

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(*µ*-disulfur dinitrido)bis[diphenyltin(IV)]

Alasdair P. M. Robertson, Alexandra M. Z. Slawin* and **J. Derek Woollins**

Department of Chemistry, University of St Andrews, St Andrews, KY16 9ST, Scotland Correspondence e-mail: amzs@st-and.ac.uk

Received 1 April 2008; accepted 2 April 2008

Key indicators: single-crystal X-ray study; T = 93 K; mean $\sigma(C-C) = 0.008$ Å; R factor = 0.036; wR factor = 0.100; data-to-parameter ratio = 14.6.

The title compound, $[Sn_2(C_6H_5)_4(N_2S_2)_2]$, exists as a centrosymmetric binuclear dimer with the Sn^{IV} centres in distorted trigonal bipyramidal geometry and a central Sn₂N₂ core.

Related literature

For related literature, see: Aucott et al. (2002, 2003); Bates et al. (1986); Chivers et al. (1986); Jones et al. (1985a,b, 1986, 1987, 1988); Kelly & Woollins (1986); Read et al. (2007); Slawin & Woollins (2006).

Experimental

Crystal data

 $[Sn_2(C_6H_5)_4(N_2S_2)_2]$ $M_r = 730.06$ Triclinic, $P\overline{1}$ a = 8.9235 (6) Å b = 9.2285 (9) Å c = 9.5881 (8) Å $\alpha = 63.809(2)^{\circ}$ $\beta = 67.309 \ (2)^{\circ}$

 $\gamma = 70.471 \ (2)^{\circ}$ V = 640.72 (9) Å³ Z = 1Mo $K\alpha$ radiation $\mu = 2.30 \text{ mm}^{-1}$ T = 93 (2) K

 $0.20 \times 0.03 \times 0.03$ mm

 $R_{\rm int} = 0.046$

4110 measured reflections

2267 independent reflections

2110 reflections with $I > 2\sigma(I)$

Data collection

```
Rigaku Mercury diffractometer
Absorption correction: multi-scan
  (CrystalClear; Rigaku 2004)
  T_{\min} = 0.923, T_{\max} = 0.941
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.035$	155 parameters
$wR(F^2) = 0.099$	H-atom parameters constrained
S = 1.14	$\Delta \rho_{\rm max} = 0.85 \ {\rm e} \ {\rm \AA}^{-3}$
2267 reflections	$\Delta \rho_{\rm min} = -1.19 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Sn1-N1 Sn1-N1 ⁱ	2.137 (4) 2.296 (3)	Sn1-S2	2.5967 (12)
N1-Sn1-N1 ⁱ N1-Sn1-S2 S1-N1-Sn1	72.82 (15) 80.65 (9) 121.6 (2)	Sn1-N1-Sn1 ⁱ N2-S2-Sn1	107.18 (15) 101.63 (14)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: CrystalClear (Rigaku, 2004); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2692).

References

- Aucott, S. M., Bhattacharyya, P., Milton, H. L., Slawin, A. M. Z. & Woollins, J. D. (2003). New J. Chem. 27, 1466-1469.
- Aucott, S. M., Slawin, A. M. Z. & Woollins, J. D. (2002). Can. J. Chem. 80, 1481-1487.
- Bates, P. A., Hursthouse, M. B., Kelly, P. F. & Woollins, J. D. (1986). J. Chem. Soc. Dalton Trans. pp. 2367-2370.
- Chivers, T., Edelmann, F., Behrens, U. & Drews, R. (1986). Inorg. Chim. Acta, 116. 145-151
- Jones, R., Kelly, P. F., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1986). J. Chem. Soc. Chem. Commun. pp. 711-713.
- Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985a). J. Chem. Soc. Chem. Commun. pp. 1325-1326.
- Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1985b). Polyhedron, 4, 1947-1950
- Jones, R., Kelly, P. F., Williams, D. J. & Woollins, J. D. (1988). J. Chem. Soc. Dalton Trans. pp. 803-807.
- Jones, R., Warrens, C. P., Williams, D. J. & Woollins, J. D. (1987). J. Chem. Soc. Dalton Trans. pp. 907-914.
- Kelly, P. F. & Woollins, J. D. (1986). Polyhedron, 5, 607-632.
- Read, B. D., Slawin, A. M. Z. & Woollins, J. D. (2007). Acta Cryst. E63, m751m752
- Rigaku (2004). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Slawin, A. M. Z. & Woollins, J. D. (2006). Acta Cryst. E62, m1658-m1659.

supporting information

Acta Cryst. (2008). E64, m659 [doi:10.1107/S1600536808008957]

Bis(*µ*-disulfur dinitrido)bis[diphenyltin(IV)]

Alasdair P. M. Robertson, Alexandra M. Z. Slawin and J. Derek Woollins

S1. Comment

The disulfurdinitride dianion is unknown in simple salts but can be isolated in metal complexes (Kelly and Woollins 1986, Jones *et al.* 1985*a,b*; Bates *et al.* 1986, Read *et al.* 2007) which may be protonated at the metal coordinated nitrogen (Jones *et al.* 1986, 1988) and we have previously commented on the structural consequences of this protonation (Jones *et al.* 1987). Recently, we developed a new route to disulfurdinitrido complexes from $Bu_2SnS_2N_2$ (Aucott *et al.* 2002) and examined the metallation of the IrS_2N_2 and CoS_2N_2 rings using the AuPR₃ cation as a species which is isolobal with a proton (Aucott *et al.* 2003, Slawin and Woollins 2006).

The structure of the title compound contains tin centres in distorted trigonal bipyramidal geometry and a central Sn_2N_2 ring (Figure 1). The binuclaear dimer is disposed about a centre of symmetry. The central core (excluding the phenyl rings) is planar with a mean deviation of 0.01 Å and a maximum deviation of 0.025 Å for N(1). The geometry is very similar to that of $[n-Bu_2SnS_2N_2]_2$ (Aucott *et al.* 2002). Comparison of the S—N bond lengths with platinum phosphine substituted complexes containing the S_2N_2 group reveals that the S—N bond lengths have a different motif to the PMe₂Ph complex (Jones *et al* 1988) and one of the published PPh₃ complexes (Chivers *et al.* 1986), but are comparable with most others systems containing the disulfurdinitrido anion (Jones *et al.* 1985*a*, Bates *et al.* 1986).

S2. Experimental

Ammonia gas (400 ml) was condensed into a dry-ice/acetone cooled Schlenk flask.[S₄N₃]Cl (18.47 g, 0.019 moles) was then added, forming a dark red solution. After stirring for 30 minutes, Ph₂SnCl₂ (1.68 g, 4.88 mmoles) was added, and the mixture stirred at 195 K for 4 h, before removal of the lower cooling bath, allowing NH₃(*l*) reflux, and eventually evaporation overnight. The solid products were transferred to a Sohxlet apparatus, containing dry, degassed petroleum ether (140 ml) and cycled for 4 h, by which point the extracts appeared almost colourless. The lower flask was then placed under N2(*g*) at 250 K for 12 h, yielding bright yellow-orange crystals of Ph₂SnS₂N₂, collected by filtration under N₂. Yield: 0.092 g, 5.15%. IR Spectrum (KBr Pellet, cm⁻¹): 3063 (*m*), 2963 (*m*), 1428 (*versus*), 1070 (*s*), 1024 (*s*), 899 (*s*), 729 (*s*), 694 (*s*), 636(*s*), 440 (*s*) and 382 (*s*), ¹H NMR: δ H 7.56–7.53 (4*H*, m, Ph) and 7.40–7.37 (6*H*, m, Ph), Mass Spectrum: EI m/z (%): 366.05 (Ph₂SnS₂N₂, 5), 288.99 (PhSnS₂N₂, 2), 257.01 (PhSnSN₂, 2), 197.01 (PhSn, 68), 77.06 (Ph, 25) and 63.96 (S2, 8), Melting Point: 411–13 K.

S3. Refinement

All H atoms were included in calculated positions (C—H distance 0.95Å) and were refined as riding atoms with $U_{iso}(H) = 1.2 U_{eq}$ (parent atom, and aryl H atoms). The highest peak in the difference map is 0.95 Å from atom S(2) and the deepest hole is 0.96 Å from Sn(1)

Figure 1

The structure of title compound with displacement ellipsoids drawn at the 50% probability level. Symmetry operator for generating equivalent atoms: (A) 1-x, 1-y, 1-z.

Bis(µ-disulfur dinitrido)bis[diphenyltin(IV)]

Crystal data	
$[Sn_2(C_6H_5)_4(N_2S_2)_2]$	Z = 1
$M_r = 730.06$	F(000) = 356
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.892 {\rm Mg} {\rm m}^{-3}$
a = 8.9235 (6) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
b = 9.2285 (9) Å	Cell parameters from 2584 reflections
c = 9.5881 (8) Å	$\theta = 2.5 - 28.3^{\circ}$
$\alpha = 63.809 \ (2)^{\circ}$	$\mu = 2.30 \text{ mm}^{-1}$
$\beta = 67.309 (2)^{\circ}$	T = 93 K
$\gamma = 70.471 \ (2)^{\circ}$	Prism, yellow
V = 640.72 (9) Å ³	$0.20 \times 0.03 \times 0.03$ mm
Data collection	
Rigaku Mercury	Absorption correction: multi-scan
diffractometer	(CrystalClear; Rigaku 2004)
Radiation source: rotating anode	$T_{\min} = 0.923, T_{\max} = 0.941$
Confocal monochromator	4110 measured reflections
Detector resolution: 0.83 pixels mm ⁻¹	2267 independent reflections
ω and φ scans	2110 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.046$	$k = -7 \rightarrow 11$
$\theta_{\rm max} = 25.1^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$	$l = -8 \rightarrow 11$
$h = -9 \rightarrow 10$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.036$	Hydrogen site location: inferred from
$wR(F^2) = 0.099$	neighbouring sites
S = 1.14	H-atom parameters constrained
2267 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0548P)^2]$
155 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.85 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -1.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

x	V	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
0.42885 (3)	0.54581 (3)	0.68014 (3)	0.01479 (16)
0.6474 (5)	0.4511 (4)	0.5243 (4)	0.0163 (8)
0.81765 (14)	0.40140 (14)	0.55466 (14)	0.0202 (3)
0.8196 (5)	0.4231 (5)	0.7071 (5)	0.0229 (9)
0.64354 (15)	0.49589 (15)	0.82590 (15)	0.0237 (3)
0.3401 (5)	0.8035 (5)	0.6353 (5)	0.0158 (9)
0.2544 (6)	0.9079 (5)	0.5220 (6)	0.0238 (11)
0.2361	0.8658	0.4569	0.029*
0.1945 (6)	1.0741 (6)	0.5022 (7)	0.0288 (12)
0.1352	1.1441	0.4246	0.035*
0.2214 (6)	1.1370 (6)	0.5952 (7)	0.0274 (12)
0.1820	1.2503	0.5811	0.033*
0.3050 (7)	1.0347 (6)	0.7075 (7)	0.0301 (13)
0.3227	1.0775	0.7725	0.036*
0.3644 (6)	0.8701 (6)	0.7283 (6)	0.0251 (11)
0.4226	0.8013	0.8071	0.030*
0.2886 (6)	0.3648 (5)	0.8626 (6)	0.0176 (10)
0.3637 (6)	0.2265 (6)	0.9698 (6)	0.0234 (11)
0.4760	0.2148	0.9628	0.028*
0.2755 (7)	0.1059 (6)	1.0865 (6)	0.0351 (13)
0.3265	0.0130	1.1612	0.042*
0.1130 (7)	0.1206 (7)	1.0945 (7)	0.0346 (13)
