organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bispuupehenone from the South Chinese Sea sponge *Dysidea* sp.

Song Qin,^a* Lei Shi,^b Jia Li^b and Yue-Wei Guo^a

^aState Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China, and ^bChinese National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China Correspondence e-mail: ywguo@mail.shcnc.ac.cn

Received 28 February 2008; accepted 25 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.113; data-to-parameter ratio = 9.9.

Bispuupehenone, $C_{42}H_{54}O_6$, formally results from dimerization of puupehenone, which is constructed of sesquiterpene and benzene units. Bispuupehenone was isolated from the South China Sea sponge *Dysidea* sp. and the single-crystal X-ray diffraction analysis confirmed the previously reported structure. The molecule is located on a twofold axis and the dimerization forms two fused dibenzopyran systems related by symmetry. In the asymmetric unit, the two cyclohexane rings adopt chair conformations, while the two pyran rings adopt half-chair conformations. The relative stereochemistry and configurations for the ring junctions are in agreement with the structure reported previously.

Related literature

The title compound was first isolated from the Pacific marine sponge *Heteronema* sp., see Amade *et al.* (1983). For the biological and pharmaceutical activity of puupehenone, see: Barrero *et al.* (1998, 1999); Castro *et al.* (2004); Ciavatta *et al.* (2007); Longley *et al.* (1993); Kohmoto *et al.* (1987); Takamatsu *et al.* (2003). For the synthesis and semi-synthesis of puupehenone and its derivatives, see: Hamann (2003); Alvarez-Manzaneda *et al.* (2005, 2007).

Z = 4

Mo $K\alpha$ radiation

 $0.39 \times 0.24 \times 0.14$ mm

20532 measured reflections

2219 independent reflections

1644 reflections with $I > 2\sigma(I)$

 $\mu = 0.08 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.110$

Experimental

Crystal data $C_{42}H_{54}O_6$ $M_r = 654.85$ Tetragonal P4.2

 $\begin{aligned} M_r &= 0.54.83 \\ \text{Tetragonal, } P4_12_12 \\ a &= 13.5981 \ (10) \text{ Å} \\ c &= 18.7260 \ (19) \text{ Å} \\ V &= 3462.6 \ (5) \text{ Å}^3 \end{aligned}$

Data collection

```
Bruker APEX CCD area-detector
diffractometer
```

Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.743, T_{\max} = 0.990$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.113$	independent and constrained
S = 0.94	refinement
2219 reflections	$\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ \AA}^{-3}$
225 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The research work was financially supported by the National Marine '863' Project (No. 2006 A A09Z412), the Natural Science Foundation of China (Nos. 3073108, 20772136, and 20721003), CAS Key Project (grant KSCX2-YW-R-18) and STCSM Projects (No. 017XD14036 and 06DZ22028), and partially funded by a grant from the Syngenta-SIMM-PhD Studentship Project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2164).

References

- Alvarez-Manzaneda, E. J., Chahboun, R., Barranco Pérez, I., Cabrera, E., Alvarez, E. & Alvarez-Manzaneda, R. (2005). *Org. Lett.* **7**, 1477–1480.
- Alvarez-Manzaneda, E. J., Chahboun, R., Cabrera, E., Alvarez, E., Haidour, A., Ramos, J. M., Alvarez-Manzaneda, R., Hmamouchi, M. & Bouanou, H. (2007). J. Org. Chem. 72, 3332–3339.
- Amade, P., Chevelot, L., Perzanowski, H. P. & Scheuer, P. J. (1983). *Helv. Chim. Acta*, 66, 1672–1675.
- Barrero, A. F., Alvarez-Manzaneda, E. J., Herrador, M. M., Valdivia, M. V. & Chahboun, R. (1998). *Tetrahedron*, **39**, 2425–2428.
- Barrero, A. F., Alvarez-Miranda, E. J., Chahboun, R., Cortés, M. & Armstrong, V. (1999). *Tetrahedron*, **55**, 15181–15208.
- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Castro, M. E., González-Iriarte, M., Barrero, A. F., Salvador-Tormo, N., Muñoz-Chápuli, R., Medina, M. A. & Quesada, A. R. (2004). *Int. J. Cancer*, 20, 31–38.
- Ciavatta, M. L., Lopez Gresa, M. P., Gavagnin, M., Romero, V., Melck, D., Manzo, E., Guo, Y.-W., van Soest, R. & Cimino, G. (2007). *Tetrahedron*, 63, 1380–1384.

Hamann, M. T. (2003). Curr. Pharm. Des. 9, 879-889.

- Kohmoto, S., McConnell, O. J., Wright, A., Koehn, F., Thompson, W., Lui, M. & Snader, K. M. (1987). J. Nat. Prod. 50, 336–336.
- Longley, R. E., McConnell, O. J., Essich, E. & Harmody, D. (1993). J. Nat. Prod. 56, 915–920.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Takamatsu, S., Hodges, T. W., Rajbhandari, I., Gerwick, W. H., Hamann, M. T. & Nagle, D. G. (2003). J. Nat. Prod. 66, 605–608.

supporting information

Acta Cryst. (2008). E64, o946-o947 [doi:10.1107/S1600536808011987]

Bispuupehenone from the South Chinese Sea sponge Dysidea sp.

Song Qin, Lei Shi, Jia Li and Yue-Wei Guo

S1. Comment

Bispuupehenone (I) was firstly isolated from Pacific marine sponge *Heteronema sp.* (Amade *et al.*, 1983), and was considered to be generated from co-occurring puupehenone (II) (Fig. 1) by *in vitro* oxidative coupling. The benzopyrane structure for the dimer is deduced by the comparison of its UV spectrum data with those of a simple dibenzofuran and a simple benzopyran. Although compound (II) and its derivatives have been reported to display a wide range of important biological activities, including antiviral, antifungal, antimalarial, and antitumor activities (Barrero *et al.*, 1998, 1999; Longley *et al.*, 1993; Castro *et al.*, 2004; Ciavatta *et al.*, 2007; Kohmoto *et al.*, 1987; Takamatsu *et al.*, 2003), the biological properties of (I) have been seldom reported. Synthesis and semi-synthesis of puupehenone and its derivatives have been published (Hamann, 2003); Alvarez-Manzaneda *et al.*, 2005, 2007).

As part of our research project on the study of the South China Sea marine organisms, a sample of the sponge *Dysidea sp.* was collected off the Lingshui Bay, Hainan Province, China, and was chemically investigated. Bispuupehenone, (I), was isolated and crystallized from the Et₂O-soluble fraction of the acetone extract of the animal, and the structure of (I) was firstly elucidated by spectroscopic methods, NMR, UV and MS, and eventually confirmed through X-ray diffraction analysis. Herein, we report the X-ray structure of (I).

The projection of bispupehenone is shown in Figure 2. In the structure, two pupehenone moieties are connected through two O atoms and a C—C bond between benzene rings, forming a benzopyran moiety at the midpoint of the axial symmetric molecule. Rings A and B of (I) are in chair conformations, while rings *C* and *D* adopt half-chair conformations. Moreover, the *trans* junction between rings A/B and the *cis* junction between rings B/C are in agreement with the structure reported previously.

Bispuupehenone was tested for the inhibitory activities against hPTP1B (human protein tyrosine phosphatase 1B), a key target for the treatment of Type-II diabetes and obesity, and showed excellent inhibitory effect with IC_{50} value of 0.98 mg ml⁻¹. Other bioassays, such as antibacterial and anti-inflammatory, are currently ongoing.

S2. Experimental

The specimens of sponge were collected from Lingshui Bay, Hainan Province, China, in July 2004, and identified as *Dysidea sp.* by Professor J.-H. Li of the Institute of Oceanology, Chinese Academy of Sciences. A voucher specimen (LS-210) is available for inspection at the Herbarium of Shanghai Institute of Materia Medica, CAS. The frozen animals (dry weight 96.3 g) were cut into small pieces and exhaustively extracted with acetone ($3 \times 3 L$). The organic extract was evaporated to give a residue, which was partitioned between Et₂O and H₂O. The Et₂O solution was concentrated under reduced pressure to give a dark brown residue (4.7 g), which was fractionated by gradient silica gel column chromatography [0–100% acetone in light petroleum ether (PE)], yielding seven fractions (A···G). The fraction C eluted by PE/Me₂CO (95:5) was further purified on a second silica gel column chromatography eluting with PE—Et₂O (90:10) to afford (I) (14.3 mg). Crystals suitable for X-ray analysis were obtained by slow evaporation from a chloroform

solution.

S3. Refinement

The non-H atoms were located in successive difference Fourier syntheses. The final refinements were performed by fullmatrix least-squares methods with isotropic thermal parameters for all non-H atoms. Hydroxyl H atom H2 was found in a difference map and freely refined with an isotropic displacement parameter. Other H atoms were placed in calculated positions and included in the final refinement in the riding model approximation, with displacement parameters derived from the parent atoms to which they are bonded. In the absence of significant anomalous dispersion effects, 1571 measured Friedel pairs were merged and the absolute configuration was arbitrarily assigned.

Figure 1

The structures of bispuupehenone (I) and puupehenone (II).

Figure 2

The projection of (I) showing the atom-labeling scheme.

Bispuupehenone

Crystal data

 $C_{42}H_{54}O_6$ $M_r = 654.85$ Tetragonal, $P4_{12}_{12}$ Hall symbol: P 4abw 2nw a = 13.5981 (10) Å c = 18.7260 (19) Å $V = 3462.6 (5) \text{ Å}^3$ Z = 4F(000) = 1416 $D_x = 1.256 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4034 reflections $\theta = 4.8-54.2^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KPrismatic, colourless $0.39 \times 0.24 \times 0.14 \text{ mm}$ Data collection

Bruker APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000) $T_{\min} = 0.743, T_{\max} = 0.990$	20532 measured reflections 2219 independent reflections 1644 reflections with $I > 2\sigma(I)$ $R_{int} = 0.110$ $\theta_{max} = 27.0^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -16 \rightarrow 17$ $k = -17 \rightarrow 17$ $l = -11 \rightarrow 23$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.113$ S = 0.95 2219 reflections 225 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.07P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.007$ $\Delta\rho_{max} = 0.23$ e Å ⁻³ $\Delta\rho_{min} = -0.20$ e Å ⁻³

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.15743 (13)	0.55657 (12)	0.08619 (8)	0.0429 (5)	
O2	0.12262 (16)	0.48461 (14)	0.33312 (11)	0.0530 (5)	
O3	0.34879 (12)	0.77308 (13)	0.13171 (8)	0.0415 (4)	
C1	0.1684 (2)	0.87117 (19)	-0.00763 (14)	0.0499 (7)	
H1A	0.1694	0.9034	0.0386	0.060*	
H1B	0.2340	0.8757	-0.0277	0.060*	
C2	0.0968 (3)	0.9254 (2)	-0.05633 (14)	0.0637 (9)	
H2A	0.0322	0.9261	-0.0345	0.076*	
H2B	0.1183	0.9930	-0.0619	0.076*	
C3	0.0904 (3)	0.8771 (2)	-0.12908 (15)	0.0681 (9)	
H3A	0.1538	0.8820	-0.1525	0.082*	
H3B	0.0430	0.9126	-0.1580	0.082*	
C4	0.0601 (3)	0.7683 (2)	-0.12559 (14)	0.0573 (8)	
C5	0.1302 (2)	0.71542 (19)	-0.07258 (12)	0.0431 (6)	
H5	0.1954	0.7217	-0.0944	0.052*	
C6	0.1141 (2)	0.6044 (2)	-0.06599 (13)	0.0474 (7)	
H6A	0.0577	0.5915	-0.0356	0.057*	
H6B	0.1010	0.5765	-0.1127	0.057*	
C7	0.2055 (2)	0.5575 (2)	-0.03409 (13)	0.0484 (7)	
H7A	0.1950	0.4871	-0.0303	0.058*	
H7B	0.2604	0.5679	-0.0664	0.058*	
C8	0.2325 (2)	0.59716 (19)	0.03840 (13)	0.0411 (6)	
C9	0.23190 (19)	0.71109 (17)	0.04069 (12)	0.0371 (6)	
H9	0.2905	0.7323	0.0145	0.045*	

C10	0.14213 (18)	0.76213 (18)	0.00287 (13)	0.0389 (6)
C11	0.0747 (3)	0.7242 (3)	-0.20075 (15)	0.0850 (12)
H11A	0.0422	0.7649	-0.2354	0.127*
H11B	0.0472	0.6592	-0.2022	0.127*
H11C	0.1436	0.7211	-0.2115	0.127*
C12	-0.0502 (2)	0.7571 (3)	-0.10853 (18)	0.0746 (10)
H12A	-0.0662	0.7956	-0.0672	0.112*
H12B	-0.0647	0.6892	-0.0993	0.112*
H12C	-0.0884	0.7795	-0.1485	0.112*
C13	0.0492 (2)	0.7539 (2)	0.04922 (13)	0.0462 (6)
H13A	0.0646	0.7722	0.0975	0.069*
H13B	0.0257	0.6873	0.0483	0.069*
H13C	-0.0006	0.7969	0.0308	0.069*
C14	0.24566 (18)	0.74743 (19)	0.11748 (12)	0.0365 (5)
H14	0.2065	0.8074	0.1231	0.044*
C15	0.3325 (2)	0.5555 (2)	0.06039 (15)	0.0539 (7)
H15A	0.3455	0.5721	0.1093	0.081*
H15B	0.3829	0.5829	0.0305	0.081*
H15C	0.3319	0.4852	0.0551	0.081*
C16	0.21009 (17)	0.67425 (18)	0.17229 (12)	0.0355 (6)
C17	0.22961 (17)	0.69613 (18)	0.24324 (13)	0.0351 (5)
C18	0.20089 (17)	0.63566 (18)	0.29797 (12)	0.0359 (5)
C19	0.15135 (18)	0.54863 (18)	0.28072 (13)	0.0384 (6)
C20	0.13528 (19)	0.52376 (18)	0.21062 (13)	0.0401 (6)
H20	0.1029	0.4655	0.1997	0.048*
C21	0.16728 (18)	0.58544 (18)	0.15546 (13)	0.0367 (6)
H2	0.149 (3)	0.513 (3)	0.3750 (19)	0.086 (11)*

Atomic displacement parameters $(Å^2)$

	1711	1/22	<i>L</i> /33	1/12	<i>L</i> ^{/13}	1/23
01	0.0538 (11)	0.0380 (9)	0.0370 (9)	-0.0081 (8)	0.0003 (8)	-0.0055 (8)
02	0.0695 (13)	0.0420 (10)	0.0474 (11)	-0.0153 (10)	0.0097 (10)	0.0052 (9)
O3	0.0395 (9)	0.0490 (10)	0.0360 (9)	-0.0103 (8)	0.0026 (8)	-0.0008 (8)
C1	0.0642 (18)	0.0418 (14)	0.0436 (14)	-0.0107 (13)	-0.0004 (14)	0.0011 (13)
C2	0.087 (2)	0.0442 (16)	0.0597 (19)	-0.0007 (17)	-0.0084 (18)	0.0115 (14)
C3	0.092 (3)	0.0619 (19)	0.0507 (18)	-0.0038 (18)	-0.0139 (18)	0.0132 (16)
C4	0.072 (2)	0.0574 (18)	0.0421 (15)	-0.0089 (15)	-0.0117 (15)	0.0084 (15)
C5	0.0527 (15)	0.0435 (14)	0.0333 (13)	-0.0078 (13)	0.0020 (12)	-0.0012 (11)
C6	0.0624 (18)	0.0469 (15)	0.0329 (13)	-0.0116 (14)	-0.0030 (13)	-0.0100 (12)
C7	0.0604 (18)	0.0436 (15)	0.0412 (14)	0.0014 (13)	0.0053 (14)	-0.0076 (12)
C8	0.0461 (15)	0.0397 (13)	0.0373 (13)	0.0023 (12)	0.0052 (12)	-0.0056 (12)
C9	0.0410 (13)	0.0376 (12)	0.0328 (13)	-0.0041 (11)	0.0052 (11)	-0.0029 (11)
C10	0.0441 (14)	0.0387 (13)	0.0339 (12)	-0.0051 (11)	0.0019 (11)	0.0006 (11)
C11	0.134 (4)	0.081 (2)	0.0400 (18)	-0.012 (3)	-0.016 (2)	0.0019 (17)
C12	0.071 (2)	0.080 (2)	0.073 (2)	-0.0043 (19)	-0.0276 (18)	0.006 (2)
C13	0.0454 (15)	0.0527 (16)	0.0405 (14)	0.0016 (14)	0.0047 (12)	-0.0006 (13)
C14	0.0366 (12)	0.0396 (13)	0.0332 (13)	-0.0056 (11)	-0.0004 (10)	0.0001 (11)

supporting information

C15	0.0551 (18)	0.0540 (17)	0.0526 (16)	0.0122 (14)	0.0044 (14)	-0.0041 (14)
C16	0.0325 (12)	0.0365 (13)	0.0375 (13)	-0.0026 (10)	0.0022 (11)	-0.0009 (11)
C17	0.0318 (12)	0.0374 (12)	0.0360 (13)	-0.0021 (10)	0.0019 (11)	-0.0025 (11)
C18	0.0353 (12)	0.0404 (13)	0.0321 (13)	-0.0011 (11)	0.0022 (10)	-0.0017 (11)
C19	0.0402 (14)	0.0343 (13)	0.0407 (13)	-0.0035 (11)	0.0071 (11)	0.0036 (11)
C20	0.0432 (14)	0.0341 (12)	0.0430 (14)	-0.0062 (11)	0.0003 (12)	-0.0051 (11)
C21	0.0380 (13)	0.0375 (13)	0.0345 (13)	-0.0014 (11)	0.0002 (11)	-0.0047 (11)

Geometric parameters (Å, °)

1.362 (3)	C8—C9	1.550 (3)
1.465 (3)	C9—C14	1.532 (3)
1.369 (3)	C9—C10	1.573 (3)
0.95 (4)	С9—Н9	0.9800
1.380 (3)	C10—C13	1.537 (3)
1.469 (3)	C11—H11A	0.9600
1.524 (4)	C11—H11B	0.9600
1.538 (3)	C11—H11C	0.9600
0.9700	C12—H12A	0.9600
0.9700	C12—H12B	0.9600
1.515 (4)	C12—H12C	0.9600
0.9700	C13—H13A	0.9600
0.9700	C13—H13B	0.9600
1.536 (5)	С13—Н13С	0.9600
0.9700	C14—C16	1.509 (3)
0.9700	C14—H14	0.9800
1.541 (5)	C15—H15A	0.9600
1.543 (4)	C15—H15B	0.9600
1.553 (4)	C15—H15C	0.9600
1.530 (4)	C16—C21	1.377 (3)
1.558 (3)	C16—C17	1.387 (3)
0.9800	C17—C18	1.371 (3)
1.520 (4)	C17—C17 ⁱ	1.450 (5)
0.9700	C18—O3 ⁱ	1.380 (3)
0.9700	C18—C19	1.399 (4)
1.506 (3)	C19—C20	1.373 (3)
0.9700	C20—C21	1.400 (3)
0.9700	C20—H20	0.9300
1.530 (4)		
113.87 (18)	С10—С9—Н9	106.0
103 (2)	C13-C10-C1	109.5 (2)
112.36 (18)	C13-C10-C5	113.4 (2)
113.2 (2)	C1—C10—C5	107.5 (2)
108.9	C13—C10—C9	110.58 (19)
108.9	C1—C10—C9	107.6 (2)
108.9	C5—C10—C9	108.0 (2)
108.9	C4—C11—H11A	109.5
	$\begin{array}{c} 1.362 (3) \\ 1.465 (3) \\ 1.369 (3) \\ 0.95 (4) \\ 1.380 (3) \\ 1.469 (3) \\ 1.524 (4) \\ 1.538 (3) \\ 0.9700 \\ 0.9700 \\ 1.515 (4) \\ 0.9700 \\ 0.9700 \\ 1.515 (4) \\ 0.9700 \\ 0.9700 \\ 1.536 (5) \\ 0.9700 \\ 1.541 (5) \\ 1.543 (4) \\ 1.553 (4) \\ 1.553 (4) \\ 1.558 (3) \\ 0.9800 \\ 1.520 (4) \\ 0.9700 \\ 0.9700 \\ 1.506 (3) \\ 0.9700 \\ 1.530 (4) \\ 113.87 (18) \\ 103 (2) \\ 113.87 (18) \\ 103 (2) \\ 113.2 (2) \\ 108.9$	1.362 (3) $C8-C9$ 1.465 (3) $C9-C14$ 1.369 (3) $C9-C10$ $0.95 (4)$ $C9-H9$ 1.380 (3) $C10-C13$ 1.469 (3) $C11-H11A$ 1.524 (4) $C11-H11B$ 1.538 (3) $C11-H11C$ 0.9700 $C12-H12A$ 0.9700 $C12-H12C$ 0.9700 $C13-H13A$ 0.9700 $C13-H13B$ $1.536 (5)$ $C13-H13C$ 0.9700 $C14-C16$ 0.9700 $C14-H14$ $1.543 (4)$ $C15-H15A$ $1.543 (4)$ $C15-H15B$ $1.553 (4)$ $C16-C21$ $1.530 (4)$ $C16-C17$ 0.9700 $C18-O3^i$ 0.9700 $C18-O3^i$ 0.9700 $C18-C19$ $1.520 (4)$ $C17-C18$ $1.520 (4)$ $C19-C20$ 0.9700 $C20-C21$ 0.9700 $C20-C21$ 0.9700 $C20-H20$ $1.530 (4)$ $C13-C10-C5$ $113.87 (18)$ $C10-C9-H9$

H1A—C1—H1B	107.7	C4—C11—H11B	109.5
C3—C2—C1	111.4 (3)	H11A—C11—H11B	109.5
C3—C2—H2A	109.3	C4—C11—H11C	109.5
C1—C2—H2A	109.3	H11A—C11—H11C	109.5
C3—C2—H2B	109.3	H11B—C11—H11C	109.5
C1—C2—H2B	109.3	C4—C12—H12A	109.5
H2A—C2—H2B	108.0	C4—C12—H12B	109.5
C2—C3—C4	113.2 (3)	H12A—C12—H12B	109.5
С2—С3—НЗА	108.9	C4—C12—H12C	109.5
C4—C3—H3A	108.9	H12A - C12 - H12C	109.5
C2—C3—H3B	108.9	H12B-C12-H12C	109.5
C4—C3—H3B	108.9	C10—C13—H13A	109.5
H_{3A} C_{3} H_{3B}	107.7	C10-C13-H13B	109.5
C_{3} C_{4} C_{12}	111 4 (3)	H_{13A} $-C_{13}$ $-H_{13B}$	109.5
C_{3} C_{4} C_{11}	107.5(3)	C10-C13-H13C	109.5
C_{12} C_{4} C_{11}	107.5(3) 106.0(3)	$H_{13} - C_{13} - H_{13} C$	109.5
$C_1^3 = C_4 = C_5^3$	100.0(3) 108.0(2)	H13B C13 H13C	109.5
$C_3 - C_4 - C_5$	100.0(2) 114.8(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5 100.82(18)
$C_{12} - C_{4} - C_{5}$	114.0(2) 108.0(2)	O_{3}^{-} C_{14}^{-} C_{10}^{0}	109.82(18) 111.31(10)
$C_{11} - C_{4} - C_{5}$	106.9(3) 114.0(2)	$C_{14} = C_{9}$	111.31(19) 112.7(2)
C6 - C5 - C10	114.9(2)	C10-C14-C9	112.7(2)
$C_{0} = C_{10}$	110.1(2)	$C_1 = C_1 = H_1 + H_1$	107.0
C4 - C5 - C10	117.1(2)	C16 - C14 - H14	107.6
C6C5H5	104.4	C9 - C14 - H14	107.6
C4—C5—H5	104.4	C8—C15—H15A	109.5
C10—C5—H5	104.4	C8—C15—H15B	109.5
C/C6C5	109.2 (2)	H15A—C15—H15B	109.5
С7—С6—Н6А	109.8	C8—C15—H15C	109.5
С5—С6—Н6А	109.8	H15A—C15—H15C	109.5
С7—С6—Н6В	109.8	H15B—C15—H15C	109.5
С5—С6—Н6В	109.8	C21—C16—C17	119.2 (2)
H6A—C6—H6B	108.3	C21—C16—C14	123.9 (2)
C8—C7—C6	113.7 (2)	C17—C16—C14	116.7 (2)
С8—С7—Н7А	108.8	C18—C17—C16	122.2 (2)
С6—С7—Н7А	108.8	C18—C17—C17 ⁱ	119.0 (3)
С8—С7—Н7В	108.8	C16—C17—C17 ⁱ	116.7 (3)
С6—С7—Н7В	108.8	C17—C18—O3 ⁱ	123.3 (2)
H7A—C7—H7B	107.7	C17—C18—C19	118.1 (2)
O1—C8—C7	104.3 (2)	O3 ⁱ —C18—C19	118.3 (2)
O1—C8—C15	108.4 (2)	O2—C19—C20	118.9 (2)
C7—C8—C15	109.0 (2)	O2—C19—C18	120.6 (2)
O1—C8—C9	110.86 (19)	C20-C19-C18	120.4 (2)
C7—C8—C9	112.5 (2)	C19—C20—C21	120.6 (2)
C15—C8—C9	111.6 (2)	С19—С20—Н20	119.7
C14—C9—C8	110.36 (19)	C21—C20—H20	119.7
C14—C9—C10	112.0 (2)	O1—C21—C16	120.8 (2)
C8—C9—C10	115.6 (2)	O1—C21—C20	120.0 (2)
С14—С9—Н9	106.0	C16—C21—C20	119.2 (2)
С8—С9—Н9	106.0		~ /

C10-C1-C2-C3	-57.4 (3)	C14—C9—C10—C1	67.9 (2)
C1—C2—C3—C4	57.2 (4)	C8—C9—C10—C1	-164.5 (2)
C2—C3—C4—C12	74.3 (3)	C14—C9—C10—C5	-176.30 (19)
C2—C3—C4—C11	-169.9 (3)	C8—C9—C10—C5	-48.7 (3)
C2—C3—C4—C5	-52.6 (4)	C18 ⁱ —O3—C14—C16	-50.0 (2)
C3—C4—C5—C6	-176.6 (3)	C18 ⁱ —O3—C14—C9	-175.53 (19)
C12—C4—C5—C6	58.5 (4)	C8—C9—C14—O3	97.3 (2)
C11—C4—C5—C6	-60.1 (3)	C10-C9-C14-O3	-132.3 (2)
C3—C4—C5—C10	52.0 (3)	C8—C9—C14—C16	-26.6 (3)
C12—C4—C5—C10	-73.0 (3)	C10-C9-C14-C16	103.8 (2)
C11—C4—C5—C10	168.4 (2)	O3-C14-C16-C21	-126.5 (2)
C4—C5—C6—C7	160.9 (2)	C9-C14-C16-C21	-1.7 (3)
C10—C5—C6—C7	-64.4 (3)	O3—C14—C16—C17	48.3 (3)
C5—C6—C7—C8	58.8 (3)	C9-C14-C16-C17	173.0 (2)
C21—O1—C8—C7	-178.8 (2)	C21—C16—C17—C18	-5.2 (4)
C21—O1—C8—C15	65.2 (3)	C14—C16—C17—C18	179.8 (2)
C21—O1—C8—C9	-57.6 (3)	C21-C16-C17-C17 ⁱ	158.50 (17)
C6—C7—C8—O1	72.2 (3)	C14—C16—C17—C17 ⁱ	-16.5 (2)
C6—C7—C8—C15	-172.2 (2)	C16—C17—C18—O3 ⁱ	174.0 (2)
C6—C7—C8—C9	-47.9 (3)	$C17^{i}$ — $C17$ — $C18$ — $O3^{i}$	10.7 (3)
O1—C8—C9—C14	55.9 (3)	C16—C17—C18—C19	0.8 (4)
C7—C8—C9—C14	172.2 (2)	C17 ⁱ —C17—C18—C19	-162.49 (17)
C15—C8—C9—C14	-64.9 (3)	C17—C18—C19—O2	178.8 (2)
O1—C8—C9—C10	-72.5 (3)	O3 ⁱ —C18—C19—O2	5.2 (3)
C7—C8—C9—C10	43.8 (3)	C17—C18—C19—C20	2.1 (4)
C15—C8—C9—C10	166.6 (2)	O3 ⁱ —C18—C19—C20	-171.5 (2)
C2-C1-C10-C13	-70.9 (3)	O2-C19-C20-C21	-177.3 (2)
C2-C1-C10-C5	52.7 (3)	C18—C19—C20—C21	-0.6 (4)
C2-C1-C10-C9	168.9 (2)	C8—O1—C21—C16	28.2 (3)
C6-C5-C10-C13	-64.4 (3)	C8—O1—C21—C20	-150.7 (2)
C4—C5—C10—C13	69.2 (3)	C17—C16—C21—O1	-172.3 (2)
C6-C5-C10-C1	174.4 (2)	C14—C16—C21—O1	2.3 (4)
C4—C5—C10—C1	-52.0 (3)	C17—C16—C21—C20	6.5 (4)
C6-C5-C10-C9	58.5 (3)	C14—C16—C21—C20	-178.9 (2)
C4—C5—C10—C9	-167.9 (2)	C19—C20—C21—O1	175.1 (2)
C14—C9—C10—C13	-51.7 (3)	C19—C20—C21—C16	-3.7 (4)
C8—C9—C10—C13	75.9 (3)		

Symmetry code: (i) -y+1, -x+1, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
<u>O2—H2···O3ⁱ</u>	0.95 (4)	2.16 (4)	2.753 (3)	120 (3)

Symmetry code: (i) -y+1, -x+1, -z+1/2.