organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o663-o664

Methyl 2-{[(4-hy­droxy­phen­yl)(meth­oxy­carbon­yl)meth­yl]amino­carbon­yl}ethano­ate hemihydrate

aInstitute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 18 February 2008; accepted 27 February 2008; online 5 March 2008)

In the structure of the title compound, C13H15NO6·0.5H2O, the water O atom lies on a twofold rotation axis. The methoxy­carbonyl­methyl and amino groups are essentially coplanar and the methoxy­carbonyl­methyl group makes a dihedral angle of 79.73 (10)° with the mean plane of the hydroxy­phenyl ring. The amino and methoxy­carbonyl­methyl groups are involved in an intra­molecular N—H⋯O hydrogen bond which generates an S(5) ring motif. In the crystal structure, mol­ecules are linked via N—H⋯O and O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions into a two-dimensional network parallel to the ([\overline{2}]01) plane. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For details of the biological properties of compounds containing tetra­mic acid, see for example: Iida et al. (1986[Iida, H., Yamazaki, N. & Kibayashi, C. (1986). Tetrahedron Lett. 27, 5393-5396.]); Matkhalikova et al. (1969[Matkhalikova, S. F., Malikov, V. M. & Yunusov, S. Y. (1969). Chem Abstr. 71, 13245z.]); Reddy & Rao (2006[Reddy, J. S. & Rao, B. V. (2006). J. Org. Chem. 76, 2224-2227.]); Reiner (2007[Reiner, S. (2007). Naturwissenschaften, 94, 1-11.]); Royles (1996[Royles, B. J. L. (1996). Chem. Rev. 95, 1961-2001.]). For the syntheses of compounds containing tetra­mic acid units, see for example: Steglich (1989[Steglich, W. (1989). Pure Appl. Chem. 61, 281-288.]); Royles (1996[Royles, B. J. L. (1996). Chem. Rev. 95, 1961-2001.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NO6·0.5H2O

  • Mr = 290.27

  • Monoclinic, C 2

  • a = 22.7764 (12) Å

  • b = 5.3046 (3) Å

  • c = 13.0686 (6) Å

  • β = 117.612 (3)°

  • V = 1399.11 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100.0 (1) K

  • 0.41 × 0.19 × 0.04 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.996

  • 9426 measured reflections

  • 2248 independent reflections

  • 1884 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.090

  • S = 1.06

  • 2248 reflections

  • 200 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O1i 0.95 (4) 1.86 (3) 2.803 (3) 170 (3)
N1—H1N1⋯O1W 0.91 (3) 2.14 (3) 3.002 (3) 157 (2)
N1—H1N1⋯O3 0.91 (3) 2.28 (3) 2.669 (3) 105 (2)
O6—H1O6⋯O2ii 0.89 (4) 1.75 (3) 2.638 (2) 171 (3)
C2—H2A⋯O1W 0.97 2.49 3.363 (3) 150
C2—H2B⋯O6ii 0.97 2.34 3.146 (3) 140
C6—H6B⋯O6iii 0.96 2.49 3.420 (3) 162
C7—H7BCg1iv 0.96 2.68 3.574 (3) 155
C10—H10⋯Cg1ii 0.93 3.01 3.717 (2) 134
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z]; (iii) x, y, z+1; (iv) -x+1, y, -z. Cg1 is the centroid of the C8–C13 phenyl ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Natural products containing tetramic acid goups continue to attract the interest of chemists and biologists due to their challenging structures and remarkable biological properties (Iida et al., 1986; Matkhalikova et al., 1969; Reddy & Rao, 2006; Reiner, 2007; Royles, 1996). Among these, tetramic acids carrying an aromatic substituent on the ring are rarely found in nature (Reddy & Rao, 2006). The title compound, C13H15NO6, can act as an essential intermediate in the synthesis of compounds responsible for the orange-yellow colour of plasmodia from Leocarpus fragilis (Steglich, 1989; Royles, 1995). We have synthesized the title compound and its structure is reported here.

The asymmetric unit of the title compound contains one molecule of C13H15NO6 and half an H2O molecule with the O1W atom lying on a twofold rotation axis, (Fig. 1). The methoxycarbonylmethyl [C4/C5/C7/O3/O5] and the C3/N1/C4 amino sections of the molecule are essentially coplanar with a dihedral angle of 3.12 (10)° between them. An intramolecular N1—H1N1···O3 hydrogen bond (Fig. 1) generates an S(5) ring motif (Bernstein et al., 1995) and contributes to this planarity.

In the 3-oxopropanoate moiety [C1–C3/C6/O1/O2/O4], atoms C1, C2, C6, O1 and O4 lie on the same plane with C1 deviating by a maximum of -0.017 (2) Å. Similarly atoms C3, O2, C4, C5, N1 and O3 lie on the same plane with the maximum deviation -0.058 (2) Å for C4. The dihedral angle between these two planes is 70.29 (11) Å. The methoxycarbonylmethyl moiety makes a dihedral angle of 79.73 (10) Å with the hydroxyphenyl ring. The water molecule links with the C13H15NO6 molecule via an N1—H1N1···O1W hydrogen bond (Fig. 1). All bond lengths and angles show normal values (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are stacked down both the [010] and [102] directions forming a two dimensional network parallel to the (-2 0 1) plane via N—H···O, O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). The crystal is further stablized by C—H···π interactions (Table 1); Cg1 is the centroid of the C8–C13 phenyl ring.

Related literature top

For values of bond lengths and angles, see Allen et al. (1987). For related literature on hydrogen bond motifs, see Bernstein et al. (1995). For details of the biological properties of compounds containing tetramic acid see for example, Iida et al. (1986); Matkhalikova et al. (1969); Reddy & Rao (2006); Reiner (2007); Royles (1996) and for the syntheses of compounds containing tetramic acid moieties, see for example, Steglich (1989); Royles (1996). Cg1 is the centroid of the C8–C13 phenyl ring.

Experimental top

The title compound was synthesized via condensation between an equimolar amount of hydroxyphenylglycine methylester (10.0 g, 60 mmol) and methylmalonate potassium salt (9.4 g, 60 mmol) in acetonitrile/water (140:40 ml) at 273 K. The mixture was stirred for 2 h in the presence of dicyclohexylcarbodiimide, which acted as a catalyst and a peptide-coupling agent. The white precipitate formed during the reaction was filtered and washed thoroughly with dichloromethane. The filtrate and the dichloromethane were combined and evaporated. The resulting crude product was partitioned between water and dichloromethane, and the dichloromethane extract was dried over anhydrous magnesium sulfate and evaporated. Colorless needle-shaped single crystals suitable for X-ray structure determination were obtained by slow evaporation of dichloromethane/petroleum ether (5:1 v/v) solution after several days (10.93 g, 65%).

Refinement top

The amino, hydroxyl and water hydrogen atoms were located in a difference map and refined isotropically. Hydrogen atoms attached to the carbon atoms were constrained in a riding motion approximation with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic, 0.98 Å, Uiso = 1.2Ueq(C) for CH, 0.97 Å, Uiso = 1.2Ueq(C) for CH2, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. In the absence of significant anomalous scattering effects, a total of 1388 Friedel pairs were merged before final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. N—H···O hydrogen bonds are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the [102] direction. Hydrogen bonds are drawn as dashed lines.
Methyl 2-{[(4-hydroxyphenyl)(methoxycarbonyl)methyl]aminocarbonyl}ethanoate hemihydrate top
Crystal data top
C13H15NO6·0.5H2OF(000) = 612
Mr = 290.27Dx = 1.378 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2248 reflections
a = 22.7764 (12) Åθ = 1.8–30.0°
b = 5.3046 (3) ŵ = 0.11 mm1
c = 13.0686 (6) ÅT = 100 K
β = 117.612 (3)°Needle, colorless
V = 1399.11 (13) Å30.41 × 0.19 × 0.04 mm
Z = 4
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
2248 independent reflections
Radiation source: fine-focus sealed tube1884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.8°
ω scansh = 2931
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 77
Tmin = 0.956, Tmax = 0.996l = 1818
9426 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.4523P]
where P = (Fo2 + 2Fc2)/3
2248 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.39 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C13H15NO6·0.5H2OV = 1399.11 (13) Å3
Mr = 290.27Z = 4
Monoclinic, C2Mo Kα radiation
a = 22.7764 (12) ŵ = 0.11 mm1
b = 5.3046 (3) ÅT = 100 K
c = 13.0686 (6) Å0.41 × 0.19 × 0.04 mm
β = 117.612 (3)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
2248 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1884 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.996Rint = 0.035
9426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.39 e Å3
2248 reflectionsΔρmin = 0.24 e Å3
200 parameters
Special details top

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.50000.8858 (5)0.50000.0242 (5)
H1W0.4734 (14)0.998 (7)0.518 (2)0.058 (9)*
O10.41331 (9)0.1694 (5)0.55170 (15)0.0512 (6)
O20.36387 (7)0.1785 (3)0.28492 (11)0.0255 (3)
O30.51628 (9)0.7925 (4)0.27318 (16)0.0435 (5)
O40.32338 (7)0.3629 (4)0.53519 (12)0.0311 (4)
O50.52565 (7)0.5121 (3)0.15432 (12)0.0250 (3)
O60.23720 (7)0.3718 (3)0.23284 (11)0.0232 (3)
H1O60.2058 (14)0.488 (7)0.250 (2)0.046 (8)*
N10.43133 (8)0.5081 (4)0.31026 (13)0.0196 (4)
H1N10.4513 (13)0.650 (6)0.351 (2)0.039 (7)*
C10.37123 (10)0.3244 (4)0.50613 (16)0.0231 (5)
C20.36758 (10)0.5050 (5)0.41546 (17)0.0239 (4)
H2A0.39630.64770.45220.029*
H2B0.32260.56760.37280.029*
C30.38810 (9)0.3812 (5)0.33240 (15)0.0201 (4)
C40.44916 (9)0.4168 (4)0.22326 (14)0.0178 (4)
H40.46840.24790.24500.021*
C50.50120 (10)0.5952 (4)0.22279 (16)0.0213 (4)
C60.32471 (12)0.1992 (6)0.62502 (18)0.0382 (6)
H6A0.31500.02950.59660.057*
H6B0.29210.25460.64730.057*
H6C0.36780.20510.69070.057*
C70.57232 (10)0.6792 (5)0.14299 (18)0.0275 (5)
H7A0.55300.84380.12090.041*
H7B0.58310.61520.08500.041*
H7C0.61190.68970.21550.041*
C80.39035 (9)0.4061 (4)0.10253 (14)0.0173 (4)
C90.34208 (9)0.5916 (4)0.06352 (15)0.0185 (4)
H90.34470.72340.11240.022*
C100.28956 (9)0.5828 (4)0.04846 (15)0.0186 (4)
H100.25710.70710.07380.022*
C110.28619 (9)0.3874 (4)0.12164 (14)0.0171 (4)
C120.33391 (9)0.1994 (4)0.08248 (15)0.0202 (4)
H120.33120.06690.13110.024*
C130.38579 (9)0.2087 (4)0.02927 (15)0.0189 (4)
H130.41770.08200.05520.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0252 (10)0.0249 (12)0.0262 (9)0.0000.0151 (9)0.000
O10.0576 (11)0.0695 (15)0.0432 (9)0.0427 (12)0.0373 (9)0.0351 (11)
O20.0250 (7)0.0272 (8)0.0224 (6)0.0058 (7)0.0094 (6)0.0016 (7)
O30.0540 (11)0.0432 (12)0.0547 (11)0.0279 (9)0.0432 (10)0.0289 (9)
O40.0244 (7)0.0455 (11)0.0303 (7)0.0075 (8)0.0185 (6)0.0128 (8)
O50.0257 (7)0.0254 (8)0.0320 (7)0.0051 (7)0.0204 (6)0.0065 (7)
O60.0202 (7)0.0268 (9)0.0176 (6)0.0031 (7)0.0046 (5)0.0047 (6)
N10.0196 (8)0.0240 (9)0.0163 (7)0.0034 (8)0.0093 (6)0.0012 (7)
C10.0205 (10)0.0301 (13)0.0188 (8)0.0034 (9)0.0093 (7)0.0033 (8)
C20.0220 (9)0.0286 (11)0.0240 (9)0.0026 (9)0.0132 (8)0.0046 (9)
C30.0159 (8)0.0270 (11)0.0148 (7)0.0007 (9)0.0048 (7)0.0048 (9)
C40.0174 (8)0.0200 (10)0.0166 (7)0.0016 (8)0.0083 (7)0.0003 (8)
C50.0200 (9)0.0237 (11)0.0199 (8)0.0016 (9)0.0091 (7)0.0025 (9)
C60.0391 (13)0.0542 (17)0.0285 (10)0.0056 (14)0.0218 (10)0.0085 (13)
C70.0255 (10)0.0311 (12)0.0337 (10)0.0055 (10)0.0203 (9)0.0048 (10)
C80.0175 (8)0.0181 (10)0.0175 (7)0.0034 (8)0.0091 (7)0.0017 (8)
C90.0218 (9)0.0178 (10)0.0184 (8)0.0006 (8)0.0115 (7)0.0022 (8)
C100.0191 (9)0.0168 (10)0.0208 (8)0.0018 (8)0.0099 (7)0.0011 (8)
C110.0157 (8)0.0187 (10)0.0168 (7)0.0006 (8)0.0074 (7)0.0003 (8)
C120.0233 (10)0.0183 (10)0.0196 (8)0.0002 (9)0.0105 (8)0.0030 (8)
C130.0182 (9)0.0174 (10)0.0211 (8)0.0011 (8)0.0092 (7)0.0000 (8)
Geometric parameters (Å, º) top
O1W—H1W0.95 (3)C4—C81.526 (2)
O1—C11.192 (3)C4—H40.9800
O2—C31.236 (3)C6—H6A0.9600
O3—C51.199 (3)C6—H6B0.9600
O4—C11.326 (2)C6—H6C0.9600
O4—C61.449 (3)C7—H7A0.9600
O5—C51.329 (3)C7—H7B0.9600
O5—C71.443 (3)C7—H7C0.9600
O6—C111.364 (2)C8—C91.385 (3)
O6—H1O60.89 (3)C8—C131.390 (3)
N1—C31.331 (3)C9—C101.397 (2)
N1—C41.456 (2)C9—H90.9300
N1—H1N10.91 (3)C10—C111.388 (3)
C1—C21.496 (3)C10—H100.9300
C2—C31.516 (3)C11—C121.386 (3)
C2—H2A0.9700C12—C131.390 (2)
C2—H2B0.9700C12—H120.9300
C4—C51.519 (3)C13—H130.9300
C1—O4—C6115.36 (18)H6A—C6—H6B109.5
C5—O5—C7115.06 (18)O4—C6—H6C109.5
C11—O6—H1O6112.7 (18)H6A—C6—H6C109.5
C3—N1—C4120.25 (18)H6B—C6—H6C109.5
C3—N1—H1N1120.7 (17)O5—C7—H7A109.5
C4—N1—H1N1119.0 (17)O5—C7—H7B109.5
O1—C1—O4122.7 (2)H7A—C7—H7B109.5
O1—C1—C2125.06 (19)O5—C7—H7C109.5
O4—C1—C2112.13 (18)H7A—C7—H7C109.5
C1—C2—C3111.5 (2)H7B—C7—H7C109.5
C1—C2—H2A109.3C9—C8—C13119.26 (16)
C3—C2—H2A109.3C9—C8—C4121.39 (18)
C1—C2—H2B109.3C13—C8—C4119.34 (18)
C3—C2—H2B109.3C8—C9—C10120.66 (18)
H2A—C2—H2B108.0C8—C9—H9119.7
O2—C3—N1122.28 (19)C10—C9—H9119.7
O2—C3—C2121.48 (19)C11—C10—C9119.58 (18)
N1—C3—C2116.2 (2)C11—C10—H10120.2
N1—C4—C5107.25 (16)C9—C10—H10120.2
N1—C4—C8113.02 (16)O6—C11—C12117.66 (18)
C5—C4—C8109.38 (15)O6—C11—C10122.39 (18)
N1—C4—H4109.0C12—C11—C10119.95 (16)
C5—C4—H4109.0C11—C12—C13120.13 (19)
C8—C4—H4109.0C11—C12—H12119.9
O3—C5—O5123.8 (2)C13—C12—H12119.9
O3—C5—C4124.54 (19)C12—C13—C8120.40 (19)
O5—C5—C4111.55 (18)C12—C13—H13119.8
O4—C6—H6A109.5C8—C13—H13119.8
O4—C6—H6B109.5
C6—O4—C1—O11.3 (3)C8—C4—C5—O563.6 (2)
C6—O4—C1—C2178.40 (19)N1—C4—C8—C938.6 (3)
O1—C1—C2—C338.6 (3)C5—C4—C8—C980.8 (2)
O4—C1—C2—C3144.42 (18)N1—C4—C8—C13142.68 (19)
C4—N1—C3—O23.3 (3)C5—C4—C8—C1397.9 (2)
C4—N1—C3—C2174.03 (16)C13—C8—C9—C100.5 (3)
C1—C2—C3—O250.6 (2)C4—C8—C9—C10178.14 (18)
C1—C2—C3—N1132.06 (19)C8—C9—C10—C110.7 (3)
C3—N1—C4—C5177.48 (17)C9—C10—C11—O6178.20 (18)
C3—N1—C4—C861.9 (2)C9—C10—C11—C121.5 (3)
C7—O5—C5—O30.6 (3)O6—C11—C12—C13178.59 (19)
C7—O5—C5—C4176.08 (16)C10—C11—C12—C131.2 (3)
N1—C4—C5—O310.0 (3)C11—C12—C13—C80.1 (3)
C8—C4—C5—O3113.0 (2)C9—C8—C13—C120.9 (3)
N1—C4—C5—O5173.45 (16)C4—C8—C13—C12177.78 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1i0.95 (4)1.86 (3)2.803 (3)170 (3)
N1—H1N1···O1W0.91 (3)2.14 (3)3.002 (3)157 (2)
N1—H1N1···O30.91 (3)2.28 (3)2.669 (3)105 (2)
O6—H1O6···O2ii0.89 (4)1.75 (3)2.638 (2)171 (3)
C2—H2A···O1W0.972.493.363 (3)150
C2—H2B···O6ii0.972.343.146 (3)140
C6—H6B···O6iii0.962.493.420 (3)162
C7—H7B···Cg1iv0.962.683.574 (3)155
C10—H10···Cg1ii0.933.013.717 (2)134
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H15NO6·0.5H2O
Mr290.27
Crystal system, space groupMonoclinic, C2
Temperature (K)100
a, b, c (Å)22.7764 (12), 5.3046 (3), 13.0686 (6)
β (°) 117.612 (3)
V3)1399.11 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.41 × 0.19 × 0.04
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.956, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
9426, 2248, 1884
Rint0.035
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.090, 1.06
No. of reflections2248
No. of parameters200
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O1i0.95 (4)1.86 (3)2.803 (3)170 (3)
N1—H1N1···O1W0.91 (3)2.14 (3)3.002 (3)157 (2)
N1—H1N1···O30.91 (3)2.28 (3)2.669 (3)105 (2)
O6—H1O6···O2ii0.89 (4)1.75 (3)2.638 (2)171 (3)
C2—H2A···O1W0.972.48933.363 (3)150
C2—H2B···O6ii0.972.34423.146 (3)140
C6—H6B···O6iii0.962.49393.420 (3)162
C7—H7B···Cg1iv0.962.68303.574 (3)155
C10—H10···Cg1ii0.933.01103.717 (2)134
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z; (iii) x, y, z+1; (iv) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

The authors acknowledge the generous support of both the Universiti Teknologi MARA and the Universiti Sains Malaysia as well as the financial support of the Ministry of Science, Technology and Innovation (E-Science grant No. SF0050–02-01–01). HKF and SC thank the Malaysian Government and Universiti Sains Malaysia for the Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIida, H., Yamazaki, N. & Kibayashi, C. (1986). Tetrahedron Lett. 27, 5393–5396.  CSD CrossRef Web of Science Google Scholar
First citationMatkhalikova, S. F., Malikov, V. M. & Yunusov, S. Y. (1969). Chem Abstr. 71, 13245z.  Google Scholar
First citationReddy, J. S. & Rao, B. V. (2006). J. Org. Chem. 76, 2224–2227.  Google Scholar
First citationReiner, S. (2007). Naturwissenschaften, 94, 1–11.  Web of Science PubMed Google Scholar
First citationRoyles, B. J. L. (1996). Chem. Rev. 95, 1961–2001.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteglich, W. (1989). Pure Appl. Chem. 61, 281–288.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 4| April 2008| Pages o663-o664
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds