

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

6-Amino-3-methyl-4-(4-nitrophenyl)-1phenylpyrazolo[3,4-*b*]pyridine-5carbonitrile

Xin-Ying Zhang,* Xiao-Yan Li, Xia Wang, Xue-Sen Fan* and Gui-Rong Qu

School of Chemical and Environmental Sciences, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China

Correspondence e-mail: xyzh518@sohu.com, xuesen.fan@yahoo.com

Received 2 March 2008; accepted 5 March 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.122; data-to-parameter ratio = 13.3.

The title compound, $C_{20}H_{14}N_6O_2$, contains four rings. The dihedral angle between the pyridine ring and the pyrazole ring is 1.9 (1)°, *i.e.* almost coplanar, which gives rise to a conjugated structure. The dihedral angle between the nitro-substituted phenyl ring and the pyridine ring is 76.3 (1)° and that between the pyrazole ring and the non-substituted phenyl ring is 40.5 (1)°. In the crystal structure, symmetry-related molecules are linked by N-H···O and C-H···N hydrogen bonds.

Related literature

For related structures, see: Quiroga *et al.* (1999); Zhu *et al.* (2005). For the biological and pharmacological activities, see: Kamal *et al.* (1991); Straub *et al.* (2001); Sekikawa *et al.* (1973).

Experimental

a = 16.470 (1
b = 9.742(7)
c = 23.46 (2)

$\beta = 105.857 \ (8)^{\circ}$
$V = 3621 (5) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.945, T_{\max} = 0.986$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ 254 parameters $wR(F^2) = 0.121$ H-atom parameters constrainedS = 1.02 $\Delta \rho_{max} = 0.18$ e Å $^{-3}$ 3374 reflections $\Delta \rho_{min} = -0.16$ e Å $^{-3}$

Table 1		
Hydrogen-bond geometry (A	١, '	°).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N5-H5A\cdots O2^{i}$ C14-H14···N2 ⁱⁱ	0.86 0.93	2.13 2.61	2.981 (3) 3.529 (3)	168 168
······································	L 1. (22)	. 1 1	. 1	

Symmetry codes: (i) $x, -y, z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (No. 20772025) and the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 2008 HASTIT006).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2046).

References

- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Kamal, A. M., Atalla, A. A., Mohamed, T. A. A. & Geies, A. (1991). Z. Naturforsch. Teil B, 46, 541–544.
- Quiroga, J., Alvarado, M., Insuasty, B., Moreno, R., Ravina, E., Estevez, I. & de Almedia, R. H. (1999). J. Heterocycl. Chem. 36, 1311–1316.
- Sekikawa, I., Nishie, J., Tono-oka, S., Tanaka, Y. & Kakimoto, S. (1973). J. Heterocycl. Chem. 10, 931–932.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Straub, A., Stasch, J.-P., Alonso-Alija, C., Benet-Buchholz, J., Ducke, B., Feurer, A. & Furstner, C. (2001). Bioorg. Med. Chem. Lett. 11, 781–784.
- Zhu, S.-L., Tu, S.-J., Li, T.-J., Zhang, X.-J., Ji, S.-J. & Zhang, Y. (2005). Chin. J. Org. Chem. 25, 987–990.

 $0.39 \times 0.25 \times 0.15 \text{ mm}$

13443 measured reflections

3374 independent reflections 2287 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 294 (2) K

 $R_{\rm int} = 0.027$

supporting information

Acta Cryst. (2008). E64, o689 [doi:10.1107/S1600536808006156]

6-Amino-3-methyl-4-(4-nitrophenyl)-1-phenylpyrazolo[3,4-b]pyridine-5-carbonitrile

Xin-Ying Zhang, Xiao-Yan Li, Xia Wang, Xue-Sen Fan and Gui-Rong Qu

S1. Comment

The structure of the title compound, (I), is shown below. Dimensions are available in the archived CIF.

For related literature, see Quiroga *et al.* (1999); Zhu *et al.* (2005). For the biological and pharmacological activities, see Kamal *et al.* (1991); Straub *et al.* (2001); Sekikawa *et al.* (1973).

S2. Experimental

The title compound was prepared by the following procedure: To 1 ml of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF₄]) were added 4-nitrobenzaldehyde (1 mmol), malononitrile (1 mmol) and 5-amino-3-methyl-1-phenyl-pyrazole (1 mmol). The reaction mixture was stirred at 80°C for 10 hrs. The yellow solid product that was obtained was collected by suction and rinsed with water and ethanol (yield 93%). Single crystals of the title compound were obtained by slow evaporation from ethanol.

S3. Refinement

H-atoms were included in calculated positions and treated as riding atoms: N—H = 0.86 Å and C—H = 0.93 - 0.96 Å with $U_{iso}(H) = 1.5 U_{eq}(CH_3)$ and $1.2 U_{eq}(NH_2,CH)$.

Figure 1

Molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

6-Amino-3-methyl-4-(4-nitrophenyl)-1-phenylpyrazolo[3,4-b]pyridine- 5-carbonitrile

Crystal data

C₂₀H₁₄N₆O₂ $M_r = 370.37$ Monoclinic, C2/c Hall symbol: -C 2yc a = 16.470 (11) Å b = 9.742 (7) Å c = 23.46 (2) Å $\beta = 105.857 (8)^{\circ}$ $V = 3621 (5) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.945, T_{\max} = 0.986$

Refinement

Refinement on F^2 Secondary atom site locLeast-squares matrix: fullmap $R[F^2 > 2\sigma(F^2)] = 0.042$ Hydrogen site location $wR(F^2) = 0.122$ H-atom parameters conS = 1.02H-atom parameters con3374 reflections $w = 1/[\sigma^2(F_o^2) + (0.054)]$ 254 parameterswhere $P = (F_o^2 + 2F)$ 0 restraints $(\Delta/\sigma)_{max} < 0.001]$ Primary atom site location: structure-invariant $\Delta \rho_{max} = 0.18$ e Å⁻³direct methods $\Delta \rho_{min} = -0.16$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on *F*² are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

F(000) = 1536 $D_x = 1.359 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2825 reflections $\theta = 2.5-21.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 294 KBlock, yellow $0.39 \times 0.25 \times 0.15 \text{ mm}$

13443 measured reflections 3374 independent reflections 2287 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 2.5^{\circ}$ $h = -19 \rightarrow 19$ $k = -11 \rightarrow 11$ $l = -28 \rightarrow 28$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0546P)^2 + 1.3917P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18$ e Å⁻³ $\Delta\rho_{min} = -0.16$ e Å⁻³

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.14291 (11)	0.3249 (2)	0.22385 (8)	0.0539 (5)	
C2	0.13161 (11)	0.17956 (19)	0.22657 (8)	0.0508 (4)	
C3	0.12907 (11)	0.06720 (19)	0.18900 (8)	0.0514 (5)	
C4	0.11731 (12)	-0.0608 (2)	0.21136 (8)	0.0579 (5)	
C5	0.10829 (12)	-0.0751 (2)	0.27046 (8)	0.0586 (5)	
C6	0.11882 (11)	0.1536 (2)	0.28254 (8)	0.0515 (5)	
C7	0.16473 (14)	0.4076 (2)	0.17675 (9)	0.0675 (6)	
H7A	0.1171	0.4109	0.1424	0.101*	
H7B	0.2117	0.3663	0.1665	0.101*	
H7C	0.1795	0.4992	0.1910	0.101*	
C8	0.11094 (16)	-0.1792 (2)	0.17454 (10)	0.0771 (7)	
C9	0.13676 (11)	0.08314 (19)	0.12762 (8)	0.0516 (5)	
C10	0.06928 (13)	0.1307 (3)	0.08327 (9)	0.0750 (7)	
H10	0.0187	0.1510	0.0919	0.090*	
C11	0.07559 (14)	0.1485 (2)	0.02644 (9)	0.0749 (7)	
H11	0.0300	0.1808	-0.0034	0.090*	
C12	0.15017 (13)	0.11769 (19)	0.01483 (8)	0.0573 (5)	
C13	0.21832 (13)	0.0685 (2)	0.05755 (9)	0.0656 (6)	
H13	0.2684	0.0471	0.0484	0.079*	
C14	0.21111 (12)	0.0516 (2)	0.11416 (8)	0.0617 (5)	
H14	0.2568	0.0184	0.1437	0.074*	
C15	0.11107 (11)	0.3128 (2)	0.36614 (8)	0.0539 (5)	
C16	0.14851 (12)	0.2328 (2)	0.41484 (9)	0.0610 (5)	
H16	0.1792	0.1550	0.4107	0.073*	
C17	0.13988 (13)	0.2697 (2)	0.47001 (9)	0.0674 (6)	
H17	0.1640	0.2155	0.5029	0.081*	
C18	0.09585 (14)	0.3862 (3)	0.47639 (10)	0.0732 (7)	
H18	0.0910	0.4111	0.5136	0.088*	
C19	0.05918 (14)	0.4654 (2)	0.42781 (11)	0.0722 (6)	
H19	0.0294	0.5440	0.4322	0.087*	
C20	0.06610 (12)	0.4293 (2)	0.37226 (10)	0.0636 (5)	
H20	0.0408	0.4828	0.3394	0.076*	
N1	0.12015 (10)	0.27857 (17)	0.30914 (7)	0.0569 (4)	
N2	0.13518 (10)	0.38354 (17)	0.27275 (7)	0.0592 (4)	
N3	0.10738 (10)	0.03211 (17)	0.30563 (6)	0.0575 (4)	
N4	0.1045 (2)	-0.2721 (2)	0.14393 (10)	0.1197 (9)	
N5	0.10113 (12)	-0.20117 (18)	0.29226 (8)	0.0784 (6)	
H5A	0.0962	-0.2102	0.3276	0.094*	
H5B	0.1015	-0.2726	0.2708	0.094*	
N6	0.15858 (14)	0.14160 (19)	-0.04520 (8)	0.0750 (5)	
01	0.22406 (12)	0.1080 (2)	-0.05634 (7)	0.0962 (6)	
O2	0.09960 (14)	0.1956 (2)	-0.08097 (7)	0.1125 (7)	
			~ /		

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0489 (10)	0.0631 (12)	0.0496 (11)	0.0009 (9)	0.0132 (8)	0.0005 (9)
C2	0.0476 (10)	0.0611 (12)	0.0439 (10)	0.0024 (8)	0.0128 (8)	-0.0009 (9)
C3	0.0479 (10)	0.0626 (12)	0.0425 (10)	0.0093 (9)	0.0102 (8)	0.0001 (9)
C4	0.0672 (13)	0.0611 (12)	0.0430 (10)	0.0062 (9)	0.0111 (9)	-0.0021 (9)
C5	0.0655 (12)	0.0633 (13)	0.0455 (11)	-0.0049 (10)	0.0128 (9)	-0.0017 (9)
C6	0.0499 (11)	0.0610 (12)	0.0439 (10)	-0.0028 (9)	0.0135 (8)	-0.0063 (9)
C7	0.0721 (13)	0.0687 (13)	0.0632 (13)	-0.0008 (11)	0.0210 (10)	0.0070 (11)
C8	0.1150 (19)	0.0602 (14)	0.0533 (13)	0.0113 (13)	0.0184 (12)	0.0015 (11)
C9	0.0545 (11)	0.0572 (11)	0.0428 (10)	0.0114 (9)	0.0128 (8)	-0.0004 (8)
C10	0.0606 (13)	0.1155 (19)	0.0501 (11)	0.0348 (12)	0.0173 (10)	0.0073 (12)
C11	0.0726 (14)	0.1049 (18)	0.0449 (11)	0.0368 (13)	0.0120 (10)	0.0089 (11)
C12	0.0760 (13)	0.0552 (11)	0.0441 (10)	0.0137 (10)	0.0221 (9)	-0.0006 (9)
C13	0.0623 (12)	0.0805 (14)	0.0601 (13)	0.0194 (11)	0.0267 (10)	0.0038 (10)
C14	0.0560 (12)	0.0791 (14)	0.0490 (11)	0.0208 (10)	0.0130 (9)	0.0070 (10)
C15	0.0470 (10)	0.0664 (12)	0.0498 (11)	-0.0113 (9)	0.0157 (8)	-0.0135 (9)
C16	0.0535 (11)	0.0732 (13)	0.0557 (12)	-0.0040 (10)	0.0141 (9)	-0.0105 (10)
C17	0.0603 (12)	0.0911 (16)	0.0513 (11)	-0.0140 (11)	0.0161 (9)	-0.0092 (11)
C18	0.0684 (14)	0.0973 (18)	0.0617 (14)	-0.0247 (13)	0.0310 (11)	-0.0278 (13)
C19	0.0646 (13)	0.0787 (15)	0.0832 (17)	-0.0096 (11)	0.0370 (12)	-0.0239 (13)
C20	0.0565 (12)	0.0698 (13)	0.0672 (13)	-0.0063 (10)	0.0216 (10)	-0.0086 (11)
N1	0.0641 (10)	0.0628 (10)	0.0464 (9)	-0.0078 (8)	0.0193 (7)	-0.0086 (8)
N2	0.0627 (10)	0.0615 (10)	0.0540 (10)	-0.0048 (8)	0.0171 (8)	-0.0040 (8)
N3	0.0638 (10)	0.0638 (11)	0.0449 (9)	-0.0083 (8)	0.0151 (7)	-0.0043 (8)
N4	0.206 (3)	0.0672 (14)	0.0819 (15)	0.0173 (16)	0.0322 (16)	-0.0113 (13)
N5	0.1225 (16)	0.0619 (11)	0.0510 (10)	-0.0128 (10)	0.0238 (10)	-0.0003 (8)
N6	0.1076 (16)	0.0713 (12)	0.0516 (10)	0.0168 (11)	0.0311 (11)	0.0007 (9)
01	0.1160 (14)	0.1135 (14)	0.0769 (11)	0.0135 (11)	0.0567 (11)	0.0013 (10)
O2	0.1504 (18)	0.1383 (16)	0.0511 (9)	0.0640 (14)	0.0312 (10)	0.0233 (10)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—N2	1.318 (3)	C12—C13	1.371 (3)
C1—C2	1.431 (3)	C12—N6	1.471 (3)
C1—C7	1.489 (3)	C13—C14	1.375 (3)
C2—C3	1.399 (3)	C13—H13	0.9300
C2—C6	1.408 (3)	C14—H14	0.9300
C3—C4	1.386 (3)	C15—C16	1.381 (3)
С3—С9	1.488 (3)	C15—C20	1.384 (3)
C4—C8	1.428 (3)	C15—N1	1.425 (2)
C4—C5	1.441 (3)	C16—C17	1.387 (3)
C5—N3	1.333 (2)	C16—H16	0.9300
C5—N5	1.348 (3)	C17—C18	1.376 (3)
C6—N3	1.336 (2)	C17—H17	0.9300
C6—N1	1.365 (2)	C18—C19	1.372 (3)
С7—Н7А	0.9600	C18—H18	0.9300

C7 U7P	0.0600	C10 C20	1.384(3)
	0.9000	C10_U10	1.384 (3)
C = N A	0.9000	C19—H19 C20 H20	0.9300
C8—IN4	1.142 (3)	C20—H20	0.9300
C9—C10	1.378(3)	NI—N2	1.397 (2)
C9—C14	1.380 (3)	N5—H5A	0.8600
C10—C11	1.376 (3)	N5—H5B	0.8600
C10—H10	0.9300	N6—O2	1.216 (2)
C11—C12	1.362 (3)	N601	1.222 (2)
C11—H11	0.9300		
N2—C1—C2	110.21 (17)	C13—C12—N6	118.86 (19)
N2—C1—C7	120.72 (18)	C12—C13—C14	118.58 (18)
C2—C1—C7	129.00 (18)	C12—C13—H13	120.7
C3—C2—C6	117.42 (18)	C14—C13—H13	120.7
C3—C2—C1	136.70 (18)	C13—C14—C9	120.68 (17)
C6—C2—C1	105.87 (16)	C13—C14—H14	119.7
C4-C3-C2	116.66 (17)	C9—C14—H14	119.7
C4-C3-C9	121 18 (17)	C16-C15-C20	120 50 (19)
$C_{2} - C_{3} - C_{9}$	127.16(17) 122.16(17)	$C_{16} - C_{15} - N_{1}$	120.30(19) 120.44(18)
C_{3} C_{4} C_{8}	122.10(17) 119.51(18)	C_{20} C_{15} N_1	119.04 (18)
$C_{3}^{-}C_{4}^{-}C_{5}^{-}$	120.85 (17)	$C_{20} = C_{15} = 10^{-1}$	119.04(10) 119.3(2)
C^{8} C^{4} C^{5}	120.03(17)	$C_{15} = C_{16} = C_{17}$	119.5 (2)
$N_{2} C_{5} N_{5}$	117.00(19)	C_{13} C_{16} H_{16}	120.4
N2 C5 C4	117.32(10)	$C1^{-}$ $C1^{-}$ $C1^{-}$ $C1^{-}$	120.4
N3-C5-C4	122.75 (19)	C18 - C17 - C16	120.4 (2)
N5	119.73 (18)		119.8
N3-C6-N1	126.23 (17)	C16—C17—H17	119.8
N3—C6—C2	127.62 (17)	C19—C18—C17	119.9 (2)
N1—C6—C2	106.15 (17)	C19—C18—H18	120.0
С1—С7—Н7А	109.5	C17—C18—H18	120.0
С1—С7—Н7В	109.5	C18—C19—C20	120.5 (2)
H7A—C7—H7B	109.5	C18—C19—H19	119.7
C1—C7—H7C	109.5	C20—C19—H19	119.7
H7A—C7—H7C	109.5	C19—C20—C15	119.4 (2)
H7B—C7—H7C	109.5	С19—С20—Н20	120.3
N4—C8—C4	178.2 (3)	C15—C20—H20	120.3
C10-C9-C14	119.01 (18)	C6—N1—N2	110.91 (15)
C10—C9—C3	120.08 (17)	C6—N1—C15	130.13 (16)
C14—C9—C3	120.91 (16)	N2—N1—C15	118.94 (16)
C11—C10—C9	120.98 (19)	C1—N2—N1	106.83 (16)
C11—C10—H10	119.5	C5—N3—C6	114.61 (17)
C9—C10—H10	119.5	C5—N5—H5A	120.0
C12—C11—C10	118.46 (18)	C5—N5—H5B	120.0
C12—C11—H11	120.8	H5A—N5—H5B	120.0
C10-C11-H11	120.8	02-N6-01	123.6 (2)
$C_{11} - C_{12} - C_{13}$	122.0	02 - N6 - C12	125.0(2) 117.6(2)
C11 - C12 - N6	118 84 (19)	02 - 10 - 012 01 - 16 - 012	117.0(2) 118.81(10)
011-012-110	110.04 (10)	01-10-012	110.01 (17)
$N^{2}-C^{1}-C^{2}-C^{3}$	176 8 (2)	N6-C12-C13-C14	177 45 (10)
112 01 02 03	1,0,0 (4)		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

C7—C1—C2—C3	-6.2 (4)	C12—C13—C14—C9	0.1 (3)
N2-C1-C2-C6	-1.8 (2)	C10-C9-C14-C13	0.7 (3)
C7—C1—C2—C6	175.12 (18)	C3—C9—C14—C13	-178.96 (19)
C6—C2—C3—C4	-2.4 (2)	C20-C15-C16-C17	0.6 (3)
C1—C2—C3—C4	179.1 (2)	N1-C15-C16-C17	178.90 (17)
C6—C2—C3—C9	176.39 (16)	C15—C16—C17—C18	-1.2 (3)
C1—C2—C3—C9	-2.1 (3)	C16—C17—C18—C19	0.9 (3)
C2—C3—C4—C8	177.67 (19)	C17—C18—C19—C20	0.0 (3)
C9—C3—C4—C8	-1.1 (3)	C18—C19—C20—C15	-0.5 (3)
C2—C3—C4—C5	0.0 (3)	C16—C15—C20—C19	0.2 (3)
C9—C3—C4—C5	-178.80 (17)	N1-C15-C20-C19	-178.06 (17)
C3—C4—C5—N3	2.7 (3)	N3—C6—N1—N2	178.85 (17)
C8—C4—C5—N3	-174.99 (19)	C2—C6—N1—N2	-1.3 (2)
C3—C4—C5—N5	-176.71 (18)	N3—C6—N1—C15	0.7 (3)
C8—C4—C5—N5	5.6 (3)	C2-C6-N1-C15	-179.46 (17)
C3—C2—C6—N3	2.7 (3)	C16—C15—N1—C6	40.1 (3)
C1-C2-C6-N3	-178.33 (18)	C20-C15-N1-C6	-141.6 (2)
C3—C2—C6—N1	-177.13 (15)	C16—C15—N1—N2	-137.89 (18)
C1-C2-C6-N1	1.82 (19)	C20-C15-N1-N2	40.4 (2)
C3—C4—C8—N4	-45 (11)	C2-C1-N2-N1	1.0 (2)
C5—C4—C8—N4	132 (10)	C7—C1—N2—N1	-176.20 (16)
C4—C3—C9—C10	102.6 (2)	C6—N1—N2—C1	0.2 (2)
C2-C3-C9-C10	-76.2 (3)	C15—N1—N2—C1	178.58 (15)
C4—C3—C9—C14	-77.8 (3)	N5-C5-N3-C6	176.90 (17)
C2-C3-C9-C14	103.5 (2)	C4—C5—N3—C6	-2.5 (3)
C14—C9—C10—C11	-0.9 (3)	N1—C6—N3—C5	179.64 (18)
C3—C9—C10—C11	178.8 (2)	C2—C6—N3—C5	-0.2 (3)
C9-C10-C11-C12	0.2 (4)	C11—C12—N6—O2	4.2 (3)
C10-C11-C12-C13	0.7 (4)	C13—C12—N6—O2	-174.2 (2)
C10-C11-C12-N6	-177.6 (2)	C11—C12—N6—O1	-176.6 (2)
C11—C12—C13—C14	-0.8 (3)	C13—C12—N6—O1	5.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H… <i>A</i>
N5—H5A····O2 ⁱ	0.86	2.13	2.981 (3)	168
C14—H14…N2 ⁱⁱ	0.93	2.61	3.529 (3)	168

Symmetry codes: (i) *x*, –*y*, *z*+1/2; (ii) –*x*+1/2, *y*–1/2, –*z*+1/2.