organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phenyl-4-(3,4,5-tri­meth­oxy­benzyl­­idene)-1,3-oxazol-5(4H)-one

aAdvanced Photonics Center, School of Electronic Science and Engineering, Southeast University, 210096 Nanjing, Jiangsu, People's Republic of China, and bDepartment of Chemistry, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: sunyf50@hotmail.com

(Received 22 February 2008; accepted 29 February 2008; online 7 March 2008)

The title compound, C19H17NO5, was synthesized as part of a continuing project involving the structures of oxazolone derivatives. The mol­ecule adopts a Z configuration about the central olefinic bond. The 2-phenyl ring is slightly twisted out of the plane of the oxazolone ring system by 11.2 (2)°. The crystal structure is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For background literature, see: Aaglawe et al. (2003[Aaglawe, M. J., Dhule, S. S., Bahekar, S. S., Wakte, P. S. & Shinde, D. B. (2003). J. Korean Chem. Soc. 47, 133-136.]); Grassi et al. (2004[Grassi, G., Foti, F., Risitano, F., Cordaro, M., Nicolo, F. & Bruno, G. (2004). J. Mol. Struct. 698, 81-86.]); Khan et al. (2006[Khan, K. M., Mughal, U. R., Khan, M. T. H., Ullah, Z., Perveen, S. & Choudhary, M. I. (2006). Bioorg. Med. Chem. 14, 6027-6033.]); Song et al. (2001[Song, H.-C., Sun, Y.-F., Li, W.-M., Xu, Z.-L., Zhang, L.-Z. & Cai, Z.-G. (2001). Acta Chim. Sinica, 59, 1563-1565.]). For related structures, see: Sun et al. (2007[Sun, Y.-F., Wang, X.-L., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007). Acta Cryst. E63, o4426.]); Imhof & Garms (2005[Imhof, W. & Garms, S. (2005). Acta Cryst. E61, m1413-m1415.]); Song et al. (2004[Song, H.-C., Wen, H. & Li, W.-M. (2004). Spectrochim. Acta Part A, 60, 1587-1591.]); Vasuki et al. (2001[Vasuki, G., Parthasarathi, V., Ramamurthi, K., Singh, R. M. & Srivastava, A. (2001). Acta Cryst. E57, o120-o121.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17NO5

  • Mr = 339.34

  • Triclinic, [P \overline 1]

  • a = 7.3897 (5) Å

  • b = 8.1532 (6) Å

  • c = 14.0023 (9) Å

  • α = 86.917 (5)°

  • β = 83.306 (4)°

  • γ = 82.471 (5)°

  • V = 830.02 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.990

  • 4665 measured reflections

  • 2904 independent reflections

  • 2056 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.04

  • 2904 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O1i 0.93 2.59 3.503 (2) 168
C6—H6⋯O3ii 0.93 2.62 3.420 (2) 144
Symmetry codes: (i) -x+1, -y, -z; (ii) -x, -y+2, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The development of highly efficient nonlinear optical crystals is extremely important for laser spectroscopy and laser processing. Oxazolone derivatives are highly versatile intermediates used for the synthesis of several biologically active organic molecules, such as amino acids, peptides, antimicrobial or antitumor compounds, immunomodulators, heterocyclic precursors for biosensor coupling, and photosensitive composition devices for proteins (Aaglawe et al., 2003; Grassi et al., 2004; Khan et al., 2006). It has been reported (Song et al., 2001) that some oxazolone derivatives exhibit promising nonlinear optical properties. The second-harmonic generation (SHG) value of the title compound is 1.821, as compared with urea powder. In this contribution, we report the crystal structure of the title compound.

The molecule possesses normal geometric parameters and adopts a Z configuration about the central olefinic bond (Fig. 1). The C11–C16 phenyl ring and the oxazolone ring are almost coplanar. However, the C4–C9 phenyl ring is slightly twisted out of the plane of the oxazolone ring system by 11.2 (2) °. Comparison with 2,6-dimethoxy-4- (5-oxo-2-phenyl-4,5-dihydro-1,3-oxazol-4-ylidenemethyl)-phenyl acetate (Sun et al., 2007) suggests that the presence of the 4-methoxy group leads to this deviation from coplanarity. Also, while O3, O4, O5, C17 and C19 are approximately coplanar with their attached benzene ring, C18 deviate from their mother benzene ring (Fig. 1). The crystal structure is stabilized by the weak intermolecular C—H···O hydrogen bonds (Table 1).

