

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2'-(1,1'-Azinodiethylidyne)diphenol

Xi-Shi Tai,^a* Jun Xu,^b Yi-Min Feng^a and Zu-Pei Liang^a

^aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and ^bWeifang Institute of Supervision and Inspection of Product Quality, Weifang 261061, People's Republic of China Correspondence e-mail: taixishi@lzu.edu.cn

Received 18 April 2008; accepted 21 April 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.043; wR factor = 0.128; data-to-parameter ratio = 7.9.

In the title molecule, $C_{16}H_{16}N_2O_2$, the C–N bond lengths are 1.295 (5) and 1.300 (5) Å, which suggests that they are double bonds. The structure is stabilized by intramolecular $O-H \cdots N$ and $C-H \cdots N$, and intermolecular $C-H \cdots O$ hydrogen-bond interactions.

Related literature

For related literature, see: Tai et al. (2003).

Experimental

Crystal data

C16H16N2O2 $M_r = 268.31$ Orthorhombic, $P2_12_12_1$ a = 6.3358 (8) Å b = 13.5625 (10) Å c = 15.9956 (15) Å

V = 1374.5 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 298 (2) K $0.38 \times 0.15 \times 0.14 \text{ mm}$ 7170 measured reflections

 $R_{\rm int} = 0.044$

1422 independent reflections

849 reflections with $I > 2\sigma(I)$

Data collection

```
Bruker SMART CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2000)
  T_{\rm min} = 0.968, \ T_{\rm max} = 0.988
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$	181 parameters
$wR(F^2) = 0.128$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
1422 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond	geometry	(A,	°)
---------------	----------	-----	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots N1$	0.82	1.80	2.529 (5)	146
$O2 - H2 \cdot \cdot \cdot N2$	0.82	1.80	2.529 (4)	147
$C1 - H1A \cdot \cdot \cdot N2$	0.96	2.32	2.739 (5)	106
$C5 - H5 \cdots O2^{i}$	0.93	2.59	3.403 (6)	147
$C9 - H9A \cdots N1$	0.96	2.30	2.724 (6)	106

Symmetry code: (i) $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (20671073), the Natural Science Foundation of Shandong (Y2007B60) and the Science and Technology Foundation of Weifang and Weifang University for research grants.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2562).

References

Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, 0681-0682.

supporting information

Acta Cryst. (2008). E64, o905 [doi:10.1107/S1600536808011318]

2,2'-(1,1'-Azinodiethylidyne)diphenol

Xi-Shi Tai, Jun Xu, Yi-Min Feng and Zu-Pei Liang

S1. Comment

As part of our ongoing studies of the coordination chemistry of Schiffbase ligands (Tai *et al.*, 2003), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

In the molecule of (I), both C2—N1 [1.295 (5) Å], and C10—N2 [1.300 (5) Å] are close to double-bond separations, indicating that the Lewis structure shown in the scheme is only an approximation to the electron distribution in the molecule. Otherwise, the geometrical parameters for (I) are normal. The structure is stabilized by intramolecular O—H···N and C—H···N, and intermolecular C—H···O hydrogen bonding interactions.

S2. Experimental

2 mmol of 2'-Hhydroxyacetophenone (2 mmol) was added to a solution of hydrazide (1 mmol) in 10 ml of 95% ethanol. The mixture was continuously stirred for 3 h at refluxing temperature, evaporating some ethanol, then, upon cooling, the solid product was collected by filtration and dried *in vacuo* (yield 58%). Clear blocks of (I) were obtained by evaporation from a methanol solution after 6 days.

S3. Refinement

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, O—H = 0.82 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(\text{aromatic C}) \text{ or } 1.5U_{eq}(\text{methyl C}, \text{hydroxyl O}).$

Figure 1

The molecular structure of (I) showing 30% displacement ellipsoids.

2,2'-(1,1'-Azinodiethylidyne)diphenol

Crystal data

 $C_{16}H_{16}N_{2}O_{2}$ $M_{r} = 268.31$ Orthorhombic, $P2_{1}2_{1}2_{1}$ Hall symbol: P 2ac 2ab a = 6.3358 (8) Å b = 13.5625 (10) Å c = 15.9956 (15) Å V = 1374.5 (2) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	7170 measured reflections
Radiation source: fine-focus sealed tube	849 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.044$
φ and ω scans	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 2.0^{\circ}$
Absorption correction: multi-scan	$h = -7 \rightarrow 7$
(SADABS; Bruker, 2000)	$k = -16 \rightarrow 13$
$T_{\min} = 0.968, \ T_{\max} = 0.988$	$l = -17 \rightarrow 19$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0468P)^2 + 0.4138P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.15 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.14 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 568

 $\theta = 2.9 - 20.4^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K

Block. colourless

 $0.38 \times 0.15 \times 0.14 \text{ mm}$

 $D_{\rm x} = 1.297 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 1489 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N1	0.5862 (6)	0.4828 (2)	0.5963 (2)	0.0489 (9)	
N2	0.4075 (6)	0.4685 (2)	0.6456 (2)	0.0486 (9)	
01	0.8168 (6)	0.4367 (2)	0.47328 (19)	0.0824 (11)	
H1	0.7174	0.4320	0.5059	0.124*	
O2	0.1570 (5)	0.5228 (2)	0.75976 (17)	0.0670 (9)	

H2	0.2602	0.5259	0.7290	0.101*
C1	0.6514 (8)	0.6288 (3)	0.6846 (3)	0.0719 (14)
H1A	0.5090	0.6183	0.7031	0.108*
H1B	0.6665	0.6953	0.6649	0.108*
H1C	0.7468	0.6177	0.7302	0.108*
C2	0.7010 (7)	0.5586 (3)	0.6150 (2)	0.0472 (10)
C3	0.8877 (7)	0.5753 (3)	0.5630 (2)	0.0487 (11)
C4	0.9357 (8)	0.5152 (3)	0.4941 (3)	0.0605 (13)
C5	1.1111 (9)	0.5351 (4)	0.4453 (3)	0.0779 (16)
Н5	1.1417	0.4951	0.3996	0.093*
C6	1.2395 (9)	0.6130 (4)	0.4636 (3)	0.0778 (15)
H6	1.3570	0.6254	0.4304	0.093*
C7	1.1973 (8)	0.6727 (4)	0.5301 (3)	0.0698 (14)
H7	1.2848	0.7259	0.5422	0.084*
C8	1.0243 (7)	0.6535 (3)	0.5790 (3)	0.0589 (12)
H8	0.9973	0.6942	0.6246	0.071*
C9	0.3515 (10)	0.3201 (3)	0.5599 (3)	0.0861 (17)
H9A	0.4546	0.3497	0.5237	0.129*
H9B	0.2270	0.3046	0.5283	0.129*
H9C	0.4084	0.2608	0.5836	0.129*
C10	0.2963 (7)	0.3905 (3)	0.6284 (2)	0.0502 (11)
C11	0.1087 (7)	0.3741 (3)	0.6796 (3)	0.0500 (11)
C12	0.0460 (7)	0.4402 (3)	0.7423 (3)	0.0542 (11)
C13	-0.1329 (8)	0.4228 (4)	0.7893 (3)	0.0651 (13)
H13	-0.1705	0.4669	0.8312	0.078*
C14	-0.2557 (9)	0.3416 (4)	0.7750 (3)	0.0766 (15)
H14	-0.3769	0.3310	0.8065	0.092*
C15	-0.1990 (9)	0.2764 (3)	0.7141 (3)	0.0762 (15)
H15	-0.2824	0.2212	0.7041	0.091*
C16	-0.0201 (8)	0.2914 (3)	0.6674 (3)	0.0668 (13)
H16	0.0165	0.2456	0.6267	0.080*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.044 (2)	0.052 (2)	0.051 (2)	0.0052 (18)	0.0000 (18)	-0.0005 (16)
N2	0.046 (2)	0.047 (2)	0.053 (2)	0.0031 (18)	-0.0032 (18)	0.0000 (16)
O1	0.093 (3)	0.084 (2)	0.070(2)	-0.013 (2)	0.021 (2)	-0.0175 (17)
O2	0.070(2)	0.0691 (19)	0.0615 (19)	-0.0107 (19)	0.0074 (18)	-0.0083 (15)
C1	0.062 (3)	0.067 (3)	0.087 (3)	-0.006 (3)	0.012 (3)	-0.017 (3)
C2	0.049 (3)	0.044 (2)	0.049 (2)	0.010 (2)	-0.004 (2)	-0.0004 (18)
C3	0.048 (3)	0.052 (2)	0.047 (2)	0.009 (2)	-0.005 (2)	0.006 (2)
C4	0.068 (4)	0.062 (3)	0.052 (3)	-0.001 (3)	0.001 (3)	0.005 (2)
C5	0.087 (4)	0.092 (4)	0.054 (3)	0.005 (4)	0.020 (3)	0.004 (3)
C6	0.063 (3)	0.094 (4)	0.076 (4)	0.000 (3)	0.019 (3)	0.019 (3)
C7	0.056 (3)	0.076 (3)	0.076 (3)	-0.003 (3)	0.003 (3)	0.017 (3)
C8	0.053 (3)	0.063 (3)	0.061 (3)	0.003 (3)	-0.004 (3)	0.005 (2)
C9	0.079 (4)	0.072 (3)	0.107 (4)	-0.013 (3)	0.020 (3)	-0.035 (3)

supporting information

C10	0.045 (3)	0.047 (2)	0.058 (3)	0.004 (2)	-0.004(2)	-0.002(2)
C11	0.049 (3)	0.045 (2)	0.056 (3)	0.001 (2)	-0.009 (2)	0.006 (2)
C12	0.055 (3)	0.054 (3)	0.054 (3)	0.001 (2)	-0.006 (2)	0.015 (2)
C13	0.063 (3)	0.070 (3)	0.063 (3)	0.005 (3)	0.002 (3)	0.015 (3)
C14	0.068 (3)	0.081 (3)	0.081 (4)	-0.002 (3)	0.009 (3)	0.031 (3)
C15	0.067 (4)	0.068 (3)	0.094 (4)	-0.019 (3)	-0.004 (3)	0.023 (3)
C16	0.068 (3)	0.057 (3)	0.075 (3)	-0.005 (3)	-0.009 (3)	0.003 (2)

Geometric parameters (Å, °)

N1—C2	1.295 (5)	С7—С8	1.371 (6)	
N1—N2	1.394 (4)	С7—Н7	0.9300	
N2-C10	1.300 (5)	C8—H8	0.9300	
O1—C4	1.346 (5)	C9—C10	1.495 (5)	
01—H1	0.8200	С9—Н9А	0.9600	
O2—C12	1.352 (5)	С9—Н9В	0.9600	
O2—H2	0.8200	С9—Н9С	0.9600	
C1—C2	1.497 (5)	C10—C11	1.460 (6)	
C1—H1A	0.9600	C11—C16	1.401 (5)	
C1—H1B	0.9600	C11—C12	1.403 (6)	
C1—H1C	0.9600	C12—C13	1.380 (6)	
C2—C3	1.464 (5)	C13—C14	1.368 (6)	
C3—C8	1.392 (5)	C13—H13	0.9300	
C3—C4	1.405 (6)	C14—C15	1.364 (6)	
C4—C5	1.385 (7)	C14—H14	0.9300	
C5—C6	1.365 (7)	C15—C16	1.372 (7)	
С5—Н5	0.9300	C15—H15	0.9300	
С6—С7	1.364 (6)	C16—H16	0.9300	
С6—Н6	0.9300			
~		~		
C2—N1—N2	115.8 (3)	C7—C8—H8	118.8	
C10—N2—N1	115.7 (3)	C3—C8—H8	118.8	
C4—01—H1	109.5	C10—C9—H9A	109.5	
C12—O2—H2	109.5	C10—C9—H9B	109.5	
C2—CI—HIA	109.5	H9A—C9—H9B	109.5	
C2—CI—HIB	109.5	C10—C9—H9C	109.5	
HIA—CI—HIB	109.5	H9A—C9—H9C	109.5	
C2—CI—HIC	109.5	H9B—C9—H9C	109.5	
HIA—CI—HIC	109.5	N2-C10-C11	116.5 (4)	
HIB—CI—HIC	109.5	N2—C10—C9	123.2 (4)	
N1—C2—C3	116.5 (4)	C11—C10—C9	120.3 (4)	
N1—C2—C1	124.0 (4)	C16—C11—C12	116.5 (4)	
C3—C2—C1	119.6 (4)	C16—C11—C10	121.2 (4)	
C8—C3—C4	116.8 (4)	C12—C11—C10	122.3 (4)	
C8—C3—C2	121.1 (4)	02-C12-C13	117.1 (4)	
C4—C3—C2	122.1 (4)	02-012-011	122.0 (4)	
01	117.6 (4)	C13-C12-C11	120.9 (4)	
01—C4—C3	122.1 (4)	C14—C13—C12	120.9 (5)	

C5—C4—C3	120.2 (5)	C14—C13—H13	119.5
C6—C5—C4	120.5 (5)	C12—C13—H13	119.5
C6—C5—H5	119.7	C15—C14—C13	119.5 (5)
C4—C5—H5	119.7	C15—C14—H14	120.3
C7—C6—C5	120.7 (5)	C13—C14—H14	120.3
С7—С6—Н6	119.7	C14—C15—C16	120.6 (5)
С5—С6—Н6	119.7	C14—C15—H15	119.7
C6—C7—C8	119.3 (5)	C16—C15—H15	119.7
С6—С7—Н7	120.4	C15—C16—C11	121.7 (5)
С8—С7—Н7	120.4	C15—C16—H16	119.2
C7—C8—C3	122.5 (5)	С11—С16—Н16	119.2
C2-N1-N2-C10	-177.9 (4)	N1—N2—C10—C11	179.9 (3)
N2—N1—C2—C3	-179.2 (3)	N1—N2—C10—C9	-0.6 (6)
N2—N1—C2—C1	-0.2 (5)	N2-C10-C11-C16	-178.7 (4)
N1-C2-C3-C8	-178.6 (4)	C9—C10—C11—C16	1.7 (6)
C1—C2—C3—C8	2.3 (5)	N2-C10-C11-C12	2.2 (5)
N1-C2-C3-C4	2.7 (5)	C9—C10—C11—C12	-177.4 (4)
C1—C2—C3—C4	-176.4 (4)	C16—C11—C12—O2	-179.8 (4)
C8—C3—C4—O1	179.0 (4)	C10-C11-C12-O2	-0.7 (6)
C2-C3-C4-01	-2.3 (6)	C16—C11—C12—C13	0.5 (6)
C8—C3—C4—C5	-0.3 (6)	C10-C11-C12-C13	179.6 (4)
C2—C3—C4—C5	178.4 (4)	O2—C12—C13—C14	179.2 (4)
O1—C4—C5—C6	-179.2 (4)	C11—C12—C13—C14	-1.1 (6)
C3—C4—C5—C6	0.1 (7)	C12—C13—C14—C15	0.8 (7)
C4—C5—C6—C7	-0.1 (8)	C13—C14—C15—C16	0.2 (7)
C5—C6—C7—C8	0.3 (7)	C14—C15—C16—C11	-0.8 (7)
C6—C7—C8—C3	-0.6 (6)	C12—C11—C16—C15	0.5 (6)
C4—C3—C8—C7	0.6 (6)	C10-C11-C16-C15	-178.7 (4)
C2—C3—C8—C7	-178.2 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
01—H1…N1	0.82	1.80	2.529 (5)	146
O2—H2…N2	0.82	1.80	2.529 (4)	147
C1—H1 <i>A</i> ···N2	0.96	2.32	2.739 (5)	106
C5—H5···O2 ⁱ	0.93	2.59	3.403 (6)	147
C9—H9A…N1	0.96	2.30	2.724 (6)	106

Symmetry code: (i) -x+3/2, -y+1, z-1/2.