organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo­phenyl benzoate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, Darmstadt, D-64287, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 21 March 2008; accepted 26 March 2008; online 29 March 2008)

The structure of the title compound (4BPBA), C13H9BrO2, is similar to that of phenyl benzoate (PBA), 4-methyl­phenyl benzoate (4MePBA) and 4-methoxy­phenyl benzoate, with somewhat different bond parameters. The dihedral angle between the phenyl and benzoyl rings in 4BPBA is 58.43 (17)°, compared with values of 55.7° in PBA and 60.17 (7)° in 4MPBA. The mol­ecules in the title compound are packed into infinite chains in the a-axis direction.

Related literature

For related literature, see: Adams & Morsi (1976[Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345-1347.]); Gowda, Foro, Babitha & Fuess (2007[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o4286.]); Gowda, Foro, Nayak & Fuess (2007[Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563.]); Nayak & Gowda (2008[Nayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press. ]).

[Scheme 1]

Experimental

Crystal data
  • C13H9BrO2

  • Mr = 277.11

  • Orthorhombic, P c a 21

  • a = 7.748 (1) Å

  • b = 5.5946 (7) Å

  • c = 26.814 (5) Å

  • V = 1162.3 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.67 mm−1

  • T = 299 (2) K

  • 0.38 × 0.30 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.241, Tmax = 0.685

  • 1986 measured reflections

  • 1442 independent reflections

  • 1252 reflections with I > 2σ(I)

  • Rint = 0.039

  • 3 standard reflections frequency: 120 min intensity decay: 2.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.189

  • S = 1.15

  • 1442 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −1.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 375 Friedel pairs

  • Flack parameter: −0.04 (6)

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, the structure of 4-bromophenyl benzoate (4BPBA) has been determined, as part of a study of substituent effects on the structures of industrially significant compounds (Gowda, Foro, Babitha & Fuess, 2007; Gowda, Foro, Nayak & Fuess, 2007). The structure of 4BPBA (Fig. 1) resembles those of phenyl benzoate (PBA) (Adams & Morsi, 1976), 4-methylphenyl benzoate (4MePBA), 4-methoxyphenyl benzoate (4MeOPBA), 3-methylphenyl benzoate (3MePBA), 2,3-dichlorophenyl benzoate (23DCPBA) and other aryl benzoates (Gowda, Foro, Babitha & Fuess, 2007; Gowda, Foro, Nayak & Fuess, 2007). The bond parameters in 4BPBA are similar to those in PBA, 4MePBA, 4MeOPBA, 3MePBA, 23DCPBA and other benzoates (Adams & Morsi, 1976; Gowda, Foro, Babitha & Fuess, 2007; Gowda, Foro, Nayak & Fuess, 2007). The molecules in the title compound are packed into chains in the bc plane (Fig. 2).

Related literature top

For related literature, see: Adams & Morsi (1976); Gowda, Foro, Babitha & Fuess (2007); Gowda, Foro, Nayak & Fuess (2007); Nayak & Gowda (2008).

Experimental top

The title compound was prepared according to a literature method (Nayak & Gowda, 2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Nayak & Gowda, 2008). Single crystals of the title compound were obtained by slow evaporation of an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model (C—H = 0.93 Å) with Uiso = 1.2 Ueq of the parent atom.

The residual electron-density features are located in the region of Br1. The highest peak is 0.91 Å from C4 and deepest hole is 0.78 Å from Br1.

Computing details top

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996); cell refinement: CAD-4-PC Software (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound as viewed down the bc plane.
4-Bromophenyl benzoate top
Crystal data top
C13H9BrO2F(000) = 552
Mr = 277.11Dx = 1.584 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 7.748 (1) Åθ = 9.9–23.4°
b = 5.5946 (7) ŵ = 4.67 mm1
c = 26.814 (5) ÅT = 299 K
V = 1162.3 (3) Å3Plate, colourless
Z = 40.38 × 0.30 × 0.08 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1252 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 66.9°, θmin = 3.3°
ω/2θ scansh = 19
Absorption correction: ψ scan
(North et al., 1968)
k = 16
Tmin = 0.242, Tmax = 0.685l = 832
1986 measured reflections3 standard reflections every 120 min
1442 independent reflections intensity decay: 2.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.189 w = 1/[σ2(Fo2) + (0.1268P)2 + 0.565P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
1442 reflectionsΔρmax = 1.04 e Å3
145 parametersΔρmin = 1.32 e Å3
1 restraintAbsolute structure: Flack (1983), with 375 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (6)
Crystal data top
C13H9BrO2V = 1162.3 (3) Å3
Mr = 277.11Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 7.748 (1) ŵ = 4.67 mm1
b = 5.5946 (7) ÅT = 299 K
c = 26.814 (5) Å0.38 × 0.30 × 0.08 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1252 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.039
Tmin = 0.242, Tmax = 0.6853 standard reflections every 120 min
1986 measured reflections intensity decay: 2.0%
1442 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.189Δρmax = 1.04 e Å3
S = 1.15Δρmin = 1.32 e Å3
1442 reflectionsAbsolute structure: Flack (1983), with 375 Friedel pairs
145 parametersAbsolute structure parameter: 0.04 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.29159 (16)0.2659 (2)0.12742 (8)0.0950 (5)
O10.4692 (6)0.1882 (9)0.0901 (2)0.0581 (13)
O20.3231 (11)0.5195 (14)0.1104 (3)0.107 (3)
C10.4260 (8)0.2190 (10)0.0403 (3)0.0463 (14)
C20.4854 (8)0.4121 (12)0.0127 (3)0.0544 (16)
H20.55000.53210.02780.065*
C30.4478 (8)0.4229 (12)0.0367 (3)0.0560 (17)
H30.48880.54920.05590.067*
C40.3474 (11)0.2440 (12)0.0586 (3)0.0559 (17)
C50.2920 (9)0.0437 (12)0.0313 (3)0.0589 (18)
H50.23010.07940.04620.071*
C60.3332 (9)0.0389 (13)0.0176 (3)0.0583 (17)
H60.29770.09080.03680.070*
C70.4106 (9)0.3510 (14)0.1226 (3)0.0577 (17)
C80.4601 (9)0.2976 (12)0.1748 (3)0.0521 (15)
C90.5527 (8)0.0900 (13)0.1879 (3)0.0585 (17)
H90.58460.02090.16380.070*
C100.5943 (10)0.0558 (13)0.2368 (4)0.0644 (19)
H100.65440.08200.24540.077*
C110.5530 (10)0.2107 (14)0.2731 (4)0.0627 (19)
H110.58340.18030.30600.075*
C120.4636 (9)0.4180 (14)0.2604 (3)0.0602 (17)
H120.43530.52840.28510.072*
C130.4164 (9)0.4607 (13)0.2112 (3)0.0585 (16)
H130.35580.59850.20290.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1056 (8)0.1322 (9)0.0472 (6)0.0167 (6)0.0058 (7)0.0056 (7)
O10.053 (2)0.064 (3)0.058 (3)0.008 (2)0.003 (2)0.011 (3)
O20.145 (6)0.117 (5)0.059 (4)0.089 (5)0.005 (4)0.001 (4)
C10.044 (3)0.047 (3)0.049 (4)0.003 (2)0.001 (3)0.003 (3)
C20.046 (3)0.052 (3)0.066 (5)0.007 (3)0.004 (3)0.009 (3)
C30.055 (3)0.052 (3)0.061 (5)0.007 (3)0.011 (3)0.005 (3)
C40.058 (4)0.067 (4)0.042 (4)0.006 (3)0.005 (4)0.006 (3)
C50.062 (4)0.049 (3)0.066 (5)0.004 (3)0.005 (4)0.006 (3)
C60.054 (3)0.058 (4)0.063 (5)0.012 (3)0.002 (4)0.010 (4)
C70.050 (3)0.068 (4)0.055 (4)0.019 (3)0.004 (3)0.002 (4)
C80.051 (3)0.055 (3)0.050 (4)0.005 (3)0.006 (3)0.001 (3)
C90.053 (3)0.062 (3)0.061 (4)0.017 (3)0.004 (3)0.010 (4)
C100.057 (3)0.062 (4)0.074 (5)0.007 (3)0.008 (4)0.015 (4)
C110.056 (3)0.082 (5)0.050 (5)0.001 (3)0.002 (3)0.003 (4)
C120.064 (4)0.065 (4)0.052 (4)0.007 (3)0.005 (4)0.002 (4)
C130.056 (3)0.059 (4)0.060 (4)0.010 (3)0.003 (3)0.001 (3)
Geometric parameters (Å, º) top
Br1—C41.899 (9)C6—H60.9300
O1—C71.340 (10)C7—C81.481 (12)
O1—C11.388 (10)C8—C131.379 (11)
O2—C71.206 (9)C8—C91.410 (10)
C1—C61.379 (10)C9—C101.364 (12)
C1—C21.388 (10)C9—H90.9300
C2—C31.356 (12)C10—C111.342 (12)
C2—H20.9300C10—H100.9300
C3—C41.398 (11)C11—C121.392 (11)
C3—H30.9300C11—H110.9300
C4—C51.406 (11)C12—C131.390 (12)
C5—C61.351 (12)C12—H120.9300
C5—H50.9300C13—H130.9300
C7—O1—C1117.4 (5)O2—C7—C8124.1 (7)
C6—C1—C2120.4 (8)O1—C7—C8112.9 (6)
C6—C1—O1117.3 (6)C13—C8—C9119.5 (8)
C2—C1—O1122.0 (6)C13—C8—C7118.2 (6)
C3—C2—C1118.9 (6)C9—C8—C7122.2 (7)
C3—C2—H2120.5C10—C9—C8118.4 (7)
C1—C2—H2120.5C10—C9—H9120.8
C2—C3—C4119.9 (7)C8—C9—H9120.8
C2—C3—H3120.1C11—C10—C9123.4 (7)
C4—C3—H3120.1C11—C10—H10118.3
C3—C4—C5121.4 (8)C9—C10—H10118.3
C3—C4—Br1119.3 (6)C10—C11—C12118.7 (8)
C5—C4—Br1119.2 (6)C10—C11—H11120.7
C6—C5—C4116.7 (7)C12—C11—H11120.7
C6—C5—H5121.6C13—C12—C11120.4 (8)
C4—C5—H5121.6C13—C12—H12119.8
C5—C6—C1122.4 (7)C11—C12—H12119.8
C5—C6—H6118.8C8—C13—C12119.6 (7)
C1—C6—H6118.8C8—C13—H13120.2
O2—C7—O1123.0 (8)C12—C13—H13120.2
C7—O1—C1—C6120.1 (7)C1—O1—C7—C8178.5 (6)
C7—O1—C1—C265.4 (9)O2—C7—C8—C135.8 (12)
C6—C1—C2—C31.3 (10)O1—C7—C8—C13175.9 (6)
O1—C1—C2—C3175.6 (6)O2—C7—C8—C9175.6 (9)
C1—C2—C3—C41.4 (10)O1—C7—C8—C92.7 (10)
C2—C3—C4—C53.8 (10)C13—C8—C9—C100.9 (10)
C2—C3—C4—Br1178.5 (5)C7—C8—C9—C10179.5 (7)
C3—C4—C5—C63.2 (10)C8—C9—C10—C110.6 (12)
Br1—C4—C5—C6179.1 (6)C9—C10—C11—C120.3 (12)
C4—C5—C6—C10.5 (11)C10—C11—C12—C130.9 (11)
C2—C1—C6—C51.8 (11)C9—C8—C13—C120.3 (11)
O1—C1—C6—C5176.4 (7)C7—C8—C13—C12178.9 (7)
C1—O1—C7—O20.2 (12)C11—C12—C13—C80.6 (11)

Experimental details

Crystal data
Chemical formulaC13H9BrO2
Mr277.11
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)299
a, b, c (Å)7.748 (1), 5.5946 (7), 26.814 (5)
V3)1162.3 (3)
Z4
Radiation typeCu Kα
µ (mm1)4.67
Crystal size (mm)0.38 × 0.30 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.242, 0.685
No. of measured, independent and
observed [I > 2σ(I)] reflections
1986, 1442, 1252
Rint0.039
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.189, 1.15
No. of reflections1442
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 1.32
Absolute structureFlack (1983), with 375 Friedel pairs
Absolute structure parameter0.04 (6)

Computer programs: CAD-4-PC Software (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions to his research fellowship.

References

First citationAdams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1996). CAD-4-PC Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o4286.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNayak, R. & Gowda, B. T. (2008). Z. Naturforsch. Teil A, 63. In the press.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds