metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridyl-κ2N,N′)tetra­kis(4-methyl­benzoato-κO)manganese(II)

aCollege of Science, Guang Dong Ocean University, Zhan Jiang 524088, People's Republic of China, and bCollege of Chemistry, South China University of Technology, Guangzhou 510640, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 26 March 2008; accepted 11 April 2008; online 16 April 2008)

In the title mononuclear complex, [Mn(C8H7O2)4(C10H8N2)], the MnII atom lies on a twofold rotation axis and has a distorted octa­hedral coordination geometry defined by four O atoms from four 4-methyl­benzoate ligands and two N atoms from one 2,2′-bipyridyl ligand. The crystal structure is stabilized by inter­molecular hydrogen bonds and ππ stacking inter­actions [the centroid–centroid distance between the parallel pyridyl ring of a 2,2′-bipyridyl and benzene ring of a 4-methylbenzoic group of a neighboring complex is 3.839 (2) Å].

Related literature

For related literature, see: Song et al. (2007[Song, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023-m1024.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H7O2)4(C10H8N2)]

  • Mr = 753.68

  • Orthorhombic, P c c n

  • a = 13.6159 (2) Å

  • b = 14.2585 (2) Å

  • c = 19.5732 (3) Å

  • V = 3799.99 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 273 (2) K

  • 0.20 × 0.16 × 0.11 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.93, Tmax = 0.96

  • 30915 measured reflections

  • 4378 independent reflections

  • 2297 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.131

  • S = 1.01

  • 4378 reflections

  • 243 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2i 0.82 1.68 2.477 (2) 164
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the structural investigation of 4-methylbenzate complexes, it has been found that the 4-methylbenzoic acid functions as a multidentate ligand [Song et al. (2007)], with versatile binding and coordination modes. In this paper, we report the crystal structure of the title compound, (I), a new Mn complex obtained by the reaction of 4-methylbenzoic acid, 2,2'-bipyridyl and manganese chloride in alkaline aqueous solution.

As illustrated in Figure 1, the MnII atom lies on a centre of symmetry, and is surrounded by distorted octahedral environment defined by four carboxyl O atoms from four monodentate 4-methylbenzate ligands and two N atoms from one 2,2'-bipyridyl ligand. The packing is governed by a O—H···O hydrogen bond (Table 1) and a weak π-π stacking interaction between the parallel pyridyl ring of a 2,2'-bipyridyl and a phenyl ring of 4-methylbenzoic group of neighboring complexes (1.5-x, 0.5-y, z), with a centroid to centroid distance of 3.839 (2) Å.

Related literature top

For related literature, see: Song et al. (2007).

Experimental top

A mixture of manganese chloride(1 mmol), 4-methylbenzoic acid (1 mmol), 2,2'-bipyridyl(1 mmol), NaOH (1.5 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement top

H atoms were placed at calculated positions and were treated as riding on the parent C atoms with C—H = 0.93 - 0.97 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown as 30% probability displacement ellipsoids.
(2,2'-Bipyridyl-κ2N,N')tetrakis(4-methylbenzoato-κO)manganese(II) top
Crystal data top
[Mn(C8H7O2)4(C10H8N2)]F(000) = 1572
Mr = 753.68Dx = 1.317 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 3500 reflections
a = 13.6159 (2) Åθ = 1.4–28.0°
b = 14.2585 (2) ŵ = 0.40 mm1
c = 19.5732 (3) ÅT = 273 K
V = 3799.99 (10) Å3Block, colourless
Z = 40.20 × 0.16 × 0.11 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4378 independent reflections
Radiation source: fine-focus sealed tube2297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.93, Tmax = 0.96k = 1818
30915 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.3551P]
where P = (Fo2 + 2Fc2)/3
4378 reflections(Δ/σ)max = 0.002
243 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Mn(C8H7O2)4(C10H8N2)]V = 3799.99 (10) Å3
Mr = 753.68Z = 4
Orthorhombic, PccnMo Kα radiation
a = 13.6159 (2) ŵ = 0.40 mm1
b = 14.2585 (2) ÅT = 273 K
c = 19.5732 (3) Å0.20 × 0.16 × 0.11 mm
Data collection top
Bruker APEXII area-detector
diffractometer
4378 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2297 reflections with I > 2σ(I)
Tmin = 0.93, Tmax = 0.96Rint = 0.071
30915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
4378 reflectionsΔρmin = 0.24 e Å3
243 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8584 (2)0.14977 (18)0.04194 (12)0.0562 (7)
C20.95641 (18)0.13966 (17)0.00816 (12)0.0540 (6)
C31.0397 (2)0.17677 (19)0.03729 (13)0.0653 (7)
H31.03470.20930.07830.078*
C41.1305 (2)0.1667 (2)0.00678 (15)0.0748 (8)
H41.18580.19220.02760.090*
C51.1402 (2)0.1191 (2)0.05468 (15)0.0687 (8)
C61.0571 (2)0.0818 (2)0.08347 (14)0.0721 (8)
H61.06210.04850.12420.087*
C70.9662 (2)0.09274 (19)0.05331 (13)0.0662 (7)
H70.91080.06820.07460.079*
C81.2399 (2)0.1071 (3)0.08752 (16)0.0941 (11)
H8A1.24160.04890.11220.141*
H8B1.28960.10660.05280.141*
H8C1.25170.15810.11850.141*
C90.9071 (2)0.39242 (17)0.11458 (13)0.0563 (7)
C101.01048 (19)0.40889 (18)0.13322 (12)0.0532 (6)
C111.0399 (2)0.3921 (2)0.19970 (13)0.0752 (8)
H110.99460.37090.23170.090*
C121.1359 (2)0.4068 (3)0.21850 (15)0.0940 (11)
H121.15460.39430.26330.113*
C131.2057 (2)0.4397 (3)0.17272 (15)0.0834 (9)
C141.1752 (2)0.4553 (2)0.10613 (14)0.0757 (8)
H141.22030.47670.07400.091*
C151.07983 (19)0.4399 (2)0.08677 (13)0.0645 (7)
H151.06140.45040.04170.077*
C161.3096 (2)0.4584 (4)0.19472 (18)0.1358 (17)
H16A1.31070.47350.24250.204*
H16B1.33560.51010.16900.204*
H16C1.34890.40360.18670.204*
C170.9252 (2)0.1655 (2)0.25483 (13)0.0669 (8)
H170.95040.14790.21260.080*
C180.9816 (2)0.1503 (2)0.31183 (14)0.0731 (8)
H181.04360.12350.30810.088*
C190.9451 (2)0.1753 (2)0.37414 (14)0.0765 (9)
H190.98200.16650.41360.092*
C200.8529 (2)0.2136 (2)0.37739 (13)0.0683 (8)
H200.82620.22970.41950.082*
C210.79986 (17)0.22837 (15)0.31865 (11)0.0482 (6)
Mn10.75000.25000.16384 (2)0.05147 (19)
N10.83575 (14)0.20438 (14)0.25699 (9)0.0528 (5)
O20.78417 (13)0.12153 (14)0.00966 (9)0.0733 (6)
O30.84470 (13)0.37396 (13)0.15885 (8)0.0639 (5)
O40.88686 (13)0.39944 (15)0.04991 (9)0.0709 (5)
H4A0.82760.39320.04420.106*
O50.85649 (12)0.18654 (14)0.10029 (8)0.0678 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0513 (17)0.0700 (18)0.0472 (14)0.0002 (14)0.0052 (13)0.0032 (12)
C20.0490 (16)0.0645 (16)0.0486 (13)0.0017 (13)0.0049 (13)0.0004 (12)
C30.0604 (19)0.0755 (19)0.0600 (16)0.0043 (15)0.0059 (14)0.0106 (13)
C40.0501 (18)0.096 (2)0.078 (2)0.0066 (16)0.0084 (15)0.0094 (17)
C50.0552 (19)0.085 (2)0.0658 (17)0.0056 (16)0.0149 (15)0.0032 (15)
C60.070 (2)0.087 (2)0.0592 (16)0.0016 (17)0.0170 (16)0.0097 (14)
C70.0585 (19)0.085 (2)0.0555 (15)0.0070 (15)0.0102 (14)0.0086 (14)
C80.064 (2)0.125 (3)0.093 (2)0.0086 (19)0.0257 (18)0.0028 (19)
C90.0590 (18)0.0595 (16)0.0503 (15)0.0025 (14)0.0041 (14)0.0003 (12)
C100.0432 (16)0.0671 (17)0.0493 (14)0.0028 (13)0.0035 (12)0.0007 (12)
C110.061 (2)0.109 (2)0.0553 (17)0.0080 (17)0.0025 (15)0.0113 (15)
C120.069 (2)0.158 (3)0.0550 (17)0.010 (2)0.0133 (17)0.0166 (19)
C130.0523 (19)0.131 (3)0.0671 (19)0.0014 (19)0.0081 (16)0.0071 (17)
C140.0509 (18)0.115 (2)0.0611 (17)0.0078 (17)0.0002 (15)0.0089 (15)
C150.0491 (17)0.089 (2)0.0557 (15)0.0053 (15)0.0029 (14)0.0112 (13)
C160.053 (2)0.262 (5)0.093 (3)0.020 (3)0.016 (2)0.023 (3)
C170.0578 (18)0.087 (2)0.0556 (16)0.0139 (16)0.0053 (14)0.0018 (13)
C180.0575 (18)0.093 (2)0.0689 (18)0.0218 (16)0.0041 (16)0.0050 (15)
C190.066 (2)0.106 (2)0.0577 (17)0.0165 (18)0.0163 (15)0.0040 (15)
C200.068 (2)0.091 (2)0.0464 (15)0.0106 (17)0.0047 (14)0.0017 (13)
C210.0472 (15)0.0535 (15)0.0438 (12)0.0031 (11)0.0006 (11)0.0001 (10)
Mn10.0442 (3)0.0715 (4)0.0387 (3)0.0011 (3)0.0000.000
N10.0456 (13)0.0664 (13)0.0463 (11)0.0021 (11)0.0025 (10)0.0006 (9)
O20.0498 (12)0.1187 (16)0.0513 (10)0.0112 (11)0.0035 (9)0.0116 (10)
O30.0559 (12)0.0845 (13)0.0513 (10)0.0149 (10)0.0057 (9)0.0031 (9)
O40.0500 (12)0.1085 (15)0.0542 (11)0.0087 (11)0.0051 (9)0.0123 (10)
O50.0533 (11)0.0962 (14)0.0540 (11)0.0019 (10)0.0080 (9)0.0174 (9)
Geometric parameters (Å, º) top
C1—O51.257 (3)C13—C141.386 (4)
C1—O21.258 (3)C13—C161.503 (4)
C1—C21.496 (3)C14—C151.371 (3)
C2—C31.375 (3)C14—H140.9300
C2—C71.383 (3)C15—H150.9300
C3—C41.381 (3)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.388 (4)C16—H16C0.9600
C4—H40.9300C17—N11.339 (3)
C5—C61.371 (4)C17—C181.372 (3)
C5—C81.512 (4)C17—H170.9300
C6—C71.380 (3)C18—C191.364 (4)
C6—H60.9300C18—H180.9300
C7—H70.9300C19—C201.370 (3)
C8—H8A0.9600C19—H190.9300
C8—H8B0.9600C20—C211.374 (3)
C8—H8C0.9600C20—H200.9300
C9—O31.242 (3)C21—N11.346 (3)
C9—O41.300 (3)C21—C21i1.491 (5)
C9—C101.472 (3)Mn1—O5i2.1139 (16)
C10—C111.382 (3)Mn1—O52.1139 (16)
C10—C151.383 (3)Mn1—O3i2.1900 (18)
C11—C121.374 (4)Mn1—O32.1900 (18)
C11—H110.9300Mn1—N12.2607 (19)
C12—C131.388 (4)Mn1—N1i2.2607 (19)
C12—H120.9300O4—H4A0.8200
O5—C1—O2125.0 (2)C14—C15—C10121.1 (2)
O5—C1—C2117.4 (2)C14—C15—H15119.4
O2—C1—C2117.6 (2)C10—C15—H15119.4
C3—C2—C7117.9 (2)C13—C16—H16A109.5
C3—C2—C1121.0 (2)C13—C16—H16B109.5
C7—C2—C1121.1 (2)H16A—C16—H16B109.5
C2—C3—C4121.3 (2)C13—C16—H16C109.5
C2—C3—H3119.4H16A—C16—H16C109.5
C4—C3—H3119.4H16B—C16—H16C109.5
C3—C4—C5120.7 (3)N1—C17—C18123.3 (2)
C3—C4—H4119.6N1—C17—H17118.4
C5—C4—H4119.6C18—C17—H17118.4
C6—C5—C4117.9 (3)C19—C18—C17118.8 (3)
C6—C5—C8121.5 (3)C19—C18—H18120.6
C4—C5—C8120.6 (3)C17—C18—H18120.6
C5—C6—C7121.4 (3)C18—C19—C20118.6 (2)
C5—C6—H6119.3C18—C19—H19120.7
C7—C6—H6119.3C20—C19—H19120.7
C6—C7—C2120.9 (3)C19—C20—C21120.3 (2)
C6—C7—H7119.6C19—C20—H20119.9
C2—C7—H7119.6C21—C20—H20119.9
C5—C8—H8A109.5N1—C21—C20121.3 (2)
C5—C8—H8B109.5N1—C21—C21i115.82 (13)
H8A—C8—H8B109.5C20—C21—C21i122.83 (16)
C5—C8—H8C109.5O5i—Mn1—O5107.91 (10)
H8A—C8—H8C109.5O5i—Mn1—O3i85.14 (7)
H8B—C8—H8C109.5O5—Mn1—O3i91.85 (7)
O3—C9—O4123.4 (2)O5i—Mn1—O391.85 (7)
O3—C9—C10121.0 (2)O5—Mn1—O385.14 (7)
O4—C9—C10115.6 (2)O3i—Mn1—O3174.89 (9)
C11—C10—C15118.4 (2)O5i—Mn1—N1162.18 (7)
C11—C10—C9118.8 (2)O5—Mn1—N189.84 (7)
C15—C10—C9122.7 (2)O3i—Mn1—N196.19 (7)
C12—C11—C10120.1 (3)O3—Mn1—N187.94 (7)
C12—C11—H11120.0O5i—Mn1—N1i89.84 (7)
C10—C11—H11120.0O5—Mn1—N1i162.18 (7)
C11—C12—C13122.0 (3)O3i—Mn1—N1i87.94 (7)
C11—C12—H12119.0O3—Mn1—N1i96.19 (7)
C13—C12—H12119.0N1—Mn1—N1i72.48 (10)
C14—C13—C12117.1 (3)C17—N1—C21117.6 (2)
C14—C13—C16121.5 (3)C17—N1—Mn1124.29 (15)
C12—C13—C16121.3 (3)C21—N1—Mn1117.55 (15)
C15—C14—C13121.2 (3)C9—O3—Mn1127.24 (16)
C15—C14—H14119.4C9—O4—H4A109.5
C13—C14—H14119.4C1—O5—Mn1136.66 (17)
Symmetry code: (i) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.821.682.477 (2)164
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Mn(C8H7O2)4(C10H8N2)]
Mr753.68
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)273
a, b, c (Å)13.6159 (2), 14.2585 (2), 19.5732 (3)
V3)3799.99 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.20 × 0.16 × 0.11
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.93, 0.96
No. of measured, independent and
observed [I > 2σ(I)] reflections
30915, 4378, 2297
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.131, 1.01
No. of reflections4378
No. of parameters243
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.24

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2i0.821.682.477 (2)164.0
Symmetry code: (i) x+3/2, y+1/2, z.
 

Acknowledgements

The authors thank Guang Dong Ocean University for supporting this study.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-D., Gu, C.-S., Hao, X.-M. & Liu, J.-W. (2007). Acta Cryst. E63, m1023–m1024.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds