metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido(ethyl­di­phenyl­phosphine-κP)(1-pyrrolidinecarbodi­thio­ato-κ2S,S′)nickel(II)

aDepartment of Inorganic Chemistry, Chemical Faculty, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-952 PL Gdańsk, Poland, and bInstitute of Physical and Theoretical Chemistry, Chemical Faculty, Wrocław University of Technology, 27 Wybrzeże Wyspiańskiego, 50-370 PL Wrocław, Poland
*Correspondence e-mail: anna@urethan.chem.pg.gda.pl

(Received 23 April 2008; accepted 24 April 2008; online 30 April 2008)

In the crystal structure of the title complex, [Ni(C5H8NS2)Cl(C14H15P)], the Ni atom is coordinated by an S,S′-chelating dithio­carbamate, a chloride and a diphenyl­ethyl­phosphine ligand in a distorted square-planar arrangement.

Related literature

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Darkwa et al. (1999[Darkwa, J., Osei-Twum, E. Y. & Litrja, L. A. (1999). Polyhedron, 18, 1115-1122.]); Kropidłowska, Chojnacki et al. (2007[Kropidłowska, A., Chojnacki, J., Gołaszewska, J. & Becker, B. (2007). Acta Cryst. E63, m1643.]); Kropidłowska, Janczak et al. (2007[Kropidłowska, A., Janczak, J., Gołaszewska, J. & Becker, B. (2007). Acta Cryst. E63, m1947.]); Pastorek et al. (1996[Pastorek, R., Trávníček, Z., Kvapilova, E., Šindelář, Z. & Březina, F. (1996). Polyhedron, 15, 3691-3695.], 1999[Pastorek, R., Trávníček, Z., Šindelář, Z. & Březina, F. (1999). Transition Met. Chem. 24, 304-305.]); Reger & Collins (1995[Reger, D. L. & Collins, J. E. (1995). Inorg. Chem. 34, 2473-2475.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C5H8NS2)Cl(C14H15P)]

  • Mr = 454.63

  • Monoclinic, P 21 /c

  • a = 6.5218 (5) Å

  • b = 19.1695 (15) Å

  • c = 16.6178 (14) Å

  • β = 90.786 (6)°

  • V = 2077.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 299 (2) K

  • 0.50 × 0.21 × 0.17 mm

Data collection
  • Kuma KM-4-CCD diffractometer

  • Absorption correction: refined from ΔF (Walker & Stuart, 1983[Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.]) Tmin = 0.553, Tmax = 0.804

  • 10912 measured reflections

  • 3637 independent reflections

  • 2989 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.08

  • 3637 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Metal (Ni, Pd) complexes in which the atom is coordinated by a S,S-chelating dithiocarbamate, one halogenide and one phosphine have been investigated and used to obtain compounds with a sulfur rich kernel arising from the presence of two different S-donor ligands (Darkwa et al., 1999; Pastorek et al., 1999; Reger & Collins, 1995). Several structures of such species are stored in the Cambridge Structural Database (CSD-2007, Allen 2002).

Recently, we reported the synthesis of [Ni{S2CN(CH2)4}(Cl)(PPh3)] (Kropidłowska, Janczak et al., 2007) solvated by a chloroform molecule, which interacts with the complex by a weak C—H···S hydrogen bond. The structure of homologous hemisolvated [Ni{S2CN(CH2)4}(Br)(PPh3)] has also been reported (Pastorek et al., 1996). In the present paper we describe the structure of another nickel(II) complex - (1-pyrrolidinylcarbodithioato-S,S') -chlorido-(diphenylethylphosphine)nickel(II), [Ni{S2CN(CH2)4}(Cl)(PPh2Et)] (I) obtained by essentially quantitative metathesis of trans-dichloro-bis(diphenylethylphosphine)-nickel(II) and bis(1-pyrrolidinylcarbodithioato-S,S')nickel(II). The molecular structure of (I) with the atom numbering scheme is shown in Figure 1.

In this compound the metal(II) ion is four-coordinated within a typical square planar [NiClS2P] heterogeneous coordination sphere. The dithiocarbamate ligand acts as a bidentate chelate, coordinating to Ni via both S atoms and thus introducing a deformation of the coordination geometry. Atom S1 is located trans to the Cl ligand and atom S2 is trans to the diphenylethylphosphine ligand. Although (I) was obtained in the same manner as previously mentioned [Ni{S2CN(CH2)4}(Cl)(PPh3)] it did not retain the solvent within its crystal structure, similarily to previously described [Ni{S2CN(C4H8O)}(Cl)(PPh3)] (Kropidłowska, Chojnacki et al., 2007). The schematic drawing of the crystal packing in (I) is presented in Figure 2.

Related literature top

For related literature, see: Allen (2002); Darkwa et al. (1999); Kropidłowska, Chojnacki et al. (2007); Kropidłowska, Janczak et al. (2007); Pastorek et al. (1996, 1999); Reger & Collins (1995).

Experimental top

Nickel chloride, NiCl2.6H2O (0.594 g, 0.0025 mol, purchased from POCh) was dissolved in 50 ml of methanol/water (10/1, v/v) and this solution was added dropwise to the ammonium salt of pyrrolidinylcarbodithioic acid C4H8NCS2NH4 (0.82 g, 0.005 mol, Fluka) dissolved in methanol/water. This mixture was stirred vigorously under argon atmosphere for ca 20 minutes, then filtered and the filtrate left for crystallization at 278 K. After a week the green crystalline product, namely Ni(S2CNC4H8)2 was collected. It was further dissolved (0.199 g, 0.00057 mol) in 10 ml of chloroform and mixed with solution of equimolar amount of NiCl2(PPh2Et)2 (0.315 g). The mixture which turned into deep violet colour, was stirred for 10 minutes and then filtered. To the filtrate 10 ml of Et2O was added. After two days violet crystals were collected and washed with several portions of ether.

Refinement top

All H atoms were positioned geometrically and treated as riding with C—H = 0.93 - 0.97 Å, and with Uiso(H) values of 1.2×Ueq of the parent methylene carbon and Uiso(H) values of 1.5xUeq of the methyl group carbon.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis CCD (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom-numbering scheme for the title complex (I) with displacement ellipsoids drawn at 50% probability level. H atoms are represented as circles of arbitrary size.
[Figure 2] Fig. 2. Schematic drawing of the crystal packing down the a axis.
Chlorido(ethyldiphenylphosphine-κP)(1-pyrrolidinecarbodithioato- κ2S,S')nickel(II) top
Crystal data top
[Ni(C5H8NS2)Cl(C14H15P)]F(000) = 944
Mr = 454.63Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3645 reflections
a = 6.5218 (5) Åθ = 3.5–23.0°
b = 19.1695 (15) ŵ = 1.34 mm1
c = 16.6178 (14) ÅT = 299 K
β = 90.786 (6)°Block, violet
V = 2077.4 (3) Å30.50 × 0.21 × 0.17 mm
Z = 4
Data collection top
Kuma KM-4-CCD
diffractometer
3637 independent reflections
Radiation source: fine-focus sealed tube2989 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
h = 67
Tmin = 0.553, Tmax = 0.804k = 2222
10912 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.6647P]
where P = (Fo2 + 2Fc2)/3
3637 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni(C5H8NS2)Cl(C14H15P)]V = 2077.4 (3) Å3
Mr = 454.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5218 (5) ŵ = 1.34 mm1
b = 19.1695 (15) ÅT = 299 K
c = 16.6178 (14) Å0.50 × 0.21 × 0.17 mm
β = 90.786 (6)°
Data collection top
Kuma KM-4-CCD
diffractometer
3637 independent reflections
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
2989 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.804Rint = 0.042
10912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.08Δρmax = 0.57 e Å3
3637 reflectionsΔρmin = 0.35 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.41398 (6)0.542285 (19)0.69879 (2)0.04145 (15)
Cl10.45930 (14)0.44894 (4)0.77213 (6)0.0630 (3)
P10.19702 (11)0.59106 (4)0.78208 (5)0.0397 (2)
S10.38209 (13)0.62417 (5)0.60835 (5)0.0544 (2)
S20.64891 (13)0.50962 (4)0.60948 (5)0.0508 (2)
N10.6761 (4)0.61076 (14)0.49827 (16)0.0524 (7)
C10.0929 (4)0.67350 (15)0.74538 (17)0.0421 (7)
C20.2112 (5)0.73347 (17)0.7499 (2)0.0534 (8)
H20.34260.73140.77220.064*
C30.1353 (7)0.79645 (19)0.7214 (2)0.0658 (10)
H30.21480.83660.72550.079*
C40.0576 (7)0.7995 (2)0.6872 (3)0.0732 (11)
H40.10920.84180.66860.088*
C50.1733 (7)0.7405 (2)0.6805 (3)0.0743 (11)
H50.30290.74260.65660.089*
C60.0994 (5)0.67784 (19)0.7092 (2)0.0571 (9)
H60.17960.63790.70410.069*
C70.2986 (5)0.61533 (16)0.88112 (18)0.0447 (7)
C80.1922 (6)0.6611 (2)0.9294 (2)0.0651 (10)
H80.07250.68170.90970.078*
C90.2601 (8)0.6766 (2)1.0060 (2)0.0790 (12)
H90.18650.70761.03760.095*
C100.4359 (8)0.6466 (2)1.0358 (2)0.0769 (12)
H100.48190.65691.08760.092*
C110.5419 (7)0.6020 (3)0.9890 (3)0.0833 (13)
H110.66180.58181.00900.100*
C120.4748 (5)0.5858 (2)0.9115 (2)0.0637 (10)
H120.54950.55490.88020.076*
C130.0307 (5)0.53894 (19)0.8047 (2)0.0614 (9)
H13A0.14410.57060.81410.074*
H13B0.06570.51140.75750.074*
C140.0117 (6)0.4907 (2)0.8755 (3)0.0737 (11)
H14A0.13810.46590.88210.111*
H14B0.01790.51740.92320.111*
H14C0.09730.45810.86660.111*
C150.5834 (5)0.58493 (17)0.55992 (19)0.0468 (7)
C160.6134 (7)0.6751 (2)0.4568 (2)0.0740 (11)
H16A0.47870.66990.43210.089*
H16B0.61060.71410.49400.089*
C170.7689 (10)0.6853 (3)0.3962 (4)0.125 (2)
H17A0.70550.68320.34310.151*
H17B0.82980.73120.40280.151*
C180.9245 (7)0.6337 (3)0.4024 (3)0.1021 (17)
H18A1.05270.65500.41980.123*
H18B0.94530.61220.35030.123*
C190.8606 (5)0.5801 (2)0.4617 (2)0.0609 (9)
H19A0.82850.53620.43530.073*
H19B0.96730.57220.50200.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0434 (2)0.0415 (2)0.0394 (2)0.00158 (16)0.00237 (16)0.00039 (16)
Cl10.0697 (6)0.0521 (5)0.0672 (6)0.0089 (4)0.0010 (4)0.0144 (4)
P10.0380 (4)0.0437 (4)0.0373 (4)0.0021 (3)0.0015 (3)0.0024 (3)
S10.0597 (5)0.0577 (5)0.0459 (5)0.0158 (4)0.0092 (4)0.0086 (4)
S20.0543 (5)0.0506 (5)0.0475 (5)0.0093 (4)0.0022 (4)0.0024 (4)
N10.0547 (16)0.0542 (16)0.0486 (15)0.0051 (13)0.0081 (13)0.0023 (13)
C10.0450 (16)0.0463 (17)0.0351 (15)0.0027 (13)0.0054 (12)0.0009 (13)
C20.0593 (19)0.0530 (19)0.0481 (18)0.0062 (16)0.0068 (15)0.0000 (15)
C30.085 (3)0.050 (2)0.063 (2)0.0068 (19)0.019 (2)0.0035 (17)
C40.091 (3)0.054 (2)0.074 (3)0.022 (2)0.010 (2)0.0109 (19)
C50.073 (2)0.067 (3)0.082 (3)0.018 (2)0.008 (2)0.013 (2)
C60.056 (2)0.057 (2)0.058 (2)0.0034 (16)0.0081 (16)0.0028 (16)
C70.0473 (17)0.0488 (17)0.0381 (16)0.0055 (13)0.0004 (13)0.0008 (13)
C80.077 (2)0.070 (2)0.048 (2)0.0109 (19)0.0018 (17)0.0049 (18)
C90.116 (4)0.074 (3)0.047 (2)0.000 (3)0.008 (2)0.008 (2)
C100.105 (3)0.078 (3)0.048 (2)0.025 (3)0.014 (2)0.001 (2)
C110.074 (3)0.111 (4)0.064 (3)0.001 (2)0.029 (2)0.002 (3)
C120.0516 (19)0.086 (3)0.054 (2)0.0034 (18)0.0077 (16)0.0089 (19)
C130.0479 (19)0.070 (2)0.066 (2)0.0158 (16)0.0042 (16)0.0143 (18)
C140.061 (2)0.066 (2)0.094 (3)0.0119 (18)0.002 (2)0.027 (2)
C150.0475 (17)0.0486 (18)0.0443 (17)0.0054 (14)0.0042 (13)0.0050 (14)
C160.090 (3)0.069 (2)0.064 (2)0.011 (2)0.020 (2)0.015 (2)
C170.145 (5)0.091 (4)0.142 (5)0.014 (4)0.076 (4)0.045 (4)
C180.081 (3)0.127 (4)0.100 (4)0.016 (3)0.043 (3)0.042 (3)
C190.0510 (19)0.070 (2)0.062 (2)0.0008 (17)0.0124 (16)0.0050 (18)
Geometric parameters (Å, º) top
Ni1—S12.1812 (9)C8—H80.9300
Ni1—Cl12.1828 (9)C9—C101.369 (6)
Ni1—P12.2014 (8)C9—H90.9300
Ni1—S22.2371 (9)C10—C111.353 (6)
P1—C11.822 (3)C10—H100.9300
P1—C71.826 (3)C11—C121.389 (5)
P1—C131.833 (3)C11—H110.9300
S1—C151.722 (3)C12—H120.9300
S2—C151.713 (3)C13—C141.501 (5)
N1—C151.295 (4)C13—H13A0.9700
N1—C161.468 (5)C13—H13B0.9700
N1—C191.477 (4)C14—H14A0.9600
C1—C21.386 (4)C14—H14B0.9600
C1—C61.386 (4)C14—H14C0.9600
C2—C31.385 (5)C16—C171.453 (6)
C2—H20.9300C16—H16A0.9700
C3—C41.375 (6)C16—H16B0.9700
C3—H30.9300C17—C181.420 (7)
C4—C51.362 (6)C17—H17A0.9700
C4—H40.9300C17—H17B0.9700
C5—C61.377 (5)C18—C191.488 (5)
C5—H50.9300C18—H18A0.9700
C6—H60.9300C18—H18B0.9700
C7—C121.371 (5)C19—H19A0.9700
C7—C81.382 (5)C19—H19B0.9700
C8—C91.375 (5)
S1—Ni1—Cl1170.25 (4)C9—C10—H10120.3
S1—Ni1—P194.10 (3)C10—C11—C12121.1 (4)
Cl1—Ni1—P194.62 (3)C10—C11—H11119.5
S1—Ni1—S278.70 (3)C12—C11—H11119.5
Cl1—Ni1—S292.99 (4)C7—C12—C11120.1 (4)
P1—Ni1—S2171.11 (4)C7—C12—H12120.0
C1—P1—C7102.11 (14)C11—C12—H12120.0
C1—P1—C13104.01 (16)C14—C13—P1116.0 (3)
C7—P1—C13103.83 (16)C14—C13—H13A108.3
C1—P1—Ni1113.44 (9)P1—C13—H13A108.3
C7—P1—Ni1116.52 (10)C14—C13—H13B108.3
C13—P1—Ni1115.28 (14)P1—C13—H13B108.3
C15—S1—Ni186.65 (11)H13A—C13—H13B107.4
C15—S2—Ni185.09 (11)C13—C14—H14A109.5
C15—N1—C16124.2 (3)C13—C14—H14B109.5
C15—N1—C19124.4 (3)H14A—C14—H14B109.5
C16—N1—C19111.4 (3)C13—C14—H14C109.5
C2—C1—C6118.3 (3)H14A—C14—H14C109.5
C2—C1—P1119.8 (2)H14B—C14—H14C109.5
C6—C1—P1121.9 (2)N1—C15—S2125.9 (2)
C3—C2—C1120.6 (3)N1—C15—S1124.7 (2)
C3—C2—H2119.7S2—C15—S1109.28 (18)
C1—C2—H2119.7C17—C16—N1104.2 (3)
C4—C3—C2119.9 (4)C17—C16—H16A110.9
C4—C3—H3120.1N1—C16—H16A110.9
C2—C3—H3120.1C17—C16—H16B110.9
C5—C4—C3120.1 (4)N1—C16—H16B110.9
C5—C4—H4119.9H16A—C16—H16B108.9
C3—C4—H4119.9C18—C17—C16111.2 (4)
C4—C5—C6120.3 (4)C18—C17—H17A109.4
C4—C5—H5119.8C16—C17—H17A109.4
C6—C5—H5119.8C18—C17—H17B109.4
C5—C6—C1120.8 (4)C16—C17—H17B109.4
C5—C6—H6119.6H17A—C17—H17B108.0
C1—C6—H6119.6C17—C18—C19108.8 (4)
C12—C7—C8118.2 (3)C17—C18—H18A109.9
C12—C7—P1121.3 (3)C19—C18—H18A109.9
C8—C7—P1120.4 (3)C17—C18—H18B109.9
C9—C8—C7121.1 (4)C19—C18—H18B109.9
C9—C8—H8119.4H18A—C18—H18B108.3
C7—C8—H8119.4N1—C19—C18103.6 (3)
C10—C9—C8120.1 (4)N1—C19—H19A111.0
C10—C9—H9120.0C18—C19—H19A111.0
C8—C9—H9120.0N1—C19—H19B111.0
C11—C10—C9119.4 (4)C18—C19—H19B111.0
C11—C10—H10120.3H19A—C19—H19B109.0

Experimental details

Crystal data
Chemical formula[Ni(C5H8NS2)Cl(C14H15P)]
Mr454.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)6.5218 (5), 19.1695 (15), 16.6178 (14)
β (°) 90.786 (6)
V3)2077.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.50 × 0.21 × 0.17
Data collection
DiffractometerKuma KM-4-CCD
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.553, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
10912, 3637, 2989
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.08
No. of reflections3637
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.35

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

 

Acknowledgements

The authors acknowledge Professor J. Pikies for his donation of the sample of NiCl2(PPh2Et)2 and J. Gołaszewska for her help during the crystallization. This work was supported by the Ministry of Science and Higher Education (Poland), grant No. 1 T09A 117 30. A. Kropidłowska thanks the Found­ation for Polish Science for a fellowship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDarkwa, J., Osei-Twum, E. Y. & Litrja, L. A. (1999). Polyhedron, 18, 1115–1122.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKropidłowska, A., Chojnacki, J., Gołaszewska, J. & Becker, B. (2007). Acta Cryst. E63, m1643.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKropidłowska, A., Janczak, J., Gołaszewska, J. & Becker, B. (2007). Acta Cryst. E63, m1947.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2003). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationPastorek, R., Trávníček, Z., Kvapilova, E., Šindelář, Z. & Březina, F. (1996). Polyhedron, 15, 3691–3695.  CSD CrossRef CAS Web of Science Google Scholar
First citationPastorek, R., Trávníček, Z., Šindelář, Z. & Březina, F. (1999). Transition Met. Chem. 24, 304–305.  Web of Science CrossRef CAS Google Scholar
First citationReger, D. L. & Collins, J. E. (1995). Inorg. Chem. 34, 2473–2475.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWalker, N. & Stuart, D. (1983). Acta Cryst. A39, 158–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds