metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­nickel(II) bis­­{4-[(2-chloro­thia­zol-5-yl)meth­­oxy]benzoate} dihydrate

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China, and bSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: zhanghongkun2000@163.com

(Received 19 March 2008; accepted 21 March 2008; online 29 March 2008)

In the title compound, [Ni(H2O)6](C11H7ClNO3S)2·2H2O, the NiII atom lies on an inversion center and is six-coordinate in an octa­hedral environment of water mol­ecules. The cation and anion are linked through O—H⋯O hydrogen bonding involving the coordinated and uncoordinated water mol­ecules into a three-dimensional network.

Related literature

For the synthesis of 4-[(2-chloro-5-thia­zolyl)meth­oxy]benzoic acid, see: Mirci (1990[Mirci, L. E. (1990). Rom. Patent No. 0 743 205.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(H2O)6](C11H7ClNO3S)2·2H2O

  • Mr = 740.21

  • Triclinic, [P \overline 1]

  • a = 7.1844 (4) Å

  • b = 7.2084 (4) Å

  • c = 15.5621 (8) Å

  • α = 78.388 (1)°

  • β = 81.285 (1)°

  • γ = 71.734 (1)°

  • V = 746.26 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 291 (2) K

  • 0.20 × 0.18 × 0.08 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.819, Tmax = 0.921

  • 4613 measured reflections

  • 2862 independent reflections

  • 2496 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.06

  • 2862 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H8⋯O7i 0.85 2.05 2.903 (2) 175
O4—H9⋯O2ii 0.85 1.93 2.776 (2) 172
O5—H10⋯N1iii 0.85 2.01 2.858 (2) 173
O5—H11⋯O7iv 0.85 1.91 2.750 (2) 173
O6—H12⋯O1 0.85 1.94 2.781 (2) 171
O6—H13⋯O1i 0.85 1.90 2.747 (2) 177
O7—H14⋯O1 0.85 1.88 2.718 (2) 169
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x+1, y-1, z; (iii) -x+2, -y, -z; (iv) -x+1, -y+1, -z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Simple carboxylic acids exhibit a variety of superamolecular aggregation patterns. Recenttly,our attention has been focused on 4-[(2-Chloro-5-thiazolyl)methoxy]Benzoic acid, it is a intermediate used in the synthesis of pesticide. In this paper, we reprot a new complex, (I), synthesized by the reaction of 4-[(2-chloro-5-thiazolyl)methoxy]benzoic acid and nickel(II) nitrate hexahydrate in an aqueous solution.

The asymmetric unit of (I) consists of a hexaaquanickel(II) cation, two 4-[(2-chloro-5-thiazolyl)methoxy]benzoate anions and noe uncoordinated water molecules(Fig. 1). The Ni(II) atom lies on an inversion and is coordinated by six water molecules in an octahedral environment. The anion is almost planar,the largest deviation being 0.136 (5) Å for atom Cl1.

All cations, anions and uncoordinated water molecules are linked through O—H···O hydrogen bonds,resulting in a three-dimensional supramolecular network(Fig. 2; Table 1).

Related literature top

For the synthesis of 4-[(2-chloro-5-thiazolyl)methoxy]benzoic acid, see: Mirci (1990) .

Experimental top

4-[(2-Chloro-5-thiazolyl)methoxy]benzoic acid was prepared by substitute reaction of 4-hydroxybenzoic acid and 2-chloro-5-chloromethoxythiazol under basic conditions(stephen et al.,2000). Nickel nitrate hexahydrate(0.582 g, 2 mmol) and 4-[(2-Chloro-5-thiazolyl)methoxy]benzoic acid(0.538 g, 2 mmol) were dissolved in water(15 ml) and the pH was adjusted to 7 with 0.01 mol/L sodium hydroxide. Jade-green crystals separated from filtered after several days.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C), and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H=0.85 Å, Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. A dashed line indicates the intermolecular O—H···O hydrogen-bonding interaction. [Symmetry code: (i) 2 - x, -y, 1 - z]
[Figure 2] Fig. 2. A partial packing view, showing the three-dimensional network. Dashed lines indicate the hydrogen-bonding interactions. The H atoms have been omitted for clarity.
Hexaaquanickel(II) bis{4-[(2-chlorothiazol-5-yl)methoxy]benzoate} dihydrate top
Crystal data top
[Ni(H2O)6](C11H7ClNO3S)2·2H2OZ = 1
Mr = 740.21F(000) = 382
Triclinic, P1Dx = 1.647 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1844 (4) ÅCell parameters from 4613 reflections
b = 7.2084 (4) Åθ = 2.7–28.2°
c = 15.5621 (8) ŵ = 1.04 mm1
α = 78.388 (1)°T = 291 K
β = 81.285 (1)°Block, green
γ = 71.734 (1)°0.20 × 0.18 × 0.08 mm
V = 746.26 (7) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2862 independent reflections
Radiation source: fine-focus sealed tube2496 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scanθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.819, Tmax = 0.922k = 48
4613 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0324P)2 + 0.4113P]
where P = (Fo2 + 2Fc2)/3
2862 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Ni(H2O)6](C11H7ClNO3S)2·2H2Oγ = 71.734 (1)°
Mr = 740.21V = 746.26 (7) Å3
Triclinic, P1Z = 1
a = 7.1844 (4) ÅMo Kα radiation
b = 7.2084 (4) ŵ = 1.04 mm1
c = 15.5621 (8) ÅT = 291 K
α = 78.388 (1)°0.20 × 0.18 × 0.08 mm
β = 81.285 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2862 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2496 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.922Rint = 0.012
4613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
2862 reflectionsΔρmin = 0.22 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4407 (3)0.4075 (3)0.34973 (14)0.0299 (5)
C20.5199 (3)0.3065 (3)0.27064 (14)0.0290 (4)
C30.5491 (3)0.4165 (3)0.18875 (14)0.0341 (5)
H10.52310.55280.18360.041*
C40.6166 (3)0.3275 (3)0.11385 (15)0.0377 (5)
H20.63670.40310.05930.045*
C50.6532 (3)0.1257 (3)0.12194 (14)0.0357 (5)
C60.6261 (4)0.0128 (3)0.20322 (15)0.0454 (6)
H30.65150.12340.20810.055*
C70.5612 (4)0.1027 (3)0.27714 (15)0.0414 (6)
H40.54500.02600.33180.050*
C80.7285 (4)0.1271 (3)0.03345 (14)0.0404 (5)
H60.81820.20600.03880.048*
H50.59990.21510.04740.048*
C90.8018 (3)0.0208 (3)0.09460 (14)0.0336 (5)
C100.8419 (4)0.0072 (4)0.18299 (15)0.0444 (6)
H70.82520.13300.21620.053*
C110.9178 (3)0.3136 (3)0.16161 (15)0.0369 (5)
Cl10.99611 (11)0.54983 (9)0.18443 (5)0.05607 (19)
N10.9093 (3)0.1615 (3)0.22133 (13)0.0431 (5)
Ni11.00000.00000.50000.02618 (11)
O10.4168 (2)0.2996 (2)0.42325 (10)0.0360 (4)
O20.4022 (2)0.5919 (2)0.33923 (10)0.0420 (4)
O30.7165 (3)0.0213 (2)0.05258 (10)0.0521 (5)
O41.0411 (2)0.1930 (2)0.41173 (11)0.0435 (4)
H80.95630.25150.40970.065*
H91.15300.26630.39460.065*
O50.9559 (3)0.2269 (2)0.39824 (11)0.0519 (5)
H101.00580.20930.34630.078*
H110.89940.34830.40140.078*
O60.7076 (2)0.0327 (2)0.52300 (11)0.0403 (4)
H120.62860.11760.48880.061*
H130.66710.06860.54110.061*
O70.2566 (2)0.3897 (2)0.58489 (11)0.0418 (4)
H150.35370.37650.61310.063*
H140.30160.37780.53190.063*
S10.84843 (10)0.26984 (9)0.05532 (4)0.04168 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0288 (10)0.0311 (12)0.0304 (11)0.0066 (9)0.0005 (8)0.0112 (9)
C20.0305 (10)0.0267 (11)0.0279 (11)0.0039 (8)0.0003 (8)0.0090 (9)
C30.0447 (12)0.0248 (11)0.0319 (12)0.0084 (9)0.0001 (9)0.0082 (9)
C40.0515 (13)0.0326 (12)0.0258 (11)0.0108 (10)0.0030 (10)0.0049 (9)
C50.0450 (12)0.0313 (12)0.0270 (11)0.0040 (10)0.0032 (9)0.0126 (9)
C60.0708 (17)0.0232 (12)0.0336 (13)0.0049 (11)0.0067 (12)0.0080 (10)
C70.0600 (15)0.0301 (12)0.0268 (11)0.0074 (11)0.0080 (10)0.0065 (10)
C80.0577 (14)0.0332 (13)0.0272 (12)0.0087 (11)0.0025 (10)0.0104 (10)
C90.0417 (12)0.0282 (11)0.0291 (11)0.0076 (9)0.0003 (9)0.0075 (9)
C100.0702 (16)0.0297 (12)0.0284 (12)0.0098 (11)0.0028 (11)0.0071 (10)
C110.0434 (12)0.0328 (12)0.0327 (12)0.0067 (10)0.0022 (10)0.0126 (10)
Cl10.0756 (5)0.0341 (3)0.0554 (4)0.0099 (3)0.0077 (3)0.0205 (3)
N10.0622 (13)0.0352 (11)0.0283 (10)0.0085 (9)0.0044 (9)0.0130 (9)
Ni10.0301 (2)0.0224 (2)0.0240 (2)0.00492 (15)0.00206 (14)0.00691 (15)
O10.0464 (9)0.0331 (8)0.0274 (8)0.0104 (7)0.0037 (7)0.0098 (7)
O20.0575 (10)0.0278 (8)0.0362 (9)0.0050 (7)0.0040 (7)0.0130 (7)
O30.0902 (14)0.0318 (9)0.0255 (8)0.0070 (9)0.0071 (8)0.0114 (7)
O40.0432 (9)0.0421 (10)0.0493 (10)0.0121 (7)0.0064 (7)0.0255 (8)
O50.0836 (13)0.0268 (9)0.0277 (8)0.0023 (8)0.0087 (8)0.0048 (7)
O60.0340 (8)0.0358 (9)0.0482 (10)0.0101 (7)0.0004 (7)0.0035 (7)
O70.0494 (9)0.0378 (9)0.0371 (9)0.0085 (7)0.0032 (7)0.0159 (7)
S10.0599 (4)0.0318 (3)0.0279 (3)0.0089 (3)0.0050 (3)0.0064 (2)
Geometric parameters (Å, º) top
C1—O21.251 (3)C10—N11.380 (3)
C1—O11.269 (3)C10—H70.9300
C1—C21.503 (3)C11—N11.279 (3)
C2—C31.383 (3)C11—Cl11.710 (2)
C2—C71.390 (3)C11—S11.716 (2)
C3—C41.393 (3)Ni1—O52.0167 (16)
C3—H10.9300Ni1—O5i2.0167 (16)
C4—C51.378 (3)Ni1—O6i2.0230 (15)
C4—H20.9300Ni1—O62.0230 (15)
C5—O31.379 (3)Ni1—O4i2.0732 (15)
C5—C61.382 (3)Ni1—O42.0732 (15)
C6—C71.381 (3)O4—H80.8499
C6—H30.9300O4—H90.8500
C7—H40.9300O5—H100.8500
C8—O31.406 (3)O5—H110.8500
C8—C91.492 (3)O6—H120.8499
C8—H60.9700O6—H130.8500
C8—H50.9700O7—H150.8499
C9—C101.349 (3)O7—H140.8501
C9—S11.718 (2)
O2—C1—O1124.10 (19)N1—C10—H7121.9
O2—C1—C2118.33 (19)N1—C11—Cl1122.70 (17)
O1—C1—C2117.58 (19)N1—C11—S1116.45 (17)
C3—C2—C7118.43 (19)Cl1—C11—S1120.85 (14)
C3—C2—C1120.19 (19)C11—N1—C10109.39 (19)
C7—C2—C1121.36 (19)O5—Ni1—O5i180.000 (1)
C2—C3—C4121.4 (2)O5—Ni1—O6i88.79 (7)
C2—C3—H1119.3O5i—Ni1—O6i91.21 (7)
C4—C3—H1119.3O5—Ni1—O691.21 (7)
C5—C4—C3118.9 (2)O5i—Ni1—O688.79 (7)
C5—C4—H2120.5O6i—Ni1—O6180.00 (9)
C3—C4—H2120.5O5—Ni1—O4i91.14 (7)
C4—C5—O3124.3 (2)O5i—Ni1—O4i88.86 (7)
C4—C5—C6120.6 (2)O6i—Ni1—O4i92.92 (6)
O3—C5—C6115.1 (2)O6—Ni1—O4i87.08 (6)
C7—C6—C5119.9 (2)O5—Ni1—O488.86 (7)
C7—C6—H3120.0O5i—Ni1—O491.14 (7)
C5—C6—H3120.0O6i—Ni1—O487.08 (6)
C6—C7—C2120.7 (2)O6—Ni1—O492.92 (6)
C6—C7—H4119.6O4i—Ni1—O4180.0
C2—C7—H4119.6C5—O3—C8118.64 (18)
O3—C8—C9107.34 (18)Ni1—O4—H8121.8
O3—C8—H6110.2Ni1—O4—H9123.8
C9—C8—H6110.2H8—O4—H9107.5
O3—C8—H5110.2Ni1—O5—H10121.0
C9—C8—H5110.2Ni1—O5—H11126.5
H6—C8—H5108.5H10—O5—H11112.2
C10—C9—C8129.8 (2)Ni1—O6—H12120.0
C10—C9—S1109.38 (17)Ni1—O6—H13119.8
C8—C9—S1120.84 (16)H12—O6—H13109.8
C9—C10—N1116.1 (2)H15—O7—H14107.2
C9—C10—H7121.9C11—S1—C988.63 (11)
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H8···O7ii0.852.052.903 (2)175
O4—H9···O2iii0.851.932.776 (2)172
O5—H10···N1iv0.852.012.858 (2)173
O5—H11···O7v0.851.912.750 (2)173
O6—H12···O10.851.942.781 (2)171
O6—H13···O1ii0.851.902.747 (2)177
O7—H14···O10.851.882.718 (2)169
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1, y1, z; (iv) x+2, y, z; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(H2O)6](C11H7ClNO3S)2·2H2O
Mr740.21
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.1844 (4), 7.2084 (4), 15.5621 (8)
α, β, γ (°)78.388 (1), 81.285 (1), 71.734 (1)
V3)746.26 (7)
Z1
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.20 × 0.18 × 0.08
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.819, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
4613, 2862, 2496
Rint0.012
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.076, 1.06
No. of reflections2862
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.22

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H8···O7i0.852.052.903 (2)175.4
O4—H9···O2ii0.851.932.776 (2)171.6
O5—H10···N1iii0.852.012.858 (2)172.5
O5—H11···O7iv0.851.912.750 (2)172.6
O6—H12···O10.851.942.781 (2)171.3
O6—H13···O1i0.851.902.747 (2)177.4
O7—H14···O10.851.882.718 (2)169.1
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1, z; (iii) x+2, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the China West Normal University and Heilongjiang University.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMirci, L. E. (1990). Rom. Patent No. 0 743 205.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds