metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis[benzyl N'-(3-phenylprop-2-enylidene) hydrazinecarbodithioato- $\kappa^2 N'$,S]zinc(II)

Hoong-Kun Fun,^a‡ Suchada Chantrapromma,^b§ M. T. H. Tarafder,^c* M. Toihidul Islam,^c C. M. Zakaria^c and M. A. A. A. A. Islam^d

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ^cDepartment of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh, and ^dDepartment of Chemistry, Rajshahi University of Engineering and Technology, Rajshahi 6205, Bangladesh Correspondence e-mail: ttofazzal@yahoo.com

Received 25 February 2008; accepted 28 February 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.092; data-to-parameter ratio = 23.5.

In the title Zn^{II} complex, $[Zn(C_{17}H_{15}N_2S_2)_2]$, the Zn^{II} atom lies on a twofold rotation axis. It exists in a tetrahedral geometry, chelated by two deprotonated Schiff base ligands. The dihedral angle between each ligand is 71.48 (8)°. Molecules are connected by weak $C-H\cdots S$ intermolecular interactions into chains along the *c* axis. The crystal structure is further stabilized by $C-H\cdots \pi$ interactions involving the phenyl ring of the 3-phenylprop-2-enylidene unit.

Related literature

For the synthesis and structure of *S*-benzyldithiocarbazates, see: Ali & Tarafder (1977); Shanmuga Sundara Raj *et al.* (2000). For the structures of Zn^{II} complexes, see: Latheef *et al.* (2007); Tarafder, Chew *et al.* (2002). For the structures of other metal dithiocarbazates, see: Ali *et al.* (2001, 2002, 2008); Chew *et al.* (2004); Crouse *et al.* (2004); Tarafder *et al.* (2002). For the bioactivity of metal *S*-benzyldithiocarbazates, see, for example: Ali *et al.* (2001, 2002); Tarafder *et al.* (2001); Tarafder, Jin *et al.* (2001); Tarafder, Jin *et al.* (2001);

V = 3140.83 (6) Å³

Mo $K\alpha$ radiation

 $\mu = 1.08 \text{ mm}^{-1}$

T = 100.0 (1) K

 $R_{\rm int}=0.042$

195 parameters

 $\Delta \rho_{\rm max} = 0.49 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

 $0.37 \times 0.25 \times 0.17 \text{ mm}$

82655 measured reflections

4580 independent reflections

4071 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Z = 4

Experimental

 $\begin{array}{l} Crystal \ data \\ [Zn(C_{17}H_{15}N_{2}S_{2})_{2}] \\ M_{r} = 688.23 \\ Orthorhombic, \ Pbcn \\ a = 36.0897 \ (4) \ {\rm \AA} \\ b = 9.9310 \ (1) \ {\rm \AA} \\ c = 8.7633 \ (1) \ {\rm \AA} \end{array}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.692, T_{max} = 0.841$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.091$ S = 1.154580 reflections

Table 1

H	lyd	rogen-	bond	geometry	(1	٩,	°))
---	-----	--------	------	----------	----	----	----	---

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C13-H13A\cdots S2^{i}$	0.93	2.76	3.6697 (17)	167
$C11 - H11B \cdots Cg1^{ii}$	0.97	2.98	3.5785 (17)	121
Symmetry codes: (i) x. –	$v + 1, z + \frac{1}{2};$	ii) $x + \frac{1}{2}, -y + \frac{1}{2}$	$\frac{1}{2}, -z+1.$	

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

MTHT and MTI thank Rajshahi University for financial support. SC thanks Prince of Songkla University for generous support. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.

[‡] Additional correspondence author, e-mail: hkfun@usm.my. § Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2427).

References

- Ali, M. A., Baker, H. J. H. A., Mirza, A. H., Smith, S. J., Gahan, L. R. & Bernhardt, P. V. (2008). *Polyhedron*, 27, 71–79.
- Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Ali, A. M. (2001). Inorg. Chim. Acta, **320**, 1–6.
- Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, A. M. (2002). J. Inorg. Biochem. 92, 141–148.
- Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem. **39**, 1785–1788. Bruker (2005). APEX2 (Version 1.27), SAINT (Version 7.12A) and SADABS
- (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA. Chew, K.-B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2004). *Polyhedron*, **23**, 1385–1392.
- Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2004). *Polyhedron*, **23**, 161–168.

- Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst. C56, 1236-1237.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.
- Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417.
- Tarafder, M. T. H., Jin, K.-T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.
- Tarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2001). *Polyhedron*, **20**, 2363–2370.

Latheef, L., Manoj, E. & Kurup, M. R. P. (2007). Polyhedron, 26, 4107–4113. Shanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H.,

supporting information

Acta Cryst. (2008). E64, m518-m519 [doi:10.1107/S1600536808005643]

Bis[benzyl N'-(3-phenylprop-2-enylidene)hydrazinecarbodithioato- $\kappa^2 N', S$]zinc(II)

Hoong-Kun Fun, Suchada Chantrapromma, M. T. H. Tarafder, M. Toihidul Islam, C. M. Zakaria and M. A. A. A. A. Islam

S1. Comment

The coordination chemistry of the ligands derived from *S*-benzyldithiocarbazate (SBDTC) had been of immense interests because of their intriguing coordination chemistry as well as their increasingly important biomedical properties (Ali *et al.*, 2001; 2002; Tarafder *et al.*, 2001; Tarafder, Jin *et al.*, 2002*b*). Synthesis (Ali & Tarafder, 1977) and structure (Shanmuga Sundara Raj *et al.*, 2000) of SBDTC were reported. We have previously reported the Schiff bases complexes derived from dithiocarbazate derivatives (Ali *et al.*, 2001; 2002; 2008; Chew *et al.*, 2004; Crouse *et al.*, 2004; Tarafder *et al.*, 2001, 2008; Tarafder, Chew *et al.*, 2002; Tarafder, Jin *et al.*, 2002). In continuation of our interests, we report herein the X-ray structure of the zinc(II) complex of Schiff base ligand of SBDTC which is found to be isostructural with the copper(II) analog (Tarafder *et al.*, 2008).

The Zn^{II} atom of the title complex, lies on a twofold rotation axis and therefore the asymmetric unit contains one-half of a molecule (Fig. 1). The ligands coordinate to the Zn^{II} through the two azomethine nitrogen and the two thiolate sulfur atoms forming a distorted tetrahedral geometry (Fig. 1). Both the two nitrogen atoms (N1 and N1A) and two sulfur atoms (S1 and S1A) from the two ligands are coordinated at opposite positions. The NS chelation results in the two five membered Zn^{II}-bidentate rings (Zn1, N1, N2, C8, S1), atom Zn1 having a maximum deviation of 0.0839 (5) Å. The dihedral angle between these Zn^{II}-bidentate rings is 80.03 (4) °. The smaller angle around Zn^{II} is 86.96 (3) ° for N1—Zn1 —S1. The N—Zn—N and S—Zn—S bond angles are 104.32 (7) ° and 134.49 (2) °, respectively. The Zn1—N1 distance of 2.0662 (12) Å is slightly longer compared to the [Zn(C₁₄H₁₈N₃OS)₂] by Latheef *et al.*, 2007 (Zn—N = 2.026 (3) and 2.040 (3) Å) whereas the Zn1—S1 distance of 2.2636 (4) Å in the title complex is in the same range (Zn—S = 2.2597 (13) and 2.2462 (12) Å (Latheef *et al.*, 2007)). The mean plane of the prop-2-enylidene moiety (C7/C8/C9/N1/N2) makes a dihedral angle of 12.25 (12)° with mean plane of the attached C1–C6 phenyl ring. Atoms N1, N2, C10, S1 and S2 lie on the same plane and this plane makes a dihedral angle of 76.75 (6) ° with the C12–C17 phenyl ring. The dihedral angle between the two phenhyl rings (C1–C6 and C12–C17) is 71.48 (8)°. Bond lengths and angles observed in the Schiff base ligand are of normal values.

In the crystal packing (Fig. 2), the molecules are interconnected by weak C—H···S intermolecular interactions (Table 1) into chains along the *c* axis. The crystal is further stabilized by C—H··· π interactions (Table 1) involving the C1–C6 phenyl ring (centroid *Cg*₁) of the 3-phenylprop-2-enylidene moiety.

S2. Experimental

The Schiff base ligand was prepared following the literature procedure (Tarafder *et al.*, 2008) by adding cinamaldehyde (1.32 g, 10 mmol) to a hot solution of *S*-benzyldithiocarbazate (SBDTC) (1.98 g, 10 mmol) in absolute ethanol (40 ml).

The mixture was refluxed for 10 min. The yellow precipitate, which formed, was isolated and washed with hot ethanol. The yellow solid was recrystallized from absolute ethanol (Yield: 1.52 g, 46%). The zinc complex was synthesized by adding the solution of the Schiff base ligand (0.31 g, 1 mmol) in absolute ethanol (70 ml) to a solution of zinc nitrate hexahydrate (0.15 g, 0.5 mmol) in absolute ethanol (5 ml) and stirred under boiling condition for 10 min. A resultant yellow precipitate was separated and washed with hot ethanol (Yield: 0.29 g, 63%). Yellow single crystals of the title complex were crystallized from a mixture solution of chloroform/absolute ethanol (70:5 v/v) after 40 days at room temperature and further recrystallized from chloroform (40 ml) by slow evaporation at 296 K after 10 days, *M*.p 457–458 K.

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å, for CH and aromatic, 0.97 Å, for CH₂ and $U_{iso} = 1.2U_{eq}(C)$. The highest residual electron density peak is located at 0.60 Å from C1 and the deepest hole is located at 0.54 Å from Zn1.

Figure 1

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Atoms labelled with suffix A are generated by the symmetry operation (-x, y, 1/2 - z).

Figure 2

The crystal packing of the title compound, viewed along the b axis. Intermolecular C—H···S weak interactions are shown as dashed lines.

Bis[benzyl N'-(3-phenylprop-2-enylidene)hydrazinecarbodithioato- $\kappa^2 N', S$]zinc(II)

Crystal data	
$[Zn(C_{17}H_{15}N_2S_2)_2]$ M _x = 688.23	$D_{\rm x} = 1.455 \text{ Mg m}^{-3}$ Melting point = 457–458 K
Orthorhombic, <i>Pbcn</i>	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2n 2ab	Cell parameters from 4580 reflections
a = 36.0897 (4) Å	$\theta = 1.1 - 30.0^{\circ}$
b = 9.9310(1) Å	$\mu = 1.08 \text{ mm}^{-1}$
c = 8.7633 (1) Å	T = 100 K
V = 3140.83 (6) Å ³	Block, yellow
Z = 4	$0.37 \times 0.25 \times 0.17 \text{ mm}$
F(000) = 1424	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.33 pixels mm ⁻¹ ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2005) $T_{\min} = 0.692, T_{\max} = 0.841$	82655 measured reflections 4580 independent reflections 4071 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 30.0^{\circ}, \theta_{min} = 1.1^{\circ}$ $h = -50 \rightarrow 50$ $k = -13 \rightarrow 13$ $l = -12 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.091$ S = 1.15 4580 reflections 195 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0478P)^2 + 1.4067P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.49$ e Å ⁻³ $\Delta\rho_{min} = -0.32$ e Å ⁻³

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.0000	0.42216 (2)	0.2500	0.01855 (8)	
S 1	-0.056843 (10)	0.51031 (4)	0.20596 (5)	0.02295 (9)	
S2	-0.126368 (10)	0.40453 (4)	0.31408 (5)	0.02541 (10)	
N1	-0.02538 (3)	0.29452 (12)	0.40410 (14)	0.0177 (2)	
N2	-0.06402 (3)	0.29289 (12)	0.40147 (14)	0.0183 (2)	
C1	0.10940 (4)	0.21479 (15)	0.60174 (17)	0.0215 (3)	
H1A	0.1007	0.2854	0.5420	0.026*	
C2	0.14657 (4)	0.20851 (16)	0.63939 (18)	0.0238 (3)	
H2B	0.1627	0.2745	0.6040	0.029*	
C3	0.16001 (4)	0.10408 (18)	0.72987 (18)	0.0251 (3)	
H3A	0.1851	0.0999	0.7541	0.030*	
C4	0.13595 (4)	0.00646 (18)	0.78363 (19)	0.0263 (3)	
H4A	0.1448	-0.0627	0.8451	0.032*	
C5	0.09847 (4)	0.01154 (17)	0.74589 (18)	0.0233 (3)	
H5A	0.0824	-0.0543	0.7825	0.028*	

C6	0.08479 (4)	0.11508 (15)	0.65326 (16)	0.0191 (3)
C7	0.04530 (4)	0.11779 (15)	0.61642 (17)	0.0197 (3)
H7A	0.0304	0.0534	0.6627	0.024*
C8	0.02865 (4)	0.20541 (15)	0.52127 (17)	0.0203 (3)
H8A	0.0434	0.2660	0.4676	0.024*
C9	-0.01069 (4)	0.20968 (15)	0.49886 (16)	0.0194 (3)
H9A	-0.0258	0.1509	0.5530	0.023*
C10	-0.07830 (4)	0.38814 (15)	0.31855 (16)	0.0188 (3)
C11	-0.14245 (4)	0.29477 (17)	0.46680 (18)	0.0239 (3)
H11A	-0.1382	0.2011	0.4407	0.029*
H11B	-0.1295	0.3146	0.5611	0.029*
C12	-0.18343 (4)	0.32244 (15)	0.48382 (17)	0.0216 (3)
C13	-0.19570 (4)	0.42883 (18)	0.5729 (2)	0.0300 (3)
H13A	-0.1785	0.4831	0.6226	0.036*
C14	-0.23315 (5)	0.4555 (2)	0.5890 (2)	0.0327 (4)
H14A	-0.2410	0.5265	0.6503	0.039*
C15	-0.25893 (4)	0.37653 (18)	0.51415 (19)	0.0281 (3)
H15A	-0.2841	0.3942	0.5249	0.034*
C16	-0.24710 (4)	0.27147 (19)	0.4234 (2)	0.0316 (4)
H16A	-0.2644	0.2187	0.3722	0.038*
C17	-0.20951 (4)	0.24407 (17)	0.4082 (2)	0.0281 (3)
H17A	-0.2018	0.1729	0.3470	0.034*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01629 (12)	0.02017 (13)	0.01920 (13)	0.000	0.00389 (8)	0.000
S1	0.02122 (17)	0.02294 (18)	0.02470 (18)	0.00512 (13)	0.00525 (14)	0.00599 (14)
S2	0.01511 (16)	0.0341 (2)	0.02701 (19)	0.00377 (14)	-0.00046 (13)	0.00913 (15)
N1	0.0135 (5)	0.0205 (5)	0.0191 (5)	0.0002 (4)	0.0008 (4)	-0.0007 (4)
N2	0.0131 (5)	0.0227 (6)	0.0191 (5)	-0.0007 (4)	-0.0003 (4)	0.0002 (5)
C1	0.0198 (6)	0.0222 (7)	0.0226 (7)	0.0018 (5)	-0.0006 (5)	0.0003 (5)
C2	0.0176 (6)	0.0265 (7)	0.0272 (7)	-0.0010 (5)	0.0016 (5)	-0.0024 (6)
C3	0.0168 (6)	0.0325 (8)	0.0260 (7)	0.0047 (6)	-0.0026 (5)	-0.0048 (6)
C4	0.0240 (7)	0.0294 (8)	0.0255 (7)	0.0061 (6)	-0.0039 (6)	0.0025 (6)
C5	0.0214 (7)	0.0241 (7)	0.0243 (7)	0.0016 (6)	-0.0001 (5)	0.0029 (6)
C6	0.0166 (6)	0.0224 (6)	0.0184 (6)	0.0019 (5)	-0.0006 (5)	-0.0011 (5)
C7	0.0163 (6)	0.0228 (7)	0.0199 (6)	-0.0003 (5)	0.0008 (5)	-0.0003 (5)
C8	0.0155 (6)	0.0235 (7)	0.0219 (6)	-0.0004 (5)	0.0011 (5)	0.0008 (5)
С9	0.0164 (6)	0.0226 (7)	0.0192 (6)	-0.0007(5)	0.0009 (5)	0.0008 (5)
C10	0.0156 (6)	0.0227 (7)	0.0182 (6)	0.0008 (5)	0.0010 (5)	-0.0008(5)
C11	0.0151 (6)	0.0301 (8)	0.0266 (7)	0.0006 (5)	-0.0003 (5)	0.0060 (6)
C12	0.0148 (6)	0.0268 (7)	0.0230 (7)	0.0001 (5)	-0.0011 (5)	0.0044 (6)
C13	0.0212 (7)	0.0377 (9)	0.0311 (8)	-0.0008 (6)	-0.0057 (6)	-0.0092 (7)
C14	0.0235 (8)	0.0425 (10)	0.0322 (8)	0.0068 (7)	-0.0010 (6)	-0.0106 (8)
C15	0.0153 (6)	0.0392 (9)	0.0297 (8)	0.0025 (6)	0.0009 (6)	0.0018 (7)
C16	0.0172 (7)	0.0347 (9)	0.0428 (10)	-0.0042 (6)	-0.0036 (6)	-0.0053 (7)
C17	0.0189 (7)	0.0273 (8)	0.0380 (9)	-0.0004 (6)	-0.0015 (6)	-0.0070 (7)

Geometric parameters (Å, °)

Zn1—N1	2.0662 (12)	C6—C7	1.4616 (19)	-
Zn1—N1 ⁱ	2.0662 (12)	C7—C8	1.347 (2)	
Zn1—S1 ⁱ	2.2634 (4)	С7—Н7А	0.9300	
Zn1—S1	2.2636 (4)	C8—C9	1.4337 (19)	
S1—C10	1.7450 (15)	C8—H8A	0.9300	
S2—C10	1.7428 (14)	С9—Н9А	0.9300	
S2—C11	1.8210 (16)	C11—C12	1.5118 (19)	
N1—C9	1.2964 (18)	C11—H11A	0.9700	
N1—N2	1.3948 (15)	C11—H11B	0.9700	
N2-C10	1.2994 (19)	C12—C13	1.386 (2)	
C1—C2	1.383 (2)	C12—C17	1.390 (2)	
C1—C6	1.405 (2)	C13—C14	1.384 (2)	
C1—H1A	0.9300	C13—H13A	0.9300	
С2—С3	1.393 (2)	C14—C15	1.382 (2)	
C2—H2B	0.9300	C14—H14A	0.9300	
C3—C4	1.384 (2)	C15—C16	1.379 (2)	
С3—НЗА	0.9300	C15—H15A	0.9300	
C4—C5	1.393 (2)	C16—C17	1.390 (2)	
C4—H4A	0.9300	C16—H16A	0.9300	
C5—C6	1.400 (2)	C17—H17A	0.9300	
С5—Н5А	0.9300			
N1—Zn1—N1 ⁱ	104.32 (7)	C7—C8—C9	123.08 (13)	
N1—Zn1—S1 ⁱ	121.84 (3)	C7—C8—H8A	118.5	
$N1^{i}$ —Zn1—S1 ⁱ	86.96 (3)	C9—C8—H8A	118.5	
N1-Zn1-S1	86.96 (3)	N1—C9—C8	120.80 (13)	
N1 ⁱ —Zn1—S1	121.84 (3)	N1—C9—H9A	119.6	
S1 ⁱ —Zn1—S1	134.50 (2)	С8—С9—Н9А	119.6	
C10—S1—Zn1	92.11 (5)	N2-C10-S2	118.39 (11)	
C10—S2—C11	104.17 (7)	N2-C10-S1	130.26 (11)	
C9—N1—N2	114.33 (12)	S2—C10—S1	111.35 (8)	
C9—N1—Zn1	129.50 (10)	C12—C11—S2	105.99 (10)	
N2—N1—Zn1	116.07 (9)	C12—C11—H11A	110.5	
C10-N2-N1	113.42 (12)	S2—C11—H11A	110.5	
C2C1C6	120.33 (14)	C12—C11—H11B	110.5	
C2	119.8	S2—C11—H11B	110.5	
C6—C1—H1A	119.8	H11A—C11—H11B	108.7	
C1—C2—C3	120.48 (14)	C13—C12—C17	118.62 (14)	
C1—C2—H2B	119.8	C13—C12—C11	120.44 (14)	
С3—С2—Н2В	119.8	C17—C12—C11	120.92 (14)	
C4—C3—C2	119.80 (14)	C14—C13—C12	121.01 (15)	
С4—С3—Н3А	120.1	C14—C13—H13A	119.5	
С2—С3—Н3А	120.1	C12—C13—H13A	119.5	
C3—C4—C5	120.19 (15)	C15—C14—C13	120.01 (16)	
С3—С4—Н4А	119.9	C15—C14—H14A	120.0	
С5—С4—Н4А	119.9	C13—C14—H14A	120.0	

C4—C5—C6 C4—C5—H5A C6—C5—H5A C5—C6—C1 C5—C6—C7 C1—C6—C7 C8—C7—C6 C8—C7—H7A	120.44 (15) 119.8 119.8 118.75 (13) 119.05 (13) 122.18 (13) 125.72 (14) 117.1	C16—C15—C14 C16—C15—H15A C14—C15—H15A C15—C16—C17 C15—C16—H16A C17—C16—H16A C12—C17—C16 C12—C17—H17A	119.63 (15) 120.2 120.2 120.35 (15) 119.8 119.8 120.37 (15) 119.8
С6—С7—Н7А	117.1	C16—C17—H17A	119.8
N1—Zn1—S1—C10 N1 ⁱ —Zn1—S1—C10 S1 ⁱ —Zn1—S1—C10	-6.84 (6) 98.14 (6) -140.35 (5)	C6—C7—C8—C9 N2—N1—C9—C8 Zn1—N1—C9—C8	-174.96 (14) -176.13 (12) 7.7 (2)
$N1^{i}$ —Zn1—N1—C9	64.77 (12)	C7—C8—C9—N1	-178.89(14)
$S1^{i}$ — $Zn1$ — $N1$ — $C9$	-30.62 (14)	N1—N2—C10—S2	-176.19 (9)
S1—Zn1—N1—C9	-173.11 (13)	N1-N2-C10-S1	3.1 (2)
N1 ⁱ —Zn1—N1—N2	-111.33 (10)	C11—S2—C10—N2	11.23 (14)
$S1^{i}$ — $Zn1$ — $N1$ — $N2$	153.28 (8)	C11—S2—C10—S1	-168.22 (8)
S1—Zn1—N1—N2	10.79 (9)	Zn1—S1—C10—N2	4.50 (14)
C9—N1—N2—C10	172.96 (13)	Zn1—S1—C10—S2	-176.13 (7)
Zn1—N1—N2—C10	-10.34 (15)	C10—S2—C11—C12	171.23 (11)
C6—C1—C2—C3	-0.6 (2)	S2—C11—C12—C13	-84.45 (16)
C1—C2—C3—C4	-0.6 (2)	S2-C11-C12-C17	94.11 (16)
C2—C3—C4—C5	0.8 (2)	C17—C12—C13—C14	1.2 (3)
C3—C4—C5—C6	0.1 (2)	C11—C12—C13—C14	179.80 (16)
C4—C5—C6—C1	-1.2 (2)	C12—C13—C14—C15	-0.8 (3)
C4—C5—C6—C7	-179.72 (14)	C13—C14—C15—C16	-0.1 (3)
C2-C1-C6-C5	1.4 (2)	C14—C15—C16—C17	0.6 (3)
C2-C1-C6-C7	179.91 (14)	C13—C12—C17—C16	-0.7 (3)
C5—C6—C7—C8	-175.41 (15)	C11—C12—C17—C16	-179.28 (16)
C1—C6—C7—C8	6.1 (2)	C15—C16—C17—C12	-0.2 (3)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H···A
C13—H13A····S2 ⁱⁱ	0.93	2.76	3.6697 (17)	167
C11—H11 B ···Cg1 ⁱⁱⁱ	0.97	2.98	3.5785 (17)	121

Symmetry codes: (ii) *x*, -*y*+1, *z*+1/2; (iii) *x*+1/2, -*y*+1/2, -*z*+1.