Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Chloroquinuclidinium chloride

Isha Azizul, Arifin Zainudin and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 27 February 2008; accepted 21 April 2008
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.004 \AA$; disorder in main residue; R factor $=0.040 ; w R$ factor $=0.113$; data-to-parameter ratio $=13.0$.

The cation of the title compound, $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{ClN}^{+} \cdot \mathrm{Cl}^{-}$, forms a linear hydrogen bond to the chloride anion. The cation is disordered about a mirror plane.

Related literature

For isomeric 4-chloroquinuclidinium chloride, see: Kurahashi et al. (1980), which also reports the parent quinuclidinium chloride.

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{ClN}^{+} . \mathrm{Cl}^{-}$
$M_{r}=182.10$
Orthorhombic, Pnma
$a=9.379$ (1) A
$b=8.067$ (1) \AA
$c=11.482(2) \AA$
$V=868.7(2) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.68 \mathrm{~mm}^{-1}$
$T=100$ (2) K
$0.15 \times 0.08 \times 0.03 \mathrm{~mm}$

Data collection

Bruker SMART APEX diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.872, T_{\text {max }}=1.000$ (expected range $=0.855-0.980)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.113$
$S=1.02$
1068 reflections
82 parameters
58 restraints

5307 measured reflections 1068 independent reflections 856 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.047$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$	$0.88(1)$	$2.13(1)$	$3.008(3)$	$175(4)$

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XSEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

We thank the University of Malaya for the purchase of the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2068).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Kurahashi, M., Engel, P. \& Nowacki, W. (1980). Z. Kristallogr. 152, 147-156.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2008). publCIF. In preparation.

supporting information

Acta Cryst. (2008). E64, o911 [doi:10.1107/S1600536808011434]

3-Chloroquinuclidinium chloride

Isha Azizul, Arifin Zainudin and Seik Weng Ng

S1. Comment

4-Chloroquinuclidinium chloride features an $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond between the cation and anion. The $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bonds are somewhat shorter than those in the unsubstituted salt, and this has been attributed to the electron-withdrawing effect of the chlorine substituent (Kurahashi et al., 1980). The present isomeric compound (Scheme I) is expected to show this feature; however, owing to disorder, the effect cannot be unambiguously observed even at low temperature. The cation forms a linear hydrogen bond $[\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl} 3.008(3) \AA]$ to the chloride; the cation is disordered about a mirror plane (Fig. 1).

S2. Experimental

The commercially available compound was a crystalline. A large block was cut into a smaller specimen.

S3. Refinement

The cation is disordered about a mirror plane in the carbon atoms except C 1 atom. The N 1 and C 1 atoms, which lie on this symmetry element, were refined with their normal half occupancies. The other carbon atoms were refined with half occupancies, subject to $\mathrm{N}-\mathrm{C}$ being restrained to $1.49 \pm 0.01 \AA$ and $\mathrm{C}-\mathrm{C}$ to $1.54 \pm 0.01 \AA$. Additionally, the 1,3-related distances were restrained from $2.43 \pm 0.01 \AA$, to $2.47 \pm 0.01 \AA$ as well as $2.52 \pm-0.01 \AA$. The anisotropic temperature factors of the disordered carbon were restrained to be nearly isotropic but the $\mathrm{N}-\mathrm{H}$ distance was restrained to $0.88 \pm 0.01 \AA$.
Carbon-bound H -atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H} 0.99$ to $1.00 \AA$) and were included in the refinement in the riding model approximation, with $U(\mathrm{H})$ set to $1.2 U(\mathrm{C})$. The ammonium H -atom was located in a difference Fourier map, and was refined with an $\mathrm{N}-\mathrm{H}$ distance restraint of $0.88 \pm 0.01 \AA$; its temperature factor was freely refined.

Figure 1

Thermal ellipsoid plot of the two independent molecules of 2-chloroquinuclidinium chloride at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The dashed lines denote the hydrogen bond.

3-Chloroquinuclidinium chloride

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{ClN}^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=182.10$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=9.379$ (1) \AA
$b=8.067$ (1) \AA
$c=11.482(2) \AA$
$V=868.7(2) \AA^{3}$
$Z=4$

Data collection

Bruker SMART APEX
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.872, T_{\text {max }}=1.000$
$F(000)=392$
$D_{\mathrm{x}}=1.408 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 909 reflections
$\theta=3.1-22.9^{\circ}$
$\mu=0.68 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colorless
$0.15 \times 0.08 \times 0.03 \mathrm{~mm}$

5307 measured reflections
1068 independent reflections
856 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-12 \rightarrow 8$
$k=-10 \rightarrow 10$
$l=-14 \rightarrow 13$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.113$
$S=1.02$
1068 reflections
82 parameters
58 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from neighbouring sites
> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0562 P)^{2}+0.8408 P\right]$
> where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
> $(\Delta / \sigma)_{\text {max }}=0.001$
> $\Delta \rho_{\text {max }}=0.31 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\text {min }}=-0.57 \mathrm{e} \AA^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
C11	$0.69230(8)$	0.2500	$0.57828(7)$	$0.0218(2)$	
C12	$0.10483(11)$	0.2500	$0.30411(8)$	$0.0374(3)$	
N1	$0.3718(3)$	0.2500	$0.5682(2)$	$0.0190(6)$	
H1	$0.4648(12)$	0.2500	$0.576(3)$	$0.035(12)^{*}$	
C1	$0.3382(3)$	0.2500	$0.4416(3)$	$0.0331(9)$	
H1A	0.4092	0.1832	0.3983	0.040^{*}	0.50
H1B	0.3397	0.3645	0.4106	0.040^{*}	0.50
C2	$0.1846(4)$	$0.1722(5)$	$0.4282(3)$	$0.0184(9)$	0.50
H2	0.1947	0.0495	0.4194	0.022^{*}	
C3	$0.2957(7)$	$0.3924(13)$	$0.6253(9)$	$0.0204(17)$	0.50
H3A	0.3397	0.4988	0.6019	0.024^{*}	0.50
H3B	0.3013	0.3825	0.7111	0.024^{*}	0.50
C4	$0.1402(5)$	$0.3855(6)$	$0.5851(5)$	$0.0212(11)$	0.50
H4A	0.1248	0.4653	0.5209	0.025^{*}	0.50
H4B	0.0763	0.4159	0.6503	0.025^{*}	0.50
C5	$0.3285(7)$	$0.0917(13)$	$0.6251(10)$	$0.024(2)$	0.50
H5A	0.3698	0.0857	0.7043	0.029^{*}	0.50
H5B	0.3651	-0.0034	0.5795	0.029^{*}	0.50
C6	$0.1650(5)$	$0.0823(7)$	$0.6325(4)$	$0.0244(12)$	0.50
H6A	0.1323	0.1111	0.7120	0.029^{*}	0.50
H6B	0.1316	-0.0310	0.6139	0.029^{*}	0.50
C7	$0.1058(4)$	$0.2079(5)$	$0.5430(4)$	$0.0205(12)$	0.50
H7	0.0007	0.1931	0.5330	0.025^{*}	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0157(4)$	$0.0284(4)$	$0.0212(4)$	0.000	$-0.0006(3)$	0.000
C12	$0.0340(5)$	$0.0546(6)$	$0.0236(5)$	0.000	$-0.0111(4)$	0.000
N1	$0.0145(13)$	$0.0241(13)$	$0.0184(14)$	0.000	$-0.0020(10)$	0.000
C1	$0.0176(17)$	$0.064(3)$	$0.0182(19)$	0.000	$0.0006(13)$	0.000
C2	$0.019(2)$	$0.0171(19)$	$0.019(2)$	$0.0018(17)$	$-0.0032(16)$	$0.0013(17)$
C3	$0.019(3)$	$0.017(3)$	$0.025(3)$	$-0.004(3)$	$0.008(3)$	$0.004(2)$

C4	$0.015(2)$	$0.022(3)$	$0.026(3)$	$0.004(2)$	$-0.004(2)$	$-0.006(2)$
C5	$0.017(3)$	$0.019(3)$	$0.036(4)$	$0.000(3)$	$0.007(3)$	$-0.001(3)$
C6	$0.028(3)$	$0.026(3)$	$0.019(3)$	$-0.003(2)$	$-0.002(2)$	$0.004(2)$
C7	$0.0108(17)$	$0.030(4)$	$0.021(2)$	$-0.0037(16)$	$0.0014(15)$	$-0.0070(18)$

Geometric parameters ($\AA,{ }^{\circ}$)

C12-C2	1.727 (4)	C3-H3B	0.9900
N1-C5	1.491 (7)	C4-C7	1.546 (6)
N1-C1	1.488 (4)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
N1-C3	1.502 (7)	C4-H4B	0.9900
N1-H1	0.88 (1)	C5-C6	1.538 (7)
C1-C2	1.579 (4)	C5-H5A	0.9900
C1-H1A	0.9900	C5-H5B	0.9900
C1-H1B	0.9900	C6-C7	1.546 (5)
C2-C7	1.539 (5)	C6-H6A	0.9900
C2-H2	1.0000	C6-H6B	0.9900
C3-C4	1.531 (7)	C7-H7	1.0000
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9900		
C5-N1-C1	111.7 (5)	C3-C4-C7	109.1 (4)
C5-N1-C3	109.5 (3)	C3-C4-H4A	109.9
C1-N1-C3	109.0 (4)	C7-C4-H4A	109.9
C5-N1-H1	103.1 (13)	C3-C4-H4B	109.9
C1-N1-H1	108 (3)	C7-C4-H4B	109.9
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1$	115.3 (14)	H4A-C4-H4B	108.3
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	106.8 (2)	N1-C5-C6	109.8 (5)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	110.4	N1-C5-H5A	109.7
C2-C1-H1A	110.4	C6-C5-H5A	109.7
N1-C1-H1B	110.4	N1-C5-H5B	109.7
C2-C1-H1B	110.4	C6-C5-H5B	109.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.6	H5A-C5-H5B	108.2
C7-C2-C1	106.3 (3)	C5-C6-C7	106.8 (4)
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{Cl} 2$	115.5 (3)	C5-C6-H6A	110.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 2$	109.4 (2)	C7-C6-H6A	110.4
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{H} 2$	108.5	C5-C6-H6B	110.4
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	108.5	C7-C6-H6B	110.4
$\mathrm{C} 2-\mathrm{C} 2-\mathrm{H} 2$	108.5	H6A-C6-H6B	108.6
N1-C3-C4	107.1 (4)	C2-C7-C4	109.9 (3)
N1-C3-H3A	110.3	C2-C7-C6	106.0 (3)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	110.3	C4-C7-C6	108.9 (3)
N1-C3-H3B	110.3	C2-C7-H7	110.6
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	110.3	C4-C7-H7	110.6
$\mathrm{H} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	108.6	C6-C7-H7	110.6
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	42.7 (4)	N1-C5-C6-C7	18.9 (10)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-78.5 (4)	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 4$	40.7 (4)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$	27.3 (3)	$\mathrm{Cl} 2-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 4$	-80.8 (4)

supporting information

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{Cl} 2$	$152.63(17)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$-73.4(6)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$49.1(8)$
$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$	$21.4(9)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$-71.2(9)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$49.7(7)$

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$-76.9(4)$
$\mathrm{C} 2-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$161.6(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 2$	$-70.0(6)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7-\mathrm{C} 6$	$45.7(6)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$49.6(7)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 4$	$-68.6(7)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl1}$	$0.88(1)$	$2.13(1)$	$3.008(3)$	$175(4)$