Similar structures have been observed in the related oxazolone analogues reported by Sun et al. (2007), Imhof & Garms (2005), Song et al. (2004), and by Vasuki et al. (2001).

Related literature top

For background literature, see: Aaglawe et al. (2003); Grassi et al. (2004); Khan et al. (2006); Song et al. (2001). For related structures, see: Sun et al. (2007); Imhof & Garms (2005); Song et al. (2004); Vasuki et al. (2001).

Experimental top

The title compound was synthesized from 3,4,5-trimethoxybenzaldehyde and hippuric acid as reported by Song et al. (2001). A mixture of hippuric acid (2.2 mmol), 3,4,5-trimethoxybenzaldehyde (2 mmol), sodium acetate (3 mmol) in acetic anhydride (8 ml) was refluxed for 5 hr. It was then cooled and ethanol (10 ml) was added to it. The resulting mixture was left over night at room temp. The solid thus obtained was filtered, dried and crystallized from ethanol to yield the title compound in 73% yield. A single-crystal suitable for an X-ray structural analysis was obtained by slowly evaporating from ethanol at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry with C—H distances of 0.96 Å and Uiso(H) = 1.5Ueq(C). All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
2-Phenyl-4-(3,4,5-trimethoxybenzylidene)-1,3-oxazol-5(4H)-one top
Crystal data top
C19H17NO5Z = 2
Mr = 339.34F(000) = 356
Triclinic, P1Dx = 1.358 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3897 (5) ÅCell parameters from 1358 reflections
b = 8.1532 (6) Åθ = 2.9–24.7°
c = 14.0023 (9) ŵ = 0.10 mm1
α = 86.917 (5)°T = 273 K
β = 83.306 (4)°Block, yellow
γ = 82.471 (5)°0.15 × 0.12 × 0.10 mm
V = 830.02 (10) Å3
Data collection top
Bruker SMART CCD area detector
diffractometer
2904 independent reflections
Radiation source: fine-focus sealed tube2056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.985, Tmax = 0.990k = 98
4665 measured reflectionsl = 1614
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.121H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.0668P]
where P = (Fo2 + 2Fc2)/3
2904 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C19H17NO5γ = 82.471 (5)°
Mr = 339.34V = 830.02 (10) Å3
Triclinic, P1Z = 2
a = 7.3897 (5) ÅMo Kα radiation
b = 8.1532 (6) ŵ = 0.10 mm1
c = 14.0023 (9) ÅT = 273 K
α = 86.917 (5)°0.15 × 0.12 × 0.10 mm
β = 83.306 (4)°
Data collection top
Bruker SMART CCD area detector
diffractometer
2904 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2056 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.990Rint = 0.020
4665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.04Δρmax = 0.12 e Å3
2904 reflectionsΔρmin = 0.15 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5421 (2)0.11697 (18)0.16116 (10)0.0843 (5)
O20.47613 (18)0.36419 (17)0.23924 (9)0.0666 (4)
O30.0038 (2)0.77451 (16)0.17976 (10)0.0760 (4)
O40.0466 (2)0.58784 (18)0.33970 (10)0.0759 (4)
O50.09472 (19)0.26856 (16)0.34793 (9)0.0685 (4)
N10.3293 (2)0.51906 (19)0.11774 (10)0.0559 (4)
C10.4742 (3)0.2583 (3)0.15782 (14)0.0626 (5)
C20.3888 (2)0.5149 (2)0.20767 (13)0.0560 (5)
C30.3759 (2)0.3591 (2)0.07986 (13)0.0546 (4)
C40.3748 (2)0.6523 (2)0.27805 (12)0.0567 (5)
C50.3176 (3)0.8105 (3)0.24711 (14)0.0656 (5)
H50.29100.82760.18160.079*
C60.2996 (3)0.9427 (3)0.31155 (15)0.0720 (6)
H60.26001.04860.28980.086*
C70.3402 (3)0.9181 (3)0.40840 (15)0.0764 (6)
H70.32821.00740.45240.092*
C80.3981 (3)0.7630 (3)0.43997 (15)0.0836 (7)
H80.42580.74710.50560.100*
C90.4161 (3)0.6292 (3)0.37596 (14)0.0742 (6)
H90.45580.52370.39830.089*
C100.3399 (2)0.2976 (2)0.01042 (13)0.0566 (5)
H100.38670.18730.02070.068*
C110.2390 (2)0.3772 (2)0.09430 (12)0.0509 (4)
C120.1654 (2)0.5438 (2)0.09198 (13)0.0551 (4)
H120.17860.60780.03520.066*
C130.0733 (2)0.6129 (2)0.17411 (13)0.0560 (4)
C140.0515 (2)0.5183 (2)0.25978 (12)0.0561 (5)
C150.1226 (2)0.3522 (2)0.26160 (12)0.0535 (4)
C160.2174 (2)0.2820 (2)0.17932 (12)0.0541 (4)
H160.26660.17100.18100.065*
C170.0240 (3)0.8792 (2)0.09656 (15)0.0776 (6)
H17A0.15330.87970.07850.116*
H17B0.03210.98970.11010.116*
H17C0.03030.83910.04480.116*
C180.0640 (4)0.6488 (3)0.40255 (16)0.1007 (8)
H18A0.15110.56000.42340.151*
H18B0.01250.69400.45750.151*
H18C0.12840.73370.36940.151*
C190.1573 (3)0.0968 (3)0.35144 (15)0.0724 (6)
H19A0.10640.04370.30300.109*
H19B0.11900.05000.41370.109*
H19C0.28890.08020.33990.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1024 (12)0.0654 (10)0.0810 (10)0.0056 (8)0.0041 (8)0.0184 (8)
O20.0715 (8)0.0709 (9)0.0554 (7)0.0040 (7)0.0000 (6)0.0128 (7)
O30.0942 (11)0.0559 (8)0.0699 (9)0.0064 (7)0.0051 (7)0.0006 (7)
O40.0790 (9)0.0789 (9)0.0652 (8)0.0073 (7)0.0123 (7)0.0120 (7)
O50.0813 (9)0.0644 (8)0.0575 (8)0.0123 (7)0.0021 (6)0.0062 (6)
N10.0542 (9)0.0615 (10)0.0526 (9)0.0109 (7)0.0033 (7)0.0048 (7)
C10.0636 (12)0.0642 (13)0.0608 (11)0.0072 (10)0.0074 (9)0.0108 (10)
C20.0492 (10)0.0639 (12)0.0564 (11)0.0098 (8)0.0043 (8)0.0124 (9)
C30.0531 (10)0.0557 (11)0.0561 (10)0.0084 (8)0.0068 (8)0.0067 (9)
C40.0490 (10)0.0685 (12)0.0537 (10)0.0114 (9)0.0047 (8)0.0052 (9)
C50.0624 (12)0.0762 (14)0.0563 (11)0.0055 (10)0.0022 (9)0.0031 (10)
C60.0673 (13)0.0734 (14)0.0740 (14)0.0078 (10)0.0058 (10)0.0020 (11)
C70.0715 (13)0.0897 (16)0.0693 (13)0.0199 (12)0.0095 (11)0.0132 (12)
C80.0985 (17)0.0996 (18)0.0541 (12)0.0228 (14)0.0034 (11)0.0001 (12)
C90.0891 (15)0.0769 (14)0.0570 (12)0.0157 (11)0.0004 (10)0.0088 (10)
C100.0578 (11)0.0521 (10)0.0613 (11)0.0089 (8)0.0086 (9)0.0049 (8)
C110.0502 (10)0.0510 (10)0.0530 (10)0.0107 (8)0.0063 (8)0.0042 (8)
C120.0585 (11)0.0547 (11)0.0520 (10)0.0098 (8)0.0044 (8)0.0010 (8)
C130.0556 (10)0.0509 (10)0.0606 (11)0.0049 (8)0.0042 (9)0.0030 (9)
C140.0527 (10)0.0600 (11)0.0552 (10)0.0097 (8)0.0014 (8)0.0076 (9)
C150.0521 (10)0.0579 (11)0.0519 (10)0.0137 (8)0.0054 (8)0.0020 (8)
C160.0542 (10)0.0495 (10)0.0600 (11)0.0100 (8)0.0086 (8)0.0010 (8)
C170.0939 (16)0.0551 (12)0.0790 (14)0.0018 (11)0.0067 (12)0.0070 (10)
C180.146 (2)0.0862 (17)0.0716 (14)0.0273 (16)0.0020 (15)0.0237 (12)
C190.0762 (13)0.0681 (14)0.0708 (13)0.0087 (11)0.0078 (11)0.0161 (10)
Geometric parameters (Å, º) top
O1—C11.196 (2)C8—C91.377 (3)
O2—C21.381 (2)C8—H80.9300
O2—C11.393 (2)C9—H90.9300
O3—C131.368 (2)C10—C111.452 (2)
O3—C171.418 (2)C10—H100.9300
O4—C141.368 (2)C11—C161.391 (2)
O4—C181.418 (3)C11—C121.396 (2)
O5—C151.363 (2)C12—C131.374 (2)
O5—C191.417 (2)C12—H120.9300
N1—C21.285 (2)C13—C141.396 (3)
N1—C31.397 (2)C14—C151.387 (3)
C1—C31.466 (3)C15—C161.387 (2)
C2—C41.453 (3)C16—H160.9300
C3—C101.345 (3)C17—H17A0.9600