	x $0.42885 (3)$ $0.6474 (5)$ $0.81765 (14)$ $0.8196 (5)$ $0.64354 (15)$ $0.3401 (5)$ $0.2544 (6)$ 0.2361 $0.1945 (6)$ 0.1352 $0.2214 (6)$ $0.3050 (7)$ 0.3227 $0.3644 (6)$ 0.4226 $0.2886 (6)$ $0.3637 (6)$ 0.4760 $0.2755 (7)$ 0.3265 $0.1130 (7)$	xy $0.42885 (3)$ $0.54581 (3)$ $0.6474 (5)$ $0.4511 (4)$ $0.81765 (14)$ $0.40140 (14)$ $0.8196 (5)$ $0.4231 (5)$ $0.64354 (15)$ $0.49589 (15)$ $0.3401 (5)$ $0.8035 (5)$ $0.2544 (6)$ $0.9079 (5)$ 0.2361 0.8658 $0.1945 (6)$ $1.0741 (6)$ 0.1352 1.1441 $0.2214 (6)$ $1.1370 (6)$ $0.3050 (7)$ $1.0347 (6)$ 0.3227 1.0775 $0.3644 (6)$ $0.8701 (6)$ 0.4226 0.8013 $0.2886 (6)$ $0.2265 (6)$ 0.4760 0.2148 $0.2755 (7)$ $0.1059 (6)$ 0.3265 0.0130 $0.1130 (7)$ $0.1206 (7)$	xyz $0.42885(3)$ $0.54581(3)$ $0.68014(3)$ $0.6474(5)$ $0.4511(4)$ $0.5243(4)$ $0.81765(14)$ $0.40140(14)$ $0.55466(14)$ $0.8196(5)$ $0.4231(5)$ $0.7071(5)$ $0.64354(15)$ $0.49589(15)$ $0.82590(15)$ $0.3401(5)$ $0.8035(5)$ $0.6353(5)$ $0.2544(6)$ $0.9079(5)$ $0.5220(6)$ 0.2361 0.8658 0.4569 $0.1945(6)$ $1.0741(6)$ $0.5952(7)$ 0.1352 1.1441 0.4246 $0.2214(6)$ $1.1370(6)$ $0.5952(7)$ 0.1820 1.2503 0.5811 $0.3050(7)$ $1.0347(6)$ $0.7075(7)$ 0.3227 1.0775 0.7725 $0.3644(6)$ $0.8701(6)$ $0.7283(6)$ 0.4226 0.8013 0.8071 $0.2886(6)$ $0.2265(6)$ $0.9698(6)$ 0.4760 0.2148 0.9628 $0.2755(7)$ $0.1059(6)$ $1.0865(6)$ 0.3265 0.0130 1.1612 $0.1130(7)$ $0.1206(7)$ $1.0945(7)$

supporting information

H10A	0.0540	0.0359	1.1725	0.042*
C11	0.0361 (7)	0.2576 (7)	0.9900 (7)	0.0360 (14)
H11A	-0.0765	0.2697	0.9976	0.043*
C12	0.1259 (6)	0.3773 (6)	0.8739 (6)	0.0241 (11)
H12A	0.0742	0.4705	0.8000	0.029*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Sn1	0.0162 (2)	0.0132 (2)	0.0155 (2)	-0.00201 (15)	-0.00536 (16)	-0.00553 (16)
N1	0.0150 (19)	0.0190 (19)	0.018 (2)	-0.0018 (15)	-0.0066 (16)	-0.0089 (16)
S1	0.0152 (6)	0.0246 (6)	0.0244 (7)	-0.0011 (5)	-0.0084 (5)	-0.0115 (5)
N2	0.022 (2)	0.026 (2)	0.024 (2)	-0.0046 (17)	-0.0108 (18)	-0.0087 (18)
S2	0.0237 (7)	0.0309 (7)	0.0229 (7)	-0.0028 (5)	-0.0107 (5)	-0.0135 (6)
C1	0.015 (2)	0.014 (2)	0.017 (2)	-0.0048 (17)	-0.0007 (19)	-0.0066 (18)
C2	0.032 (3)	0.020 (2)	0.020 (3)	-0.005 (2)	-0.008 (2)	-0.008 (2)
C3	0.029 (3)	0.021 (3)	0.034 (3)	0.002 (2)	-0.014 (2)	-0.008 (2)
C4	0.030 (3)	0.014 (2)	0.035 (3)	-0.005 (2)	-0.007 (2)	-0.007 (2)
C5	0.034 (3)	0.030 (3)	0.038 (3)	-0.005 (2)	-0.012 (3)	-0.021 (3)
C6	0.026 (3)	0.022 (3)	0.028 (3)	-0.001 (2)	-0.009 (2)	-0.011 (2)
C7	0.022 (3)	0.015 (2)	0.017 (2)	-0.0024 (18)	-0.0050 (19)	-0.0074 (19)
C8	0.024 (3)	0.023 (3)	0.021 (3)	-0.005 (2)	-0.007 (2)	-0.005 (2)
C9	0.049 (4)	0.025 (3)	0.020 (3)	-0.009 (2)	-0.010 (3)	0.003 (2)
C10	0.038 (3)	0.037 (3)	0.025 (3)	-0.018 (3)	-0.006 (3)	-0.002 (2)
C11	0.032 (3)	0.046 (3)	0.023 (3)	-0.018 (3)	0.002 (2)	-0.007 (3)
C12	0.025 (3)	0.023 (2)	0.018 (3)	-0.002 (2)	-0.006 (2)	-0.004 (2)

Geometric parameters (Å, °)

2.132 (5)	С4—Н4А	0.9500
2.137 (4)	C5—C6	1.380 (7)
2.138 (4)	С5—Н5А	0.9500
2.296 (3)	C6—H6A	0.9500
2.5967 (12)	C7—C12	1.382 (7)
1.536 (4)	C7—C8	1.392 (6)
2.296 (3)	C8—C9	1.385 (7)
1.567 (4)	C8—H8A	0.9500
1.675 (4)	C9—C10	1.385 (8)
1.385 (6)	С9—Н9А	0.9500
1.394 (6)	C10—C11	1.381 (8)
1.396 (6)	C10—H10A	0.9500
0.9500	C11—C12	1.385 (7)
1.379 (7)	C11—H11A	0.9500
0.9500	C12—H12A	0.9500
1.364 (8)		
114.01 (15)	C5—C4—H4A	120.3
122.65 (16)	C3—C4—H4A	120.3
	2.132 (5) 2.137 (4) 2.138 (4) 2.296 (3) 2.5967 (12) 1.536 (4) 2.296 (3) 1.567 (4) 1.675 (4) 1.385 (6) 1.394 (6) 1.394 (6) 1.396 (6) 0.9500 1.379 (7) 0.9500 1.364 (8) 114.01 (15) 122.65 (16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

N1—Sn1—C1	122.73 (15)	C4—C5—C6	121.0 (5)
C7—Sn1—N1 ⁱ	93.55 (15)	C4—C5—H5A	119.5
N1—Sn1—N1 ⁱ	72.82 (15)	С6—С5—Н5А	119.5
C1—Sn1—N1 ⁱ	95.25 (15)	C5—C6—C1	120.9 (5)
C7—Sn1—S2	98.61 (12)	С5—С6—Н6А	119.6
N1—Sn1—S2	80.65 (9)	C1—C6—H6A	119.6
C1—Sn1—S2	97.87 (12)	C12—C7—C8	118.6 (4)
N1 ⁱ —Sn1—S2	153.42 (10)	C12—C7—Sn1	121.8 (3)
S1—N1—Sn1	121.6 (2)	C8—C7—Sn1	119.5 (3)
S1—N1—Sn1 ⁱ	131.2 (2)	C9—C8—C7	120.3 (5)
Sn1—N1—Sn1 ⁱ	107.18 (15)	С9—С8—Н8А	119.9
N1—S1—N2	115.8 (2)	С7—С8—Н8А	119.9
S1—N2—S2	120.4 (2)	C8-C9-C10	120.0 (5)
N2 - S2 - Sn1	101.63 (14)	С8—С9—Н9А	120.0
C_2 — C_1 — C_6	117.8 (4)	C10—C9—H9A	120.0
$C_2 - C_1 - S_{n_1}$	1236(3)	C11 - C10 - C9	120.5(5)
C6-C1-Sn1	123.6(3)	C11—C10—H10A	119.8
C1 - C2 - C3	120.9(4)	C9-C10-H10A	119.8
C1 - C2 - H2A	119.6	C10-C11-C12	118.8 (5)
$C_3 - C_2 - H_2 A$	119.6	C10 $C11$ $H11A$	120.6
$C_{4} - C_{3} - C_{2}^{2}$	120.1 (5)	C12— $C11$ — $H11A$	120.6
C4-C3-H3A	120.1 (5)	C7 - C12 - C11	120.0
C2_C3_H3A	120.0	C7 - C12 - C11	119.1
$C_2 = C_3 = H_3 X$	120.0 110.4(5)	$C_1 = C_1 = H_1 = H_1 = A$	110.1
05-04-05	119.4 (5)	CII—CI2—III2A	119.1
C7—Sn1—N1—S1	-96.1 (3)	C6—C1—C2—C3	-0.1 (7)
C1—Sn1—N1—S1	92.6 (3)	Sn1—C1—C2—C3	177.8 (4)
N1 ⁱ —Sn1—N1—S1	177.8 (3)	C1—C2—C3—C4	0.5 (8)
S2—Sn1—N1—S1	-0.7 (2)	C2—C3—C4—C5	-0.8 (8)
C7—Sn1—N1—Sn1 ⁱ	86.17 (18)	C3—C4—C5—C6	0.6 (8)
C1—Sn1—N1—Sn1 ⁱ	-85.12 (19)	C4—C5—C6—C1	-0.2(8)
N1 ⁱ —Sn1—N1—Sn1 ⁱ	0.001 (2)	C2—C1—C6—C5	-0.1 (7)
S2—Sn1—N1—Sn1 ⁱ	-178.51 (14)	Sn1—C1—C6—C5	-178.0(4)
Sn1—N1—S1—N2	0.6 (3)	N1—Sn1—C7—C12	-120.4(4)
$Sn1^{i}$ N1 S1 N2	177.8 (2)	C1—Sn1—C7—C12	50.9 (4)
N1—S1—N2—S2	0.2 (4)	$N1^{i}$ —Sn1—C7—C12	-47.6 (4)
S1—N2—S2—Sn1	-0.6(3)	S2—Sn1—C7—C12	156.1 (3)
C7—Sn1—S2—N2	113.77 (18)	N1—Sn1—C7—C8	57.0 (4)
N1— $Sn1$ — $S2$ — $N2$	0.68 (16)	C1—Sn1—C7—C8	-131.7 (4)
C1— $Sn1$ — $S2$ — $N2$	-121.35(18)	$N1^{i}$ — $Sn1$ — $C7$ — $C8$	129.7 (4)
$N1^{i}$ — $Sn1$ — $S2$ — $N2$	-2.5 (3)	S2—Sn1—C7—C8	-26.6(4)
C7-Sn1-C1-C2	-92.6(4)	C12-C7-C8-C9	-1.0(7)
N1 - Sn1 - C1 - C2	77.9 (4)	Sn1—C7—C8—C9	-178.5(4)
$N1^{i}$ Sn1 $-C1$ $-C2$	5.0 (4)	C7-C8-C9-C10	1.6 (8)
$S_{2}=S_{n1}=C_{1}=C_{2}$	161.8 (4)	C8 - C9 - C10 - C11	-2.1(9)
C7 = Sn1 = C1 = C6	85.2 (4)	C9-C10-C11-C12	2.0 (9)
N1— $Sn1$ — $C1$ — $C6$	-104.3 (4)	C8—C7—C12—C11	1.0 (7)

N1 ⁱ —Sn1—C1—C6	-177.2 (4)	Sn1—C7—C12—C11	178.4 (4)
S2—Sn1—C1—C6	-20.4 (4)	C10-C11-C12-C7	-1.5 (8)

Symmetry code: (i) -x+1, -y+1, -z+1.