages (Almeida *et al.*, 2001). Chemical studies has shown the presence of a variety of sesquiterpenes with drimano skeleton (Appel *et al.*, 1963) and flavonoids. Some of these compounds have shown significant antibacterial, antifungi, antitumor and insecticide properties (Cruz *et al.*, 1973; Sierra *et al.*, 1986). The extract of Drimys winteri leaves afforded Cinnamolide and Drimenin two lactones with drimano skeleton. The title compound (I) is a positional isomer of Cinnamolide [IUPAC name: 6,6,9a-trimethyl-5,5a,6,7,8,9,9a,9 b-octahydronaphtho [1,2-*c*]furan-3(1*H*)-one] (CSD refcode NIDJUG; Harinantenaina *et al.*, 2007).In order to ascertain the structure and secure the assignment of the stereochemistry of (I) an X-ray analysis was performed but the absolute configuration was not determined by this analysis. The structure consists of a drimane skeleton and the methyl group at C9a is α -oriented. The cyclohexene ring (A) and cyclohexane ring (B) is in a half-boat and a chair conformation, respectively [Q_T = 0.526 (3) Å φ_2 = 316.5 (4) °, q_2 = 0.413 (3)Å for ring A; Q_T = 0.545 (3) Å, φ_2 = 160 (4)°, q_2 = 0.052 (4) Å for ring B], and the lactone ring is in an envelope conformation [q_2 =0.233 (3) Å, φ_2 = 284.5 (7)°] (Cremer & Pople, 1975). The A and B rings are *trans*-fused.

S2. Experimental

Drimys winteri was collected from the Estuary of Reloncaví, X^{h^o} Región, Chile in November 2005. Two kilograms of bark was extracted in dichloromethane and concentrated by rotavapor to yield 180 g. 30 grams of crude extract was subjected to flash chromatography on Silicagel G, 70–200 mesh with hexane–ethyl-acetate mixtures of increasing polarity as elution solvents. Pure components were obtained by further chromatography on silicagel of the fraction 10% hexane–ethyl-acetate (11 g). Recrystallization from methanol,at room temperature afforded colourless crystals of drimenin (0.02 g) suitable for X-ray diffraction analysis. NMR spectra (¹H-RMN, ¹³C-RMN, DEPT and ¹H-¹H COSY) were obtained on a Bruker AC 250P multinuclear spectrometer, in DCCl₃ with TMS as internal standard. Drimenin(C₁₅H₂₂O₂); Colorless crystals, mp 95 - 97°C. ¹H-RMN (250 MHz) δ (p.p.m.); 0.88(3*H*, s), 0.90 (3*H*, s), 0.92 (3*H*, s), 1.15–1.30 (2*H*, m), 1.35 (1*H*, dd, J=3.4, 5.0, 13 Hz), 2.77 (1*H*, br s), 4.65 (2*H*, m), 5.73 (1*H*, br s). ¹³C-RMN δ (p.p.m.) 175.3 (s); 121.1 (d); 129.8 (s); 69.8 (t); 53.6 (d); 49.6 (d); 42.3 (t); 38.4 (t); 34.3 (s); 33.0 (q); 31.1 (s); 23.3 (t); 21.4 (q); 18.3 (t); 13.9 (q).

S3. Refinement

The H atom bonded to C4 was found in difference maps and was freely refined. All other H atoms were positioned with idealized geometry (C—H = 0.96–0.98 Å) and were refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}(C)$ (1.5 U_{eq} for methyl H atoms) of the carrier atom. In the absence of any significant anomalous scattering, Friedel equivalents were merged prior to the final refinements, and the absolute structure was not determined.

Figure 1

A view of the molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

6,6,9a-Trimethyl-5,5a,6,7,8,9,9a,9b-octahydronaphtho[1,2-c]furan-1(3H)-one

Crystal data	
$C_{15}H_{22}O_2$	F(000) = 512
$M_r = 234.33$	$D_{\rm x} = 1.154 { m Mg} { m m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 4453 reflections
a = 7.4031 (2) Å	$\theta = 2.7 - 27.5^{\circ}$
b = 7.9250 (2) Å	$\mu=0.07~\mathrm{mm}^{-1}$
c = 22.9973 (8) Å	T = 298 K
V = 1349.24 (7) Å ³	Prism, colourless
Z = 4	$0.14 \times 0.12 \times 0.08 \text{ mm}$
Data collection	
Nonius KappaCCD area-detector	1645 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.066$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 2.7^\circ$
Graphite monochromator	$h = -9 \rightarrow 9$
φ scans, and ω scans with κ offsets	$k = -10 \rightarrow 10$
4453 measured reflections	$l = -29 \rightarrow 29$
1790 independent reflections	

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.061$	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0906P)^2 + 0.1776P]$
$wR(F^2) = 0.167$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.18	$(\Delta/\sigma)_{\rm max} = 0.001$
1790 reflections	$\Delta ho_{ m max} = 0.23 \ { m e} \ { m \AA}^{-3}$
163 parameters	$\Delta ho_{ m min} = -0.19 \ m e \ m \AA^{-3}$
0 restraints	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	v	Ζ	$U_{\rm iso}*/U_{\rm eq}$	
01	0.8222 (4)	0.4735 (2)	0.79867 (11)	0.0726 (8)	
02	0.6477 (3)	0.2766 (3)	0.76017 (10)	0.0656 (7)	
C1	0.7967 (4)	0.3267 (3)	0.78912 (12)	0.0513 (7)	
C3	0.6436 (5)	0.0949 (4)	0.75322 (14)	0.0609 (8)	
H3A	0.6714	0.0632	0.7135	0.077 (3)*	
H3B	0.5261	0.0499	0.7635	0.077 (3)*	
C3A	0.7862 (4)	0.0326 (3)	0.79414 (10)	0.0427 (6)	
C4	0.7941 (4)	-0.1115 (3)	0.82241 (13)	0.0537 (7)	
H4	0.712 (4)	-0.196 (4)	0.8180 (12)	0.052 (8)*	
C5	0.9382 (5)	-0.1455 (4)	0.86662 (14)	0.0607 (8)	
H5A	0.9938	-0.2535	0.858	0.077 (3)*	
H5B	0.8825	-0.1539	0.9047	0.077 (3)*	
C5A	1.0857 (4)	-0.0101 (3)	0.86874 (10)	0.0400 (5)	
H5A1	1.1546	-0.0261	0.8328	0.077 (3)*	
C6	1.2257 (4)	-0.0397 (4)	0.91848 (12)	0.0533 (7)	
C7	1.3670 (4)	0.1013 (5)	0.91648 (15)	0.0648 (8)	
H7A	1.4451	0.0906	0.9501	0.077 (3)*	
H7B	1.4411	0.086	0.8821	0.077 (3)*	
C8	1.2894 (5)	0.2776 (5)	0.91553 (17)	0.0701 (9)	
H8A	1.3868	0.3592	0.9131	0.077 (3)*	
H8B	1.2234	0.2982	0.9513	0.077 (3)*	
C9	1.1637 (4)	0.2991 (4)	0.86386 (14)	0.0573 (7)	
H9A	1.2326	0.2857	0.8283	0.077 (3)*	
H9B	1.1148	0.4126	0.8642	0.077 (3)*	
C9A	1.0067 (3)	0.1719 (3)	0.86379 (10)	0.0383 (5)	
C9B	0.9142 (3)	0.1759 (3)	0.80383 (10)	0.0391 (5)	
H9B1	1.009	0.1684	0.7742	0.077 (3)*	

C10	0.8694 (4)	0.2156 (4)	0.91074 (12)	0.0587 (8)	
H10A	0.9297	0.2262	0.9475	0.100 (5)*	
H10B	0.7804	0.1278	0.9131	0.100 (5)*	
H10C	0.8114	0.3204	0.9012	0.100 (5)*	
C11	1.1446 (6)	-0.0480 (6)	0.97981 (13)	0.0809 (11)	
H11A	1.0476	-0.1284	0.9804	0.100 (5)*	
H11B	1.0992	0.0612	0.9905	0.100 (5)*	
H11C	1.2361	-0.0819	1.007	0.100 (5)*	
C12	1.3245 (6)	-0.2074 (5)	0.90694 (18)	0.0871 (12)	
H12A	1.4199	-0.2213	0.9348	0.100 (5)*	
H12B	1.3744	-0.2062	0.8684	0.100 (5)*	
H12C	1.2406	-0.2993	0.9104	0.100 (5)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0919 (18)	0.0321 (10)	0.0938 (17)	0.0012 (11)	-0.0179 (15)	-0.0003 (9)
O2	0.0735 (13)	0.0419 (11)	0.0814 (14)	0.0128 (10)	-0.0286 (13)	-0.0048 (9)
C1	0.0645 (17)	0.0336 (13)	0.0558 (15)	0.0033 (13)	-0.0039 (14)	-0.0002 (10)
C3	0.0734 (19)	0.0432 (15)	0.0660 (18)	0.0044 (14)	-0.0219 (17)	-0.0077 (12)
C3A	0.0499 (14)	0.0330 (12)	0.0450 (13)	0.0001 (11)	-0.0071 (12)	-0.0062 (9)
C4	0.0597 (17)	0.0348 (12)	0.0667 (17)	-0.0153 (12)	-0.0151 (15)	-0.0006 (12)
C5	0.0749 (19)	0.0385 (14)	0.0686 (18)	-0.0126 (14)	-0.0193 (17)	0.0144 (12)
C5A	0.0446 (12)	0.0372 (12)	0.0384 (11)	-0.0012 (11)	-0.0037 (10)	0.0012 (9)
C6	0.0537 (15)	0.0590 (16)	0.0473 (14)	0.0056 (14)	-0.0096 (13)	0.0042 (12)
C7	0.0441 (15)	0.091 (2)	0.0595 (17)	-0.0051 (16)	-0.0102 (15)	-0.0033 (16)
C8	0.0543 (16)	0.072 (2)	0.084 (2)	-0.0206 (16)	-0.0167 (17)	-0.0073 (17)
C9	0.0545 (16)	0.0464 (15)	0.0709 (17)	-0.0171 (14)	-0.0049 (15)	0.0000 (13)
C9A	0.0395 (11)	0.0348 (11)	0.0405 (11)	-0.0083 (10)	0.0023 (10)	-0.0025 (9)
C9B	0.0453 (12)	0.0311 (11)	0.0410 (11)	-0.0017 (11)	0.0025 (10)	-0.0006 (9)
C10	0.0536 (15)	0.075 (2)	0.0476 (15)	0.0070 (15)	0.0044 (13)	-0.0152 (14)
C11	0.084 (2)	0.112 (3)	0.0464 (16)	-0.013 (3)	-0.0105 (17)	0.0190 (17)
C12	0.094 (3)	0.079 (2)	0.088 (3)	0.029 (2)	-0.040 (2)	-0.0022 (19)

Geometric parameters (Å, °)

01—C1	1.199 (3)	C7—H7A	0.97
O2—C1	1.348 (4)	С7—Н7В	0.97
O2—C3	1.449 (4)	C8—C9	1.519 (5)
С1—С9В	1.516 (3)	C8—H8A	0.97
C3—C3A	1.498 (4)	C8—H8B	0.97
С3—НЗА	0.97	С9—С9А	1.538 (3)
С3—Н3В	0.97	С9—Н9А	0.97
C3A—C4	1.315 (4)	С9—Н9В	0.97
СЗА—С9В	1.496 (3)	C9A—C10	1.523 (4)
C4—C5	1.498 (4)	C9A—C9B	1.540 (3)
C4—H4	0.91 (3)	C9B—H9B1	0.98
C5—C5A	1.532 (4)	C10—H10A	0.96

С5—Н5А	0.97	C10—H10B	0.96
С5—Н5В	0.97	C10—H10C	0.96
C5A—C9A	1.560 (3)	C11—H11A	0.96
C5A—C6	1.561 (3)	C11—H11B	0.96
C5A—H5A1	0.98	C11—H11C	0.96
C6—C7	1.531 (4)	C12—H12A	0.96
C6—C11	1.534 (4)	C12—H12B	0.96
C6—C12	1.540 (5)	C12—H12C	0.96
C7—C8	1.511 (5)		
C1—O2—C3	111.4 (2)	С7—С8—Н8А	109.6
O1—C1—O2	120.4 (3)	С9—С8—Н8А	109.6
O1—C1—C9B	129.3 (3)	C7—C8—H8B	109.6
O2—C1—C9B	110.3 (2)	C9—C8—H8B	109.6
O2—C3—C3A	104.1 (2)	H8A—C8—H8B	108.1
O2—C3—H3A	110.9	C8—C9—C9A	113.0 (2)
СЗА—СЗ—НЗА	110.9	С8—С9—Н9А	109
O2—C3—H3B	110.9	С9А—С9—Н9А	109
C3A—C3—H3B	110.9	С8—С9—Н9В	109
НЗА—СЗ—НЗВ	108.9	С9А—С9—Н9В	109
C4—C3A—C9B	123.9 (2)	H9A—C9—H9B	107.8
C4—C3A—C3	128.9 (3)	С10—С9А—С9	110.8 (2)
C9B—C3A—C3	106.8 (2)	С10—С9А—С9В	109.5 (2)
C3A—C4—C5	121.6 (2)	C9—C9A—C9B	108.9 (2)
C3A—C4—H4	123.5 (19)	C10—C9A—C5A	114.1 (2)
C5—C4—H4	114.9 (19)	C9—C9A—C5A	108.8 (2)
C4—C5—C5A	113.8 (2)	C9B—C9A—C5A	104.53 (18)
C4—C5—H5A	108.8	C3A—C9B—C1	101.6 (2)
С5А—С5—Н5А	108.8	C3A—C9B—C9A	113.53 (19)
C4—C5—H5B	108.8	C1—C9B—C9A	118.1 (2)
C5A—C5—H5B	108.8	C3A—C9B—H9B1	107.7
H5A—C5—H5B	107.7	C1—C9B—H9B1	107.7
C5—C5A—C9A	112.2 (2)	C9A—C9B—H9B1	107.7
C5—C5A—C6	113.0 (2)	C9A—C10—H10A	109.5
C9A—C5A—C6	116.2 (2)	C9A—C10—H10B	109.5
C5—C5A—H5A1	104.7	H10A-C10-H10B	109.5
C9A—C5A—H5A1	104.7	C9A—C10—H10C	109.5
C6—C5A—H5A1	104.7	H10A—C10—H10C	109.5
C7—C6—C11	109.1 (3)	H10B—C10—H10C	109.5
C7—C6—C12	107.5 (3)	C6—C11—H11A	109.5
C11—C6—C12	107.9 (3)	C6—C11—H11B	109.5
C7—C6—C5A	108.8 (2)	H11A—C11—H11B	109.5
C11—C6—C5A	114.8 (3)	C6—C11—H11C	109.5
C12—C6—C5A	108.6 (2)	H11A—C11—H11C	109.5
C8—C7—C6	114.5 (2)	H11B—C11—H11C	109.5
С8—С7—Н7А	108.6	C6—C12—H12A	109.5
С6—С7—Н7А	108.6	C6—C12—H12B	109.5
C8—C7—H7B	108.6	H12A—C12—H12B	109.5

С6—С7—Н7В	108.6	C6—C12—H12C	109.5
H7A—C7—H7B	107.6	H12A-C12-H12C	109.5
С7—С8—С9	110.4 (3)	H12B-C12-H12C	109.5
C3—O2—C1—O1	179.8 (3)	C8—C9—C9A—C9B	-167.1 (3)
C3—O2—C1—C9B	1.3 (3)	C8—C9—C9A—C5A	-53.7 (3)
C1—O2—C3—C3A	13.5 (4)	C5—C5A—C9A—C10	57.9 (3)
O2—C3—C3A—C4	150.1 (3)	C6—C5A—C9A—C10	-74.3 (3)
O2—C3—C3A—C9B	-23.0 (3)	C5—C5A—C9A—C9	-177.8 (2)
C9B—C3A—C4—C5	-1.5 (5)	C6—C5A—C9A—C9	50.0 (3)
C3—C3A—C4—C5	-173.5 (3)	C5—C5A—C9A—C9B	-61.6 (3)
C3A—C4—C5—C5A	-8.2 (4)	C6—C5A—C9A—C9B	166.2 (2)
C4—C5—C5A—C9A	41.4 (3)	C4—C3A—C9B—C1	-150.4 (3)
C4—C5—C5A—C6	175.2 (3)	C3—C3A—C9B—C1	23.0 (3)
C5—C5A—C6—C7	179.6 (3)	C4—C3A—C9B—C9A	-22.6 (4)
C9A—C5A—C6—C7	-48.5 (3)	C3—C3A—C9B—C9A	150.9 (2)
C5-C5A-C6-C11	-57.9 (4)	O1—C1—C9B—C3A	166.3 (3)
C9A—C5A—C6—C11	74.0 (3)	O2—C1—C9B—C3A	-15.4 (3)
C5-C5A-C6-C12	63.0 (3)	O1—C1—C9B—C9A	41.4 (4)
C9A—C5A—C6—C12	-165.2 (3)	O2—C1—C9B—C9A	-140.3 (2)
C11—C6—C7—C8	-74.4 (3)	C10—C9A—C9B—C3A	-71.3 (3)
C12—C6—C7—C8	168.9 (3)	C9—C9A—C9B—C3A	167.5 (2)
C5A—C6—C7—C8	51.5 (3)	C5A—C9A—C9B—C3A	51.4 (3)
C6—C7—C8—C9	-57.5 (4)	C10—C9A—C9B—C1	47.6 (3)
С7—С8—С9—С9А	58.3 (4)	C9—C9A—C9B—C1	-73.7 (3)
C8—C9—C9A—C10	72.5 (3)	C5A—C9A—C9B—C1	170.2 (2)