C4—C51.380 (3)C17—H17B0.9600
C4—C91.387 (3)C17—H17C0.9600
C5—C61.371 (3)C18—H18A0.9600
C5—H50.9300C18—H18B0.9600
C6—C71.374 (3)C18—H18C0.9600
C6—H60.9300C19—H19A0.9600
C7—C81.361 (3)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C2—O2—C1105.35 (14)C16—C11—C10117.84 (16)
C13—O3—C17117.23 (15)C12—C11—C10122.32 (16)
C14—O4—C18113.61 (16)C13—C12—C11119.65 (16)
C15—O5—C19117.33 (15)C13—C12—H12120.2
C2—N1—C3105.67 (15)C11—C12—H12120.2
O1—C1—O2121.82 (18)O3—C13—C12124.40 (16)
O1—C1—C3133.22 (19)O3—C13—C14114.73 (16)
O2—C1—C3104.96 (17)C12—C13—C14120.87 (17)
N1—C2—O2115.89 (16)O4—C14—C15120.64 (16)
N1—C2—C4126.61 (17)O4—C14—C13119.91 (17)
O2—C2—C4117.50 (15)C15—C14—C13119.39 (16)
C10—C3—N1129.17 (16)O5—C15—C16124.20 (16)
C10—C3—C1122.71 (18)O5—C15—C14115.69 (16)
N1—C3—C1108.10 (15)C16—C15—C14120.10 (16)
C5—C4—C9118.72 (18)C15—C16—C11120.14 (16)
C5—C4—C2119.35 (16)C15—C16—H16119.9
C9—C4—C2121.92 (18)C11—C16—H16119.9
C6—C5—C4120.99 (18)O3—C17—H17A109.5
C6—C5—H5119.5O3—C17—H17B109.5
C4—C5—H5119.5H17A—C17—H17B109.5
C5—C6—C7119.7 (2)O3—C17—H17C109.5
C5—C6—H6120.1H17A—C17—H17C109.5
C7—C6—H6120.1H17B—C17—H17C109.5
C8—C7—C6120.0 (2)O4—C18—H18A109.5
C8—C7—H7120.0O4—C18—H18B109.5
C6—C7—H7120.0H18A—C18—H18B109.5
C7—C8—C9120.8 (2)O4—C18—H18C109.5
C7—C8—H8119.6H18A—C18—H18C109.5
C9—C8—H8119.6H18B—C18—H18C109.5
C8—C9—C4119.8 (2)O5—C19—H19A109.5
C8—C9—H9120.1O5—C19—H19B109.5
C4—C9—H9120.1H19A—C19—H19B109.5
C3—C10—C11129.81 (17)O5—C19—H19C109.5
C3—C10—H10115.1H19A—C19—H19C109.5
C11—C10—H10115.1H19B—C19—H19C109.5
C16—C11—C12119.84 (16)
C2—O2—C1—O1179.16 (18)C1—C3—C10—C11177.22 (17)
C2—O2—C1—C31.44 (18)C3—C10—C11—C16178.06 (17)
C3—N1—C2—O20.07 (19)C3—C10—C11—C122.3 (3)
C3—N1—C2—C4179.39 (16)C16—C11—C12—C130.5 (3)
C1—O2—C2—N10.9 (2)C10—C11—C12—C13179.12 (16)
C1—O2—C2—C4178.45 (15)C17—O3—C13—C124.2 (3)
C2—N1—C3—C10177.93 (18)C17—O3—C13—C14176.14 (17)
C2—N1—C3—C11.01 (18)C11—C12—C13—O3179.96 (16)
O1—C1—C3—C101.8 (3)C11—C12—C13—C140.4 (3)
O2—C1—C3—C10177.47 (16)C18—O4—C14—C1587.7 (2)
O1—C1—C3—N1179.2 (2)C18—O4—C14—C1395.3 (2)
O2—C1—C3—N11.55 (19)O3—C13—C14—O42.2 (2)
N1—C2—C4—C510.3 (3)C12—C13—C14—O4177.52 (16)
O2—C2—C4—C5168.97 (16)O3—C13—C14—C15179.23 (15)
N1—C2—C4—C9169.19 (18)C12—C13—C14—C150.5 (3)
O2—C2—C4—C911.5 (3)C19—O5—C15—C164.0 (2)
C9—C4—C5—C60.8 (3)C19—O5—C15—C14176.91 (16)
C2—C4—C5—C6178.80 (17)O4—C14—C15—O52.7 (2)
C4—C5—C6—C70.5 (3)C13—C14—C15—O5179.76 (15)
C5—C6—C7—C80.0 (3)O4—C14—C15—C16178.17 (15)
C6—C7—C8—C90.2 (3)C13—C14—C15—C161.1 (3)
C7—C8—C9—C40.0 (3)O5—C15—C16—C11180.00 (15)
C5—C4—C9—C80.5 (3)C14—C15—C16—C111.0 (3)
C2—C4—C9—C8179.02 (19)C12—C11—C16—C150.1 (2)
N1—C3—C10—C111.6 (3)C10—C11—C16—C15179.81 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.593.503 (2)168
C6—H6···O3ii0.932.623.420 (2)144
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC19H17NO5
Mr339.34
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)7.3897 (5), 8.1532 (6), 14.0023 (9)
α, β, γ (°)86.917 (5), 83.306 (4), 82.471 (5)
V3)830.02 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.985, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4665, 2904, 2056
Rint0.020
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.04
No. of reflections2904
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.15

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O1i0.932.593.503 (2)168.1
C6—H6···O3ii0.932.623.420 (2)144.0
Symmetry codes: (i) x+1, y, z; (ii) x, y+2, z.
 

Acknowledgements

This project was supported by the Jiangsu Planned Projects for Postdoctoral Research Funds (grant No. 0701001B).

References

First citationAaglawe, M. J., Dhule, S. S., Bahekar, S. S., Wakte, P. S. & Shinde, D. B. (2003). J. Korean Chem. Soc. 47, 133–136.  CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGrassi, G., Foti, F., Risitano, F., Cordaro, M., Nicolo, F. & Bruno, G. (2004). J. Mol. Struct. 698, 81–86.  Web of Science CSD CrossRef CAS Google Scholar
First citationImhof, W. & Garms, S. (2005). Acta Cryst. E61, m1413–m1415.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, K. M., Mughal, U. R., Khan, M. T. H., Ullah, Z., Perveen, S. & Choudhary, M. I. (2006). Bioorg. Med. Chem. 14, 6027–6033.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, H.-C., Sun, Y.-F., Li, W.-M., Xu, Z.-L., Zhang, L.-Z. & Cai, Z.-G. (2001). Acta Chim. Sinica, 59, 1563–1565.  CAS Google Scholar
First citationSong, H.-C., Wen, H. & Li, W.-M. (2004). Spectrochim. Acta Part A, 60, 1587–1591.  CrossRef Google Scholar
First citationSun, Y.-F., Wang, X.-L., Li, J.-K., Zheng, Z.-B. & Wu, R.-T. (2007). Acta Cryst. E63, o4426.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVasuki, G., Parthasarathi, V., Ramamurthi, K., Singh, R. M. & Srivastava, A. (2001). Acta Cryst. E57, o120–o121.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds