

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4-Bis(4-chlorobenzoyl)-1-(4-chlorophenyl)-3,5-di-2-thienylcyclohexanol methanol hemisolvate

Xiao-Fang Wang^a and Xian-Qiang Huang^{b*}

^aCollege of Life Sciences and Chemistry, Tianshui Normal University, Tianshui 741000, People's Republic of China, and ^bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: hxqqxh2008@163.com

Received 1 February 2008; accepted 28 March 2008

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.012 Å; disorder in solvent or counterion; R factor = 0.081; wR factor = 0.290; data-to-parameter ratio = 10.8.

The title compound, $C_{34}H_{25}Cl_3O_3S_2\cdot0.5CH_3OH$, was synthesized by the reaction of thiophene-2-carbaldehyde with acetophenone and NaOH under solvent-free conditions, using tetrabutylammonium bromide as a phase-transfer catalyst. The central six-membered ring adopts a chair conformation with the bulky thiophene, 4-chlorophenyl and 4-chlorobenzoyl substituents in equatorial positions. The hydroxyl group is in an axial position and forms an intramolecular $O-H\cdots O$ hydrogen bond to the carbonyl group of an adjacent 4chlorobenzoyl substituent. The methanol solvent molecules are disordered equally over two positions within onedimensional channels, with site occupancy factors of 0.25.

Related literature

For related structures, see: Luo & Shan (2006); Huang & Wang (2007).

Experimental

Crystal data

C34H25Cl3O3S2.0.5CH4O	$V = 7128.4 (11) \text{ Å}^3$
$M_r = 668.03$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 22.5660 (16) Å	$\mu = 0.41 \text{ mm}^{-1}$
b = 12.1356 (12) Å	T = 298 (2) K
c = 26.030 (2) Å	$0.67 \times 0.16 \times 0.13 \text{ mm}$

Data collection

Bruker SMART CCD	27584 measured reflections
diffractometer	4502 independent reflections
Absorption correction: multi-scan	2357 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 2003)	$R_{\rm int} = 0.096$
$T_{\rm min} = 0.772, \ T_{\rm max} = 0.949$	$\theta_{\rm max} = 22.5^{\circ}$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.080$	50 restraints
$vR(F^2) = 0.290$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$
4502 reflections	$\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$
15 parameters	

Table 1 Hydroge

ydro	gen-b	ond g	eome	try ((A, °).	
			-				-

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1−H1…O2	0.82	2.19	2.772 (7)	128

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008)); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge support from the National Natural Science Foundation of Liaocheng University (No. X051040).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2281).

References

Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Huang, X.-Q. & Wang, J.-X. (2007). Acta Cryst. E63, 04168.

Luo, X. & Shan, Z. (2006). Acta Cryst. E62, o1631-o1632.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2008). E64, o777 [doi:10.1107/S1600536808008428]

2,4-Bis(4-chlorobenzoyl)-1-(4-chlorophenyl)-3,5-di-2-thienylcyclohexanol methanol hemisolvate

Xiao-Fang Wang and Xian-Qiang Huang

S1. Comment

The title compound (Fig. 1) was synthesized by condensation and Michael addition of thiophene-2-carbaldehyde with 4chloroacetophenone under solvent-free conditions, using tetrabutyl ammonium bromide as a phase-transfer catalyst. The bond lengths and angles are comparable to those observed in the related compounds 2,4-dibenzoyl-3,5-bis(4-methoxylphenyl)-1-phenylcyclohexanol (Luo & Shan, 2006) and 2,4-dibenzoyl-3,5-bis(2-thienyl)-1-phenylcyclohexanol (Huang & Wang, 2007). The hydroxyl group in the axial position forms an intramolecular O—H···O hydrogen bond to the carbonyl group of an adjacent *para*-chlorobenzoyl substituent (Table 1). The methanol solvent molecules lie within channels running along the crystallogaphic *b* axis, and are modelled as disordered along those channels.

S2. Experimental

4-Chloroacetophenone (6.25 mmol), freshly distilled thiophene-2-carbaldehyde (3.125 mmol), NaOH (6.25 mmol) and tetrabutyl ammonium bromide (1 mmol) were mixed with a glass paddle in an open flask. The resulting mixture was washed several times with water to remove NaOH and recrystallized from methanol to give the title compound as a crystalline solid. Elemental analysis calculated: C 62.03, H 4.07%; found: C 62.08, H 4.02%.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. The H atoms of hydroxyl groups were placed in idealized positions with O—H = 0.82 Å and refined as riding with $U_{iso}(H) = 1.5U_{eq}(O)$. The crystal diffracted relatively weakly and the data are therefore limited to $\theta_{max} = 22.5^{\circ}$, with *ca* 50% data observed at the $2\sigma(I)$ level. The resulting structure is therefore of relatively low precision. The methanol solvent molecule was refined as disordered over two orientations, each with 25% site occupancy to give reasonable displacement parameters. The C—O bonds were restrained to 1.45 (2) Å and the anisotropic displacement parameters of all atoms were restrained to have approximately equal components.

Figure 1

Molecular stucture showing displacement ellipsoids at 20% probability. H atoms and the disordered methanol molecule is omitted.

2,4-Bis(4-chlorobenzoyl)-1-(4-chlorophenyl)-3,5-di-2-thienylcyclohexanol methanol hemisolvate

Crystal data	
C ₃₄ H ₂₅ Cl ₃ O ₃ S ₂ ·0.5CH ₄ O	F(000) = 2760
$M_r = 668.03$	$D_{\rm x} = 1.245 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, Pbca	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 3877 reflections
a = 22.5660 (16) Å	$\theta = 2.4 - 19.6^{\circ}$
b = 12.1356 (12) Å	$\mu = 0.41 \text{ mm}^{-1}$
c = 26.030 (2) Å	T = 298 K
$V = 7128.4 (11) \text{ Å}^3$	Block, colourless
Z = 8	$0.67 \times 0.16 \times 0.13 \text{ mm}$

Data collection

Bruker SMART CCD	27584 measured reflections
diffractometer	4502 independent reflections
Radiation source: fine-focus sealed tube	2357 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.096$
φ and ω scans	$\theta_{\rm max} = 22.5^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -24 \rightarrow 21$
(SADABS; Sheldrick, 2003)	$k = -13 \rightarrow 12$
$T_{\min} = 0.772, \ T_{\max} = 0.949$	$l = -28 \rightarrow 27$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.080$	Hydrogen site location: inferred from
$wR(F^2) = 0.290$	neighbouring sites
S = 1.09	H-atom parameters constrained
4502 reflections	$w = 1/[\sigma^2(F_0^2) + (0.1474P)^2 + 3.8778P]$
415 parameters	where $P = (F_0^2 + 2F_c^2)/3$
50 restraints	$(\Delta/\sigma)_{\rm max} = 0.004$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.64 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$
	,

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Cl1	0.95396 (12)	0.3492 (3)	-0.16180 (9)	0.1142 (10)	
C12	1.09441 (11)	0.3656 (2)	0.12369 (13)	0.1225 (11)	
C13	0.53719 (14)	0.0925 (3)	0.28831 (11)	0.1374 (13)	
O1	0.8096 (2)	-0.0250 (4)	-0.02208 (17)	0.0638 (13)	
H1	0.8436	-0.0488	-0.0231	0.096*	
O2	0.9156 (2)	-0.0200 (4)	0.0317 (2)	0.0713 (14)	
O3	0.7060 (2)	-0.1231 (5)	0.1052 (2)	0.0798 (16)	
O4	0.769 (2)	0.641 (7)	0.351 (3)	0.26 (2)	0.25
H4	0.7863	0.6794	0.3305	0.395*	0.25
O5	0.747 (2)	0.302 (6)	0.304 (3)	0.27 (2)	0.25
Н5	0.7735	0.2800	0.2856	0.401*	0.25
S1	0.86979 (15)	-0.0641 (3)	0.16254 (12)	0.1253 (11)	
S2	0.62891 (9)	0.23441 (18)	0.03888 (10)	0.0801 (7)	
C1	0.8106 (3)	0.0886 (5)	-0.0078 (2)	0.0512 (17)	
C2	0.8364 (3)	0.1015 (5)	0.0474 (2)	0.0486 (16)	
H2	0.8321	0.1784	0.0583	0.058*	

C3	0.8012 (3)	0.0259 (6)	0.0853 (3)	0.0547 (18)
Н3	0.8045	-0.0502	0.0731	0.066*
C4	0.7355 (3)	0.0580(6)	0.0849 (2)	0.0506 (17)
H4A	0.7308	0.1311	0.1004	0.061*
C5	0.7092 (3)	0.0585 (6)	0.0302 (3)	0.0531 (17)
H5A	0.7086	-0.0177	0.0177	0.064*
C6	0.7465 (3)	0.1268 (6)	-0.0074 (3)	0.0565 (18)
H6A	0.7301	0.1202	-0.0417	0.068*
H6B	0.7449	0.2039	0.0024	0.068*
C7	0.8479 (3)	0.1562 (6)	-0.0462 (2)	0.0551 (18)
C8	0.8786 (3)	0.1061 (7)	-0.0853 (3)	0.073 (2)
H8	0.8770	0.0298	-0.0884	0.088*
C9	0.9118 (4)	0.1661 (9)	-0.1201(3)	0.084(3)
Н9	0.9327	0.1301	-0.1459	0.101*
C10	0.9137 (3)	0.2763 (8)	-0.1166(3)	0.071(2)
C11	0.8847 (4)	0.3293 (8)	-0.0774(3)	0.080(2)
H11	0.8871	0.4055	-0.0742	0.096*
C12	0.8519 (4)	0.2680 (7)	-0.0428(3)	0.069 (2)
H12	0.8321	0.3041	-0.0164	0.083*
C13	0.9012 (3)	0.0708 (6)	0.0487 (3)	0.0547 (18)
C14	0.9471 (3)	0.1467 (6)	0.0680 (3)	0.0529 (17)
C15	0.9353 (3)	0.2480 (6)	0.0891 (3)	0.078 (2)
H15	0.8962	0.2710	0.0924	0.093*
C16	0.9803 (4)	0.3164 (7)	0.1056 (4)	0.090 (3)
H16	0.9717	0.3859	0.1187	0.108*
C17	1.0372 (3)	0.2813 (8)	0.1023 (3)	0.072 (2)
C18	1.0507 (4)	0.1813 (8)	0.0824 (3)	0.079 (2)
H18	1.0900	0.1588	0.0802	0.095*
C19	1.0067 (3)	0.1142 (7)	0.0655 (3)	0.070(2)
H19	1.0162	0.0454	0.0520	0.084*
C20	0.8272 (3)	0.0314 (6)	0.1381 (3)	0.0601 (19)
C21	0.8207 (3)	0.1219 (6)	0.1774 (2)	0.0587 (18)
H21	0.7972	0.1844	0.1740	0.070*
C22	0.8565 (5)	0.0956 (10)	0.2202 (4)	0.112 (3)
H22	0.8614	0.1430	0.2479	0.135*
C23	0.8815 (5)	0.0013 (12)	0.2177 (4)	0.120 (4)
H23	0.9041	-0.0280	0.2442	0.144*
C24	0.7011 (3)	-0.0268 (7)	0.1167 (3)	0.0565 (18)
C25	0.6618 (3)	0.0078 (7)	0.1602 (3)	0.0610 (19)
C26	0.6492 (4)	0.1131 (8)	0.1721 (3)	0.083 (2)
H26	0.6673	0.1691	0.1534	0.100*
C27	0.6109 (4)	0.1411 (9)	0.2108 (4)	0.096 (3)
H27	0.6027	0.2146	0.2180	0.115*
C28	0.5848 (4)	0.0586 (10)	0.2387 (3)	0.085 (3)
C29	0.5948 (5)	-0.0444 (10)	0.2273 (4)	0.109 (3)
H29	0.5755	-0.0999	0.2454	0.131*
C30	0.6346 (4)	-0.0719 (8)	0.1880 (3)	0.090 (3)
H30	0.6424	-0.1456	0.1809	0.108*

C31	0.6455 (3)	0.0992 (6)	0.0322 (3)	0.0537 (17)		
C32	0.5939 (3)	0.0334 (6)	0.0320 (3)	0.0607 (19)		
H32	0.5929	-0.0427	0.0280	0.073*		
C33	0.5433 (3)	0.1036 (8)	0.0389 (3)	0.080(2)		
H33	0.5048	0.0766	0.0402	0.095*		
C34	0.5559 (3)	0.2092 (8)	0.0432 (3)	0.078 (2)		
H34	0.5274	0.2637	0.0481	0.094*		
C35	0.756 (4)	0.534 (7)	0.328 (4)	0.26 (2)	0.25	
H35A	0.7855	0.5181	0.3027	0.394*	0.25	
H35B	0.7177	0.5359	0.3126	0.394*	0.25	
H35C	0.7570	0.4783	0.3544	0.394*	0.25	
C36	0.752 (3)	0.420 (7)	0.311 (4)	0.26 (2)	0.25	
H36A	0.7377	0.4577	0.2814	0.394*	0.25	
H36B	0.7931	0.4391	0.3168	0.394*	0.25	
H36C	0.7294	0.4426	0.3408	0.394*	0.25	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Cl1	0.1111 (19)	0.148 (3)	0.0834 (16)	-0.0190 (16)	0.0260 (13)	0.0327 (16)
C12	0.0846 (17)	0.096 (2)	0.186 (3)	-0.0247 (14)	-0.0361 (17)	-0.0093 (18)
C13	0.131 (2)	0.192 (3)	0.0885 (19)	0.017 (2)	0.0507 (16)	0.0001 (19)
01	0.074 (3)	0.047 (3)	0.071 (3)	0.001 (2)	0.006 (2)	-0.013 (2)
O2	0.064 (3)	0.053 (3)	0.097 (4)	0.008 (3)	0.006 (3)	-0.017 (3)
O3	0.085 (4)	0.056 (4)	0.099 (4)	-0.012 (3)	0.028 (3)	-0.003 (3)
O4	0.14 (3)	0.34 (7)	0.31 (5)	0.05 (4)	-0.03 (2)	0.05 (5)
O5	0.15 (2)	0.34 (7)	0.31 (5)	0.05 (4)	-0.02(2)	0.04 (5)
S 1	0.145 (3)	0.110 (2)	0.121 (2)	0.0275 (19)	-0.0365 (18)	0.0112 (18)
S2	0.0612 (12)	0.0590 (14)	0.1201 (18)	0.0011 (10)	-0.0021 (11)	-0.0019 (12)
C1	0.055 (4)	0.043 (4)	0.056 (4)	0.003 (3)	0.007 (3)	-0.003 (3)
C2	0.048 (4)	0.044 (4)	0.055 (4)	-0.001 (3)	0.010 (3)	0.000 (3)
C3	0.054 (4)	0.053 (4)	0.057 (4)	0.002 (3)	0.008 (3)	-0.001 (3)
C4	0.045 (4)	0.049 (4)	0.058 (4)	-0.004 (3)	0.003 (3)	0.001 (3)
C5	0.049 (4)	0.044 (4)	0.066 (4)	-0.006 (3)	0.000 (3)	-0.007 (3)
C6	0.049 (4)	0.060 (5)	0.060 (4)	-0.006 (3)	0.004 (3)	0.000 (4)
C7	0.053 (4)	0.065 (5)	0.048 (4)	-0.003 (3)	0.004 (3)	0.002 (4)
C8	0.084 (5)	0.073 (6)	0.062 (5)	0.009 (4)	0.021 (4)	0.002 (4)
C9	0.089 (6)	0.100 (8)	0.063 (5)	0.014 (5)	0.025 (4)	0.002 (5)
C10	0.060 (5)	0.090 (7)	0.061 (5)	-0.002 (5)	0.008 (4)	0.010 (5)
C11	0.084 (5)	0.080 (6)	0.076 (6)	-0.011 (5)	0.013 (5)	0.011 (5)
C12	0.088 (5)	0.055 (5)	0.063 (5)	-0.007 (4)	0.021 (4)	0.001 (4)
C13	0.057 (4)	0.047 (5)	0.060 (4)	0.008 (4)	0.009 (3)	0.001 (4)
C14	0.046 (4)	0.053 (5)	0.059 (4)	-0.002 (3)	0.001 (3)	0.002 (3)
C15	0.052 (4)	0.056 (5)	0.125 (7)	0.006 (4)	-0.010 (4)	-0.018 (5)
C16	0.082 (6)	0.054 (5)	0.136 (8)	0.010 (5)	-0.018 (5)	-0.021 (5)
C17	0.053 (5)	0.084 (7)	0.079 (5)	-0.009 (4)	-0.013 (4)	0.015 (5)
C18	0.057 (5)	0.080 (6)	0.101 (6)	0.005 (5)	0.002 (4)	-0.007 (5)
C19	0.048 (4)	0.078 (6)	0.084 (6)	0.009 (4)	0.006 (4)	-0.017 (4)

C20	0.060 (4)	0.060 (5)	0.060 (4)	-0.006 (4)	-0.002 (3)	0.009 (4)
C21	0.072 (4)	0.051 (4)	0.053 (4)	0.006 (3)	-0.028 (3)	-0.013 (3)
C22	0.128 (6)	0.113 (6)	0.097 (5)	-0.001 (5)	-0.023 (5)	-0.013 (5)
C23	0.118 (8)	0.160 (12)	0.082 (7)	-0.006 (8)	-0.037 (6)	0.036 (7)
C24	0.065 (5)	0.047 (5)	0.057 (4)	-0.009 (4)	0.005 (3)	-0.003 (4)
C25	0.051 (4)	0.073 (6)	0.059 (4)	-0.012 (4)	0.001 (3)	0.006 (4)
C26	0.091 (6)	0.073 (7)	0.085 (6)	0.006 (5)	0.024 (5)	0.008 (5)
C27	0.109 (7)	0.094 (7)	0.085 (6)	0.028 (6)	0.033 (6)	0.005 (6)
C28	0.077 (6)	0.126 (9)	0.052 (5)	0.007 (6)	0.010 (4)	-0.007 (6)
C29	0.156 (10)	0.093 (8)	0.078 (6)	-0.028 (7)	0.036 (7)	0.000 (6)
C30	0.116 (7)	0.071 (6)	0.082 (6)	-0.017 (5)	0.021 (5)	0.005 (5)
C31	0.048 (4)	0.052 (4)	0.061 (4)	-0.002 (3)	0.000 (3)	-0.004 (3)
C32	0.033 (4)	0.059 (5)	0.090 (5)	-0.011 (3)	0.006 (3)	-0.013 (4)
C33	0.041 (4)	0.104 (8)	0.094 (6)	-0.014 (4)	-0.002 (4)	-0.008 (5)
C34	0.060 (5)	0.077 (7)	0.097 (6)	0.002 (4)	-0.002 (4)	0.002 (5)
C35	0.15 (2)	0.34 (7)	0.31 (5)	0.06 (4)	-0.04 (2)	0.05 (5)
C36	0.14 (2)	0.34 (7)	0.31 (5)	0.06 (4)	-0.04 (2)	0.05 (5)

Geometric parameters (Å, °)

Cl1—C10	1.729 (8)	C12—H12	0.930
Cl2—C17	1.739 (8)	C13—C14	1.475 (10)
Cl3—C28	1.730 (9)	C14—C15	1.374 (10)
01—C1	1.428 (7)	C14—C19	1.402 (9)
01—H1	0.820	C15—C16	1.380 (11)
O2—C13	1.230 (8)	C15—H15	0.930
O3—C24	1.211 (8)	C16—C17	1.355 (11)
O4—C35	1.45 (2)	C16—H16	0.930
O4—H4	0.820	C17—C18	1.354 (11)
O5—C36	1.45 (2)	C18—C19	1.358 (11)
O5—H5	0.820	C18—H18	0.930
S1-C20	1.633 (8)	C19—H19	0.930
S1—C23	1.661 (12)	C20—C21	1.508 (10)
S2—C34	1.681 (8)	C21—C22	1.411 (13)
S2—C31	1.692 (7)	C21—H21	0.930
C1—C6	1.519 (9)	C22—C23	1.279 (15)
C1—C7	1.543 (9)	C22—H22	0.930
C1—C2	1.560 (9)	С23—Н23	0.930
C2—C13	1.509 (9)	C24—C25	1.498 (10)
C2—C3	1.564 (9)	C25—C26	1.346 (11)
С2—Н2	0.980	C25—C30	1.355 (11)
C3—C20	1.497 (10)	C26—C27	1.371 (11)
C3—C4	1.533 (9)	C26—H26	0.930
С3—Н3	0.980	C27—C28	1.369 (13)
C4—C24	1.531 (9)	С27—Н27	0.930
C4—C5	1.544 (9)	C28—C29	1.304 (13)
C4—H4A	0.980	C29—C30	1.400 (13)
C5—C31	1.520 (9)	С29—Н29	0.930

C5—C6	1.535 (9)	С30—Н30	0.930
С5—Н5А	0.980	C31—C32	1.411 (9)
С6—Н6А	0.970	C32—C33	1.436 (11)
С6—Н6В	0.970	С32—Н32	0.930
C7-C12	1 363 (10)	C_{33} C_{34}	1.317(11)
C7 C8	1.303(10) 1.372(10)	C22 H23	0.030
$C^{2} = C^{2}$	1.372(10) 1.282(11)	C24 U24	0.930
	1.363 (11)		0.930
C8—H8	0.930	C35—H35A	0.960
C9—C10	1.341 (12)	С35—Н35В	0.960
С9—Н9	0.930	С35—Н35С	0.960
C10—C11	1.372 (11)	С36—Н36А	0.960
C11—C12	1.383 (10)	С36—Н36В	0.960
C11—H11	0.930	С36—Н36С	0.960
C1—O1—H1	109.5	С17—С16—Н16	120.4
С35—О4—Н4	109.5	C15—C16—H16	120.4
C36—O5—H5	109.5	C18—C17—C16	121.3 (7)
$C_{20} = S_{1} = C_{23}$	95 2 (5)	C18 - C17 - C12	118 8 (6)
$C_{20} = S_{1} = C_{20}$	92.7 (4)	$C_{16} - C_{17} - C_{12}$	110.0(0) 119.9(7)
01 C1 C6	106.3(5)	$C_{10} C_{17} C_{18} C_{10}$	119.9(7)
01 - 01 - 07	100.3(5)	C17 - C18 - U18	119.8 (7)
	110.7 (5)		120.1
	111.2 (5)	C19—C18—H18	120.1
01—C1—C2	110.0 (5)	C18—C19—C14	121.2 (8)
C6—C1—C2	108.6 (5)	C18—C19—H19	119.4
C7—C1—C2	109.9 (5)	C14—C19—H19	119.4
C13—C2—C1	110.9 (5)	C3—C20—C21	128.1 (6)
C13—C2—C3	109.5 (5)	C3—C20—S1	123.8 (6)
C1—C2—C3	109.4 (5)	C21—C20—S1	108.1 (5)
С13—С2—Н2	109.0	C22—C21—C20	108.3 (7)
С1—С2—Н2	109.0	C22—C21—H21	125.8
$C_3 = C_2 = H_2$	109.0	C_{20} C_{21} H_{21}	125.8
C_{20} C_{3} C_{4}	111.9 (5)	C_{23} C_{22} C_{21} C_{21}	123.6 114 5 (10)
$C_{20} = C_{3} = C_{4}$	111.9(5)	$C_{23} = C_{22} = C_{21}$	114.5 (10)
$C_{20} = C_{3} = C_{2}$	110.8(5)	$C_{23} = C_{22} = H_{22}$	122.7
C4 - C3 - C2	109.8 (5)	C21—C22—H22	122.7
С20—С3—Н3	108.1	C22—C23—S1	113.7 (8)
С4—С3—Н3	108.1	С22—С23—Н23	123.2
С2—С3—Н3	108.1	S1—C23—H23	123.2
C24—C4—C3	108.4 (6)	O3—C24—C25	120.6 (6)
C24—C4—C5	107.8 (5)	O3—C24—C4	118.0 (6)
C3—C4—C5	112.3 (5)	C25—C24—C4	121.3 (7)
C24—C4—H4A	109.4	C26—C25—C30	117.3 (8)
C3—C4—H4A	109.4	C26—C25—C24	124.5 (7)
C5—C4—H4A	109.4	C30—C25—C24	118.2 (8)
C31—C5—C6	111.5 (6)	C25—C26—C27	122.6 (8)
C31—C5—C4	109 5 (5)	C25—C26—H26	118 7
C6-C5-C4	112 3 (5)	C_{27} C_{26} H_{26}	118 7
C_{31} C_{5} H_{5A}	107.8	$C_{27} = C_{20} = H_{20}$	118.6 (0)
	107.0	$C_{20} = C_{27} = C_{20}$	120.7
UU-UJ-IIJA	10/.0	$U_{20} - U_{2} - \Pi_{2}$	120.7

C4—C5—H5A	107.8	С26—С27—Н27	120.7
C1—C6—C5	111.3 (6)	C29—C28—C27	120.4 (8)
С1—С6—Н6А	109.4	C29—C28—C13	120.4 (9)
С5—С6—Н6А	109.4	C27—C28—C13	119.2 (9)
С1—С6—Н6В	109.4	C28—C29—C30	120.4 (9)
С5—С6—Н6В	109.4	С28—С29—Н29	119.8
H6A—C6—H6B	108.0	С30—С29—Н29	119.8
С12—С7—С8	117.2 (7)	C25—C30—C29	120.7 (9)
C12—C7—C1	121.5 (6)	С25—С30—Н30	119.6
C8—C7—C1	121.3 (7)	С29—С30—Н30	119.6
С7—С8—С9	121.7 (8)	C32—C31—C5	126.6 (6)
С7—С8—Н8	119.2	C32—C31—S2	111.5 (5)
С9—С8—Н8	119.2	C5—C31—S2	121.8 (5)
С10—С9—С8	119.9 (8)	C31—C32—C33	108.7 (7)
С10—С9—Н9	120.0	С31—С32—Н32	125.7
С8—С9—Н9	120.0	С33—С32—Н32	125.7
C9—C10—C11	120.1 (7)	C34—C33—C32	114.7 (7)
C9—C10—Cl1	118.8 (7)	С34—С33—Н33	122.7
C11—C10—Cl1	121.1 (7)	С32—С33—Н33	122.7
C10—C11—C12	119.2 (8)	C33—C34—S2	112.4 (6)
C10—C11—H11	120.4	С33—С34—Н34	123.8
C12—C11—H11	120.4	S2—C34—H34	123.8
C7—C12—C11	121.9 (7)	O4—C35—H35A	109.5
С7—С12—Н12	119.1	O4—C35—H35B	109.5
C11—C12—H12	119.1	H35A—C35—H35B	109.5
O2—C13—C14	119.8 (6)	O4—C35—H35C	109.5
O2—C13—C2	117.9 (6)	Н35А—С35—Н35С	109.5
C14—C13—C2	122.2 (6)	H35B—C35—H35C	109.5
C15—C14—C19	117.2 (7)	O5—C36—H36A	109.5
C15—C14—C13	124.0 (6)	O5—C36—H36B	109.5
C19—C14—C13	118.8 (7)	H36A—C36—H36B	109.5
C14—C15—C16	121.3 (7)	O5—C36—H36C	109.5
C14—C15—H15	119.4	H36A—C36—H36C	109.5
С16—С15—Н15	119.4	H36B—C36—H36C	109.5
C17—C16—C15	119.2 (8)		

Hydrogen-bond geometry (Å, °)								
D—H···A	D—H	H···A	$D^{\dots}A$	<i>D</i> —H <i>···A</i>				
01—H1…O2	0.82	2.19	2.772 (7)	128